1
|
Sun N, Wang Y. RORγt inhibitors in clinical development for the treatment of autoimmune diseases: challenges and opportunities. Expert Opin Ther Pat 2025:1-13. [PMID: 40110872 DOI: 10.1080/13543776.2025.2482936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/20/2025] [Accepted: 03/18/2025] [Indexed: 03/22/2025]
Abstract
INTRODUCTION Nuclear receptor retinoid-related orphan receptor gamma-t (RORγt) is a major transcription factor for Th17 cell differentiation and IL-17 production. RORγt has been considered as a promising drug target for the treatment of IL-17-mediated inflammatory diseases. Numerous small molecule inhibitors have been discovered, and more than 20 of RORγt inhibitors have been advanced to clinical trials. However, none of these compounds has yet achieved market approval. AREAS COVERED This manuscript summarizes the development of 22 clinical-stage RORγt inhibitors, including their structures, patent applications, and clinical trial status, based on publications and patents available up to November 2024. EXPERT OPINION The discovery of RORγt inhibitors was considered as an exciting field for the development of small molecular treatments, which has gone through a boom period in the past 10 years. However, some of the leading RORγt inhibitors recently failed in clinical trials due to lack of efficacy or having some safety concerns, although a few small molecule candidates targeting RORγt are still in trials and more in preclinical studies. Realizing the challenge, researchers started to develop different approaches such as dual targeting or exploring new indications, utilizing the potential value of RORγt inhibitors.
Collapse
Affiliation(s)
- Nannan Sun
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, China
| | - Yonghui Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Erkner E, Hentrich T, Schairer R, Fitzel R, Secker-Grob KA, Jeong J, Keppeler H, Korkmaz F, Schulze-Hentrich JM, Lengerke C, Schneidawind D, Schneidawind C. The RORɣ/SREBP2 pathway is a master regulator of cholesterol metabolism and serves as potential therapeutic target in t(4;11) leukemia. Oncogene 2024; 43:281-293. [PMID: 38030791 PMCID: PMC10798886 DOI: 10.1038/s41388-023-02903-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023]
Abstract
Dysregulated cholesterol homeostasis promotes tumorigenesis and progression. Therefore, metabolic reprogramming constitutes a new hallmark of cancer. However, until today, only few therapeutic approaches exist to target this pathway due to the often-observed negative feedback induced by agents like statins leading to controversially increased cholesterol synthesis upon inhibition. Sterol regulatory element-binding proteins (SREBPs) are key transcription factors regulating the synthesis of cholesterol and fatty acids. Since SREBP2 is difficult to target, we performed pharmacological inhibition of retinoic acid receptor (RAR)-related orphan receptor gamma (RORγ), which acts upstream of SREBP2 and serves as master regulator of the cholesterol metabolism. This resulted in an inactivated cholesterol-related gene program with significant downregulation of cholesterol biosynthesis. Strikingly, these effects were more pronounced than the effects of fatostatin, a direct SREBP2 inhibitor. Upon RORγ inhibition, RNA sequencing showed strongly increased cholesterol efflux genes leading to leukemic cell death and cell cycle changes in a dose- and time-dependent manner. Combinatorial treatment of t(4;11) cells with the RORγ inhibitor showed additive effects with cytarabine and even strong anti-leukemia synergism with atorvastatin by circumventing the statin-induced feedback. Our results suggest a novel therapeutic strategy to inhibit tumor-specific cholesterol metabolism for the treatment of t(4;11) leukemia.
Collapse
Affiliation(s)
- Estelle Erkner
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Thomas Hentrich
- Department of Genetics/Epigenetics, Faculty NT, Saarland University, Saarbruecken, Germany
| | - Rebekka Schairer
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Rahel Fitzel
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Kathy-Ann Secker-Grob
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Johan Jeong
- Process Cell Sciences, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Hildegard Keppeler
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Fulya Korkmaz
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | | | - Claudia Lengerke
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Dominik Schneidawind
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Corina Schneidawind
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany.
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Shen S, Shen M, Kuang L, Yang K, Wu S, Liu X, Wang Y, Wang Y. SIRT1/SREBPs-mediated regulation of lipid metabolism. Pharmacol Res 2024; 199:107037. [PMID: 38070792 DOI: 10.1016/j.phrs.2023.107037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024]
Abstract
Sirtuins, also called silent information regulator 2, are enzymes that rely on nicotinamide adenine dinucleotide (NAD+) to function as histone deacetylases. Further investigation is warranted to explore the advantageous impacts of Sirtuin 1 (SIRT1), a constituent of the sirtuin group, on lipid metabolism, in addition to its well-researched involvement in extending lifespan. The regulation of gene expression has been extensively linked to SIRT1. Sterol regulatory element-binding protein (SREBP) is a substrate of SIRT1 that has attracted significant interest due to its role in multiple cellular processes including cell cycle regulation, DNA damage repair, and metabolic functions. Hence, the objective of this analysis was to investigate and elucidate the correlation between SIRT1 and SREBPs, as well as assess the contribution of SIRT1/SREBPs in mitigating lipid metabolism dysfunction. The objective of this research was to investigate whether SIRT1 and SREBPs could be utilized as viable targets for therapeutic intervention in managing complications associated with diabetes.
Collapse
Affiliation(s)
- Shan Shen
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Mingyang Shen
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Lirun Kuang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Keyu Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Shiran Wu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Xinde Liu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Yuting Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Yong Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| |
Collapse
|
4
|
Kadasah SF, Radwan MO. Overview of Ursolic Acid Potential for the Treatment of Metabolic Disorders, Autoimmune Diseases, and Cancers via Nuclear Receptor Pathways. Biomedicines 2023; 11:2845. [PMID: 37893218 PMCID: PMC10604592 DOI: 10.3390/biomedicines11102845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Nuclear receptors (NRs) form a family of druggable transcription factors that are regulated by ligand binding to orchestrate multifaceted physiological functions, including reproduction, immunity, metabolism, and growth. NRs represent attractive and valid targets for the management and treatment of a vast array of ailments. Pentacyclic triterpenes (PTs) are ubiquitously distributed natural products in medicinal and aromatic plants, of which ursolic acid (UA) is an extensively studied member, due to its diverse bio-pertinent activities against different cancers, inflammation, aging, obesity, diabetes, dyslipidemia, and liver injury. In fact, PTs share a common lipophilic structure that resembles NRs' endogenous ligands. Herein, we present a review of the literature on UA's effect on NRs, showcasing the resulting health benefits and potential therapeutic outcomes. De facto, UA exhibited numerous pharmacodynamic effects on PPAR, LXR, FXR, and PXR, resulting in remarkable anti-inflammatory, anti-hyperlipidemic, and hepatoprotective properties, by lowering lipid accumulation in hepatocytes and mitigating non-alcoholic steatohepatitis (NASH) and its subsequent liver fibrosis. Furthermore, UA reversed valproate and rifampicin-induced hepatic lipid accumulation. Additionally, UA showed great promise for the treatment of autoimmune inflammatory diseases such as multiple sclerosis and autoimmune arthritis by antagonizing RORγ. UA exhibited antiproliferative effects against skin, prostate, and breast cancers, partially via PPARα and RORγ pathways. Herein, for the first time, we explore and provide insights into UA bioactivity with respect to NR modulation.
Collapse
Affiliation(s)
- Sultan F. Kadasah
- Department of Biology, Faculty of Science, University of Bisha, P.O. Box 551, Bisha 61922, Saudi Arabia
| | - Mohamed O. Radwan
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| |
Collapse
|
5
|
Morioka N, Tsuruta M, Masuda N, Yamano K, Nakano M, Kochi T, Nakamura Y, Hisaoka-Nakashima K. Inhibition of Nuclear Receptor Related Orphan Receptor γ Ameliorates Mechanical Hypersensitivity Through the Suppression of Spinal Microglial Activation. Neuroscience 2023; 526:223-236. [PMID: 37419402 DOI: 10.1016/j.neuroscience.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/21/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
Microglia are crucial in induction of central sensitization under a chronic pain state. Therefore, control of microglial activity is important to ameliorate nociceptive hypersensitivity. The nuclear receptor retinoic acid related orphan receptor γ (RORγ) contributes to the regulation of inflammation-related gene transcription in some immune cells, including T cells and macrophages. Their role and function in regulation of microglial activity and nociceptive transduction have yet to be elaborated. Treatment of cultured microglia with specific RORγ inverse agonists, SR2211 or GSK2981278, significantly suppressed lipopolysaccharide (LPS)-induced mRNA expression of pronociceptive molecules interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor (TNF). Intrathecal treatment of naïve male mice with LPS markedly induced mechanical hypersensitivity and upregulation of ionized calcium-biding adaptor molecule (Iba1) in the spinal dorsal horn, indicating microglial activation. In addition, intrathecal treatment with LPS significantly induced mRNA upregulation of IL-1β and IL-6 in the spinal dorsal horn. These responses were prevented by intrathecal pretreatment with SR2211. In addition, intrathecal administration of SR2211 significantly ameliorated established mechanical hypersensitivity and upregulation of Iba1 immunoreactivity in the spinal dorsal horn of male mice following peripheral sciatic nerve injury. The current findings demonstrate that blockade of RORγ in spinal microglia exerts anti-inflammatory effects, and that RORγ may be an appropriate target for the treatment of chronic pain.
Collapse
Affiliation(s)
- Norimitsu Morioka
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| | - Maho Tsuruta
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Nao Masuda
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Kiichi Yamano
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Manaya Nakano
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Takahiro Kochi
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Yoki Nakamura
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
6
|
Zou H, Yang Y, Chen HW. Natural compounds ursolic acid and digoxin exhibit inhibitory activities to cancer cells in RORγ-dependent and -independent manner. Front Pharmacol 2023; 14:1146741. [PMID: 37180705 PMCID: PMC10169565 DOI: 10.3389/fphar.2023.1146741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
Natural compounds ursolic acid (UA) and digoxin isolated from fruits and other plants display potent anti-cancer effects in preclinical studies. UA and digoxin have been at clinical trials for treatment of different cancers including prostate cancer, pancreatic cancer and breast cancer. However, they displayed limited benefit to patients. Currently, a poor understanding of their direct targets and mechanisms of action (MOA) severely hinders their further development. We previously identified nuclear receptor RORγ as a novel therapeutic target for castration-resistant prostate cancer (CRPC) and triple-negative breast cancer (TNBC) and demonstrated that tumor cell RORγ directly activates gene programs such as androgen receptor (AR) signaling and cholesterol metabolism. Previous studies also demonstrated that UA and digoxin are potential RORγt antagonists in modulating the functions of immune cells such as Th17 cells. Here we showed that UA displays a strong activity in inhibition of RORγ-dependent transactivation function in cancer cells, while digoxin exhibits no effect at clinically relevant concentrations. In prostate cancer cells, UA downregulates RORγ-stimulated AR expression and AR signaling, whereas digoxin upregulates AR signaling pathway. In TNBC cells, UA but not digoxin alters RORγ-controlled gene programs of cell proliferation, apoptosis and cholesterol biosynthesis. Together, our study reveals for the first-time that UA, but not digoxin, acts as a natural antagonist of RORγ in the cancer cells. Our finding that RORγ is a direct target of UA in cancer cells will help select patients with tumors that likely respond to UA treatment.
Collapse
Affiliation(s)
- Hongye Zou
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Yatian Yang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Hong-Wu Chen
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States
- UC Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, CA, United States
- VA Northern California Health Care System, Mather, CA, United States
| |
Collapse
|