1
|
Barzegar-Fallah A, Ghaffari-Bohlouli P, Nadjafi S, Razmi A, Dehpour AR, Ghaffarian-Bahraman A, Alimoradi H, Shafiei M. Tropisetron attenuates high-glucose-induced vascular endothelial dysfunction via inhibition of calcineurin/NFAT signalling. Eur J Pharmacol 2025; 994:177389. [PMID: 39961489 DOI: 10.1016/j.ejphar.2025.177389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 02/01/2025] [Accepted: 02/13/2025] [Indexed: 03/15/2025]
Abstract
Vascular endothelial dysfunction (VED) is considered an important initiating factor in pathogenesis of diabetic vascular disease. In this process, oxidative insult, cellular hypertrophy, and activation of the calcineurin/nuclear factor of activated T-cell (NFAT) pathway play key roles. Herein, we investigated the effects of tropisetron (TRS), a calcineurin inhibitor, on high glucose (HG)-induced hypertrophy and apoptosis in human umbilical vein endothelial cells (HUVECs). To this end, HUVECs and chorioallantoic membranes (CAMs) were exposed to HG with or without TRS or cyclosporine A (CsA), and the effects of the treatments were evaluated on oxidative stress generation, cell number (proliferation and apoptosis), cell size (hypertrophy), and vessel formation. We also explored the possible role of calcineurin-NFAT signalling in the potential protective effects of TRS on hypertrophy and apoptosis associated with HG. The average size and protein content of the cells exposed to HG for 48h were significantly increased compared with normal glucose (NG). HG significantly increased apoptosis, altered the cell cycle, and elevated oxidative and nitrosative stress in HUVECs. Further, exposing cells to HG resulted in elevated calcineurin activity and NFATc1 translocation to the nuclei. HG also caused a significant decrease in the formation of new blood vessels in CAMs. Inhibition of calcineurin/NFAT pathway by TRS or CsA protected against these pathological changes. Our data demonstrated that inhibition of calcineurin/NFAT signalling by TRS, as a safe calcineurin inhibitor, may ameliorate HG-induced VED. Further in vivo and clinical studies are required to fully determine the protective effects of TRS against VED in diabetes.
Collapse
Affiliation(s)
- Anita Barzegar-Fallah
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; BioMatter Unit-Biomass Transformation Lab (BTL), École Interfacultaire de Bioingénieurs (EIB), Université Libre de Bruxelles, Brussels, Belgium
| | - Pejman Ghaffari-Bohlouli
- BioMatter Unit-Biomass Transformation Lab (BTL), École Interfacultaire de Bioingénieurs (EIB), Université Libre de Bruxelles, Brussels, Belgium
| | - Shabnam Nadjafi
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Razmi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Ghaffarian-Bahraman
- Occupational Environment Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Houman Alimoradi
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; BioMatter Unit-Biomass Transformation Lab (BTL), École Interfacultaire de Bioingénieurs (EIB), Université Libre de Bruxelles, Brussels, Belgium.
| | - Massoumeh Shafiei
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Li D, Yu Q, Wu R, Tuo Z, Wang J, Ye L, Shao F, Chaipanichkul P, Yoo KH, Wei W, Okoli UA, Deng S, Ke M, Cho WC, Heavey S, Feng D. Interactions between oxidative stress and senescence in cancer: Mechanisms, therapeutic implications, and future perspectives. Redox Biol 2024; 73:103208. [PMID: 38851002 PMCID: PMC11201350 DOI: 10.1016/j.redox.2024.103208] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/04/2024] [Accepted: 05/23/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Recently, numerous studies have reported the interaction between senescence and oxidative stress in cancer. However, there is a lack of a comprehensive understanding of the precise mechanisms involved. AIM Therefore, our review aims to summarize the current findings and elucidate by presenting specific mechanisms that encompass functional pathways, target genes, and related aspects. METHODS Pubmed and Web of Science databases were retrieved to search studies about the interaction between senescence and oxidative stress in cancer. Relevant publications in the reference list of enrolled studies were also checked. RESULTS In carcinogenesis, oxidative stress-induced cellular senescence acts as a barrier against the transformation of stimulated cells into cancer cells. However, the senescence-associated secretory phenotype (SASP) is positively linked to tumorigenesis. In the cancer progression stage, targeting specific genes or pathways that promote oxidative stress-induced cellular senescence can suppress cancer progression. In terms of treatment, many current clinical therapies combine with novel drugs to overcome resistance and reduce side effects by attenuating oxidative stress-induced senescence. Notably, emerging drugs control cancer development by enhancing oxidative stress-induced senescence. These studies highlight the complacted effects of the interplay between oxidative stress and senescence at different cancer stages and among distinct cell populations. Future research should focus on characterizing the roles of distinct senescent cell types in various tumor stages and identifying the specific components of SASP. CONCLUDSION We've summarized the mechanisms of senescence and oxidative stress in cancer and provided illustrative figures to guide future research in this area.
Collapse
Affiliation(s)
- Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qingxin Yu
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo City, Zhejiang Province, 315211, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhouting Tuo
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Fanglin Shao
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | | | - Koo Han Yoo
- Department of Urology, Kyung Hee University, South Korea
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Uzoamaka Adaobi Okoli
- Division of Surgery & Interventional Science, University College London, London, UK; Basic and Translational Cancer Research Group, Department of Pharmacology and Therapeutics, College of Medicine, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Shi Deng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mang Ke
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China.
| | - Susan Heavey
- Division of Surgery & Interventional Science, University College London, London, UK.
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China; Division of Surgery & Interventional Science, University College London, London, UK; Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China.
| |
Collapse
|
3
|
Li X, Sun Y, Zhou Z, Li J, Liu S, Chen L, Shi Y, Wang M, Zhu Z, Wang G, Lu Q. Deep Learning-Driven Exploration of Pyrroloquinoline Quinone Neuroprotective Activity in Alzheimer's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308970. [PMID: 38454653 PMCID: PMC11095145 DOI: 10.1002/advs.202308970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/15/2024] [Indexed: 03/09/2024]
Abstract
Alzheimer's disease (AD) is a pressing concern in neurodegenerative research. To address the challenges in AD drug development, especially those targeting Aβ, this study uses deep learning and a pharmacological approach to elucidate the potential of pyrroloquinoline quinone (PQQ) as a neuroprotective agent for AD. Using deep learning for a comprehensive molecular dataset, blood-brain barrier (BBB) permeability is predicted and the anti-inflammatory and antioxidative properties of compounds are evaluated. PQQ, identified in the Mediterranean-DASH intervention for a diet that delays neurodegeneration, shows notable BBB permeability and low toxicity. In vivo tests conducted on an Aβ₁₋₄₂-induced AD mouse model verify the effectiveness of PQQ in reducing cognitive deficits. PQQ modulates genes vital for synapse and anti-neuronal death, reduces reactive oxygen species production, and influences the SIRT1 and CREB pathways, suggesting key molecular mechanisms underlying its neuroprotective effects. This study can serve as a basis for future studies on integrating deep learning with pharmacological research and drug discovery.
Collapse
Affiliation(s)
- Xinuo Li
- Jiangsu Provincial Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing211166China
| | - Yuan Sun
- Jiangsu Provincial Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing211166China
| | - Zheng Zhou
- Department of Computer ScienceRWTH Aachen University52074AachenGermany
| | - Jinran Li
- Jiangsu Provincial Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing211166China
| | - Sai Liu
- Jiangsu Provincial Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing211166China
| | - Long Chen
- Jiangsu Provincial Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing211166China
| | - Yiting Shi
- Jiangsu Provincial Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing211166China
| | - Min Wang
- Affiliated Brain Hospital of Nanjing Medical UniversityNanjing210029China
| | - Zheying Zhu
- School of PharmacyThe University of NottinghamNottinghamNG7 2RDUK
| | - Guangji Wang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing211166China
| | - Qiulun Lu
- Jiangsu Provincial Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing211166China
| |
Collapse
|
4
|
To KKW, Cho WC. Drug Repurposing to Circumvent Immune Checkpoint Inhibitor Resistance in Cancer Immunotherapy. Pharmaceutics 2023; 15:2166. [PMID: 37631380 PMCID: PMC10459070 DOI: 10.3390/pharmaceutics15082166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Immune checkpoint inhibitors (ICI) have achieved unprecedented clinical success in cancer treatment. However, drug resistance to ICI therapy is a major hurdle that prevents cancer patients from responding to the treatment or having durable disease control. Drug repurposing refers to the application of clinically approved drugs, with characterized pharmacological properties and known adverse effect profiles, to new indications. It has also emerged as a promising strategy to overcome drug resistance. In this review, we summarized the latest research about drug repurposing to overcome ICI resistance. Repurposed drugs work by either exerting immunostimulatory activities or abolishing the immunosuppressive tumor microenvironment (TME). Compared to the de novo drug design strategy, they provide novel and affordable treatment options to enhance cancer immunotherapy that can be readily evaluated in the clinic. Biomarkers are exploited to identify the right patient population to benefit from the repurposed drugs and drug combinations. Phenotypic screening of chemical libraries has been conducted to search for T-cell-modifying drugs. Genomics and integrated bioinformatics analysis, artificial intelligence, machine and deep learning approaches are employed to identify novel modulators of the immunosuppressive TME.
Collapse
Affiliation(s)
- Kenneth K. W. To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| |
Collapse
|