1
|
Rafi FR, Heya NR, Hafiz MS, Jim JR, Kabir MM, Mridha MF. A systematic review of single-cell RNA sequencing applications and innovations. Comput Biol Chem 2025; 115:108362. [PMID: 39919386 DOI: 10.1016/j.compbiolchem.2025.108362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/26/2024] [Accepted: 01/21/2025] [Indexed: 02/09/2025]
Abstract
Bulk RNA sequencing is one type of RNA sequencing technique, as well as targeted RNA sequencing and whole transcriptome sequencing. It provides valuable insights into gene expression in specific cell populations or regions. However, these methods often miss the diversity of cells within complex tissues. This restriction is overcome by single-cell RNA sequencing, which records gene expression at the single-cell level. It offers a detailed picture of the diversity of cells. It is essential to study glucose homeostasis. It offers thorough explanations of cellular variation. Networks and Governance Dynamics The use of scRNA-seq in islet cells is reviewed in this study, along with sample preparation, sequencing, and computational analysis. It highlights advances in understanding cell types. Gene activity and cell interactions. Along with the challenges and limitations of scRNA-seq, this review highlights the importance of scRNA-seq in understanding complex biological processes and diseases. It is an essential resource for future research and method development in this field, which will help to build personalized treatment.
Collapse
Affiliation(s)
- Fahamidur Rahaman Rafi
- Department of Computer Science and Engineering, Daffodil International University, Dhaka 1340, Bangladesh.
| | - Nafeya Rahman Heya
- Department of Computer Science and Engineering, Daffodil International University, Dhaka 1340, Bangladesh.
| | - Md Sadman Hafiz
- Institute of Information and Communication Technology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh.
| | - Jamin Rahman Jim
- Department of Computer Science, American International University-Bangladesh, Dhaka 1229, Bangladesh.
| | - Md Mohsin Kabir
- Department of Computer Science & Engineering, Bangladesh University of Business & Technology, Dhaka 1216, Bangladesh.
| | - M F Mridha
- Department of Computer Science, American International University-Bangladesh, Dhaka 1229, Bangladesh.
| |
Collapse
|
2
|
Alum EU, Ikpozu EN, Offor CE, Igwenyi IO, Obaroh IO, Ibiam UA, Ukaidi CUA. RNA-based diagnostic innovations: A new frontier in diabetes diagnosis and management. Diab Vasc Dis Res 2025; 22:14791641251334726. [PMID: 40230050 PMCID: PMC12033450 DOI: 10.1177/14791641251334726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/16/2025] Open
Abstract
Background/Objective: Diabetes mellitus (DM) remains a major global health challenge due to its chronic nature and associated complications. Traditional diagnostic approaches, though effective, often lack the sensitivity required for early-stage detection. Recent advancements in molecular biology have identified RNA molecules, particularly non-coding RNAs such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), as promising biomarkers for diabetes. This review aims to explore the role of RNA-based biomarkers in the diagnosis, prognosis, and management of diabetes, highlighting their potential to revolutionize diabetes care.Method: A comprehensive literature review was conducted using electronic databases including PubMed, Scopus, and Web of Science. Articles published up to 2024 were screened and analyzed to extract relevant findings related to RNA-based diagnostics in diabetes. Emphasis was placed on studies demonstrating clinical utility, mechanistic insights, and translational potential of RNA molecules.Results: Numerous RNA species, particularly miRNAs such as miR-375, miR-29, and lncRNAs like H19 and MEG3, exhibit altered expression patterns in diabetic patients. These molecules are involved in key regulatory pathways of glucose metabolism, insulin resistance, and β-cell function. Circulating RNAs are detectable in various biofluids, enabling non-invasive diagnostic approaches. Emerging technologies, including RNA sequencing and liquid biopsy platforms, have enhanced the sensitivity and specificity of RNA detection, fostering the development of novel diagnostic tools and personalized therapeutic strategies.Conclusion: RNA-based biomarkers hold significant promise in advancing early detection, risk stratification, and therapeutic monitoring in diabetes care. Despite current challenges such as standardization and clinical validation, the integration of RNA diagnostics into routine clinical practice could transform diabetes management, paving the way for precision medicine approaches. Further research and multi-center trials are essential to validate these biomarkers and facilitate their regulatory approval and clinical implementation.
Collapse
Affiliation(s)
- Esther Ugo Alum
- Department of Research and Publications, Kampala International University, Uganda
- Department of Biochemistry, Ebonyi State University, Abakaliki, Nigeria
| | | | | | | | - Israel Olusegun Obaroh
- Department of Biological and Environmental Sciences, School of Natural and Applied Sciences, Kampala International University, Uganda
| | - Udu Ama Ibiam
- Department of Biochemistry, Ebonyi State University, Abakaliki, Nigeria
- Department of Biochemistry, College of Science, Evangel University Akaeze, Abakaliki, Nigeria
| | - Chris U. A. Ukaidi
- College of Economics and Management, Kampala International University, Uganda
| |
Collapse
|
3
|
Arbore R, Barbosa S, Brejcha J, Ogawa Y, Liu Y, Nicolaï MPJ, Pereira P, Sabatino SJ, Cloutier A, Poon ESK, Marques CI, Andrade P, Debruyn G, Afonso S, Afonso R, Roy SG, Abdu U, Lopes RJ, Mojzeš P, Maršík P, Sin SYW, White MA, Araújo PM, Corbo JC, Carneiro M. A molecular mechanism for bright color variation in parrots. Science 2024; 386:eadp7710. [PMID: 39480920 PMCID: PMC7617403 DOI: 10.1126/science.adp7710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/05/2024] [Indexed: 11/02/2024]
Abstract
Parrots produce stunning plumage colors through unique pigments called psittacofulvins. However, the mechanism underlying their ability to generate a spectrum of vibrant yellows, reds, and greens remains enigmatic. We uncover a unifying chemical basis for a wide range of parrot plumage colors, which result from the selective deposition of red aldehyde- and yellow carboxyl-containing psittacofulvin molecules in developing feathers. Through genetic mapping, biochemical assays, and single-cell genomics, we identified a critical player in this process, the aldehyde dehydrogenase ALDH3A2, which oxidizes aldehyde psittacofulvins into carboxyl forms in late-differentiating keratinocytes during feather development. The simplicity of the underlying molecular mechanism, in which a single enzyme influences the balance of red and yellow pigments, offers an explanation for the exceptional evolutionary lability of parrot coloration.
Collapse
Affiliation(s)
- Roberto Arbore
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Soraia Barbosa
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Jindřich Brejcha
- Department of Philosophy and History of Science, Faculty of Science, Charles University in Prague, Praha, Czech Republic
| | - Yohey Ogawa
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yu Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Michaël P. J. Nicolaï
- Evolution and Optics of Nanostructures Group, Biology Department, Ghent University, Ghent, Belgium
| | - Paulo Pereira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Stephen J. Sabatino
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Alison Cloutier
- School of Biological Sciences, The University of Hong Kong, Hong Kong
| | | | - Cristiana I. Marques
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Pedro Andrade
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Gerben Debruyn
- Evolution and Optics of Nanostructures Group, Biology Department, Ghent University, Ghent, Belgium
| | - Sandra Afonso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Rita Afonso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Shatadru Ghosh Roy
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva84105, Israel
| | - Uri Abdu
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva84105, Israel
| | - Ricardo J. Lopes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- MHNC-UP, Natural History and Science Museum of the University of Porto, Porto, Portugal
- cE3c – Center for Ecology, Evolution and Environmental Change & CHANGE, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Peter Mojzeš
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - Petr Maršík
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Simon Yung Wa Sin
- School of Biological Sciences, The University of Hong Kong, Hong Kong
| | - Michael A. White
- Edison Family Center for Systems Biology and Genome Sciences, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Pedro M. Araújo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- University of Coimbra, MARE – Marine and Environmental Sciences Centre, Department of Life Sciences, Coimbra, Portugal
| | - Joseph C. Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Miguel Carneiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| |
Collapse
|
4
|
Wang L, Chen A, Zhang L, Zhang J, Wei S, Chen Y, Hu M, Mo Y, Li S, Zeng M, Li H, Liang C, Ren Y, Xu L, Liang W, Zhu X, Wang X, Sun D. Deciphering the molecular nexus between Omicron infection and acute kidney injury: a bioinformatics approach. Front Mol Biosci 2024; 11:1340611. [PMID: 39027131 PMCID: PMC11254815 DOI: 10.3389/fmolb.2024.1340611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
Background The ongoing global health crisis of COVID-19, and particularly the challenges posed by recurrent infections of the Omicron variant, have significantly strained healthcare systems worldwide. There is a growing body of evidence indicating an increased susceptibility to Omicron infection in patients suffering from Acute Kidney Injury (AKI). However, the intricate molecular interplay between AKI and Omicron variant of COVID-19 remains largely enigmatic. Methods This study employed a comprehensive analysis of human RNA sequencing (RNA-seq) and microarray datasets to identify differentially expressed genes (DEGs) associated with Omicron infection in the context of AKI. We engaged in functional enrichment assessments, an examination of Protein-Protein Interaction (PPI) networks, and advanced network analysis to elucidate the cellular signaling pathways involved, identify critical hub genes, and determine the relevant controlling transcription factors and microRNAs. Additionally, we explored protein-drug interactions to highlight potential pharmacological interventions. Results Our investigation revealed significant DEGs and cellular signaling pathways implicated in both Omicron infection and AKI. We identified pivotal hub genes, including EIF2AK2, PLSCR1, GBP1, TNFSF10, C1QB, and BST2, and their associated regulatory transcription factors and microRNAs. Notably, in the murine AKI model, there was a marked reduction in EIF2AK2 expression, in contrast to significant elevations in PLSCR1, C1QB, and BST2. EIF2AK2 exhibited an inverse relationship with the primary AKI mediator, Kim-1, whereas PLSCR1 and C1QB demonstrated strong positive correlations with it. Moreover, we identified potential therapeutic agents such as Suloctidil, Apocarotenal, 3'-Azido-3'-deoxythymidine, among others. Our findings also highlighted a correlation between the identified hub genes and diseases like myocardial ischemia, schizophrenia, and liver cirrhosis. To further validate the credibility of our data, we employed an independent validation dataset to verify the hub genes. Notably, the expression patterns of PLSCR1, GBP1, BST2, and C1QB were consistent with our research findings, reaffirming the reliability of our results. Conclusion Our bioinformatics analysis has provided initial insights into the shared genetic landscape between Omicron COVID-19 infections and AKI, identifying potential therapeutic targets and drugs. This preliminary investigation lays the foundation for further research, with the hope of contributing to the development of innovative treatment strategies for these complex medical conditions.
Collapse
Affiliation(s)
- Li Wang
- Nephrology Department, Southern Medical University Affiliated Longhua People’s Hospital, Shenzhen, China
| | - Anning Chen
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Lantian Zhang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Junwei Zhang
- Nephrology Department, Southern Medical University Affiliated Longhua People’s Hospital, Shenzhen, China
| | - Shuqi Wei
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yangxiao Chen
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Mingliang Hu
- Nephrology Department, Southern Medical University Affiliated Longhua People’s Hospital, Shenzhen, China
| | - Yihao Mo
- Nephrology Department, Southern Medical University Affiliated Longhua People’s Hospital, Shenzhen, China
| | - Sha Li
- Nephrology Department, Southern Medical University Affiliated Longhua People’s Hospital, Shenzhen, China
| | - Min Zeng
- Nephrology Department, Southern Medical University Affiliated Longhua People’s Hospital, Shenzhen, China
| | - Huafeng Li
- Nephrology Department, Southern Medical University Affiliated Longhua People’s Hospital, Shenzhen, China
| | - Caixing Liang
- Nephrology Department, Southern Medical University Affiliated Longhua People’s Hospital, Shenzhen, China
| | - Yi Ren
- Nephrology Department, Southern Medical University Affiliated Longhua People’s Hospital, Shenzhen, China
| | - Liting Xu
- Nephrology Department, Southern Medical University Affiliated Longhua People’s Hospital, Shenzhen, China
| | - Wenhua Liang
- Nephrology Department, Southern Medical University Affiliated Longhua People’s Hospital, Shenzhen, China
| | - Xuejiao Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaokai Wang
- Xuzhou First People’s Hospital, Xuzhou, Jiangsu, China
| | - Donglin Sun
- Department of Urology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
5
|
Ji Q, Zhang F, Su Q, He T, Wu Z, Zhu K, Chen X, Wang Z, Hou S, Gui L. Effect of supplementing lysins and methionine to low-protein diets on growth performance, hepatic antioxidant capacity, immune status, and glycolytic activity of tibetan sheep. BMC Genomics 2024; 25:557. [PMID: 38834972 DOI: 10.1186/s12864-024-10480-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/30/2024] [Indexed: 06/06/2024] Open
Abstract
Reducing the levels of dietary protein is an effective nutritional approach in lowering feed cost and nitrogen emissions in ruminants. The purpose of this study was to evaluate the effects of dietary Lys/Met ratio in a low protein diet (10%, dry matter basis) on the growth performance and hepatic function (antioxidant capacity, immune status, and glycolytic activity) in Tibetan lambs. Ninety two-month-old rams with an average weight of 15.37 ± 0.92 kg were randomly assigned to LP-L (dietary Lys/Met = 1:1), LP-M (dietary Lys/Met = 2:1) and LP-H (dietary Lys/Met = 3:1) treatments. The trial was conducted over 100 d, including 10 d of adaption to the diets. Hepatic phenotypes, antioxidant capacity, immune status, glycolytic activity and gene expression profiling was detected after the conclusion of the feeding trials. The results showed that the body weight was higher in the LP-L group when compared to those on the LP-M group (P < 0.05). In addition, the activities of the catalase (CAT) and glutathione peroxidase (GSH-Px) in the LP-L group were significantly increased compared with the LP-M group (P < 0.05), while the malondialdehyde (MDA) levels in LP-H group were significantly decreased (P < 0.05). Compared with LP-H group, both hepatic glycogen (P < 0.01) and lactate dehydrogenase (LDH) (P < 0.05) were significantly elevated in LP-L group. For the LP-L group, the hepatocytes were arranged radially with the central vein in the center, and hepatic plates exhibited tight arrangement. Transcriptome analysis identified 29, 179, and 129 differentially expressed genes (DEGs) between the LP-M vs. LP-L, LP-H vs. LP-M, and LP-H vs. LP-L groups, respectively (Q-values < 0.05 and |log2Fold Change| > 1). Gene Ontology (GO) and correlation analyses showed that in the LP-L group, core genes (C1QA and JUNB) enriched in oxidoreductase activity were positively correlated with antioxidant indicators, while the MYO9A core gene enriched in the immune response was positively associated with immune indicators, and core genes enriched in molecular function (PDK3 and PDP2) were positively correlated with glycolysis indicators. In summary, low-protein diet with a low Lys/Met ratio (1:1) could reduce the hepatic oxidative stress and improve the glycolytic activity by regulating the expression of related genes of Tibetan sheep.
Collapse
Affiliation(s)
- Qiurong Ji
- Qinghai University College of Agriculture and Animal Husbandry, Xining, 810016, China
| | - Fengshuo Zhang
- Qinghai University College of Agriculture and Animal Husbandry, Xining, 810016, China
| | - Quyangangmao Su
- Qinghai University College of Agriculture and Animal Husbandry, Xining, 810016, China
| | - Tingli He
- Qinghai University College of Agriculture and Animal Husbandry, Xining, 810016, China
| | - Zhenling Wu
- Qinghai University College of Agriculture and Animal Husbandry, Xining, 810016, China
| | - Kaina Zhu
- Qinghai University College of Agriculture and Animal Husbandry, Xining, 810016, China
| | - Xuan Chen
- Qinghai University College of Agriculture and Animal Husbandry, Xining, 810016, China
| | - Zhiyou Wang
- Qinghai University College of Agriculture and Animal Husbandry, Xining, 810016, China
| | - Shengzhen Hou
- Qinghai University College of Agriculture and Animal Husbandry, Xining, 810016, China
| | - Linsheng Gui
- Qinghai University College of Agriculture and Animal Husbandry, Xining, 810016, China.
| |
Collapse
|
6
|
Yang K, Zhang Y, Ding J, Li Z, Zhang H, Zou F. Autoimmune CD8+ T cells in type 1 diabetes: from single-cell RNA sequencing to T-cell receptor redirection. Front Endocrinol (Lausanne) 2024; 15:1377322. [PMID: 38800484 PMCID: PMC11116783 DOI: 10.3389/fendo.2024.1377322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/18/2024] [Indexed: 05/29/2024] Open
Abstract
Type 1 diabetes (T1D) is an organ-specific autoimmune disease caused by pancreatic β cell destruction and mediated primarily by autoreactive CD8+ T cells. It has been shown that only a small number of stem cell-like β cell-specific CD8+ T cells are needed to convert normal mice into T1D mice; thus, it is likely that T1D can be cured or significantly improved by modulating or altering self-reactive CD8+ T cells. However, stem cell-type, effector and exhausted CD8+ T cells play intricate and important roles in T1D. The highly diverse T-cell receptors (TCRs) also make precise and stable targeted therapy more difficult. Therefore, this review will investigate the mechanisms of autoimmune CD8+ T cells and TCRs in T1D, as well as the related single-cell RNA sequencing (ScRNA-Seq), CRISPR/Cas9, chimeric antigen receptor T-cell (CAR-T) and T-cell receptor-gene engineered T cells (TCR-T), for a detailed and clear overview. This review highlights that targeting CD8+ T cells and their TCRs may be a potential strategy for predicting or treating T1D.
Collapse
Affiliation(s)
- Kangping Yang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yihan Zhang
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Jiatong Ding
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Zelin Li
- The First Clinical Medicine School, Nanchang University, Nanchang, China
| | - Hejin Zhang
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Fang Zou
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Li H, Zhao J, Xing Y, Chen J, Wen Z, Ma R, Han F, Huang B, Wang H, Li C, Chen Y, Ning X. Identification of Age-Related Characteristic Genes Involved in Severe COVID-19 Infection Among Elderly Patients Using Machine Learning and Immune Cell Infiltration Analysis. Biochem Genet 2024:10.1007/s10528-024-10802-9. [PMID: 38656671 DOI: 10.1007/s10528-024-10802-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024]
Abstract
Elderly patients infected with severe acute respiratory syndrome coronavirus 2 are at higher risk of severe clinical manifestation, extended hospitalization, and increased mortality. Those patients are more likely to experience persistent symptoms and exacerbate the condition of basic diseases with long COVID-19 syndrome. However, the molecular mechanisms underlying severe COVID-19 in the elderly patients remain unclear. Our study aims to investigate the function of the interaction between disease-characteristic genes and immune cell infiltration in patients with severe COVID-19 infection. COVID-19 datasets (GSE164805 and GSE180594) and aging dataset (GSE69832) were obtained from the Gene Expression Omnibus database. The combined different expression genes (DEGs) were subjected to Gene Ontology (GO) functional enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Diseases Ontology functional enrichment analysis, Gene Set Enrichment Analysis, machine learning, and immune cell infiltration analysis. GO and KEGG enrichment analyses revealed that the eight DEGs (IL23A, PTGER4, PLCB1, IL1B, CXCR1, C1QB, MX2, ALOX12) were mainly involved in inflammatory mediator regulation of TRP channels, coronavirus disease-COVID-19, and cytokine activity signaling pathways. Three-degree algorithm (LASSO, SVM-RFE, KNN) and correlation analysis showed that the five DEGs up-regulated the immune cells of macrophages M0/M1, memory B cells, gamma delta T cell, dendritic cell resting, and master cell resisting. Our study identified five hallmark genes that can serve as disease-characteristic genes and target immune cells infiltrated in severe COVID-19 patients among the elderly population, which may contribute to the study of pathogenesis and the evaluation of diagnosis and prognosis in aging patients infected with severe COVID-19.
Collapse
Affiliation(s)
- Huan Li
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, No. 127 Chang le West Road, Xi'an, 710032, Shaanxi, China
- Department of Nephrology, The Second People's Hospital of Shaan xi Province, Xi'an, China
| | - Jin Zhao
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, No. 127 Chang le West Road, Xi'an, 710032, Shaanxi, China
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yan Xing
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jia Chen
- Xi'an Medical University, Xi'an, China
| | | | - Rui Ma
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, No. 127 Chang le West Road, Xi'an, 710032, Shaanxi, China
| | - Fengxia Han
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, No. 127 Chang le West Road, Xi'an, 710032, Shaanxi, China
| | - Boyong Huang
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, No. 127 Chang le West Road, Xi'an, 710032, Shaanxi, China
| | - Hao Wang
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, No. 127 Chang le West Road, Xi'an, 710032, Shaanxi, China
| | - Cui Li
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, No. 127 Chang le West Road, Xi'an, 710032, Shaanxi, China
| | - Yang Chen
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, No. 127 Chang le West Road, Xi'an, 710032, Shaanxi, China
| | - Xiaoxuan Ning
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, No. 127 Chang le West Road, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|