1
|
De Bartolo A, Romeo N, Angelone T, Rocca C. Specialized Pro-Resolving Mediators as Emerging Players in Cardioprotection: From Inflammation Resolution to Therapeutic Potential. Acta Physiol (Oxf) 2025; 241:e70062. [PMID: 40433738 PMCID: PMC12117521 DOI: 10.1111/apha.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/18/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025]
Abstract
AIM Timely myocardial reperfusion is essential for restoring blood flow to post-ischemic tissue, thereby reducing cardiac injury and limiting infarct size. However, this process can paradoxically result in additional, irreversible myocardial damage, known as myocardial ischemia-reperfusion injury (MIRI). The goal of this review is to explore the role of specialized pro-resolving mediators (SPMs) in atherosclerosis and MIRI, and to assess the therapeutic potential of targeting inflammation resolution in these cardiovascular conditions. METHODS This review summarizes current preclinical and clinical evidence on the involvement of SPMs in the pathogenesis of atherosclerosis and MIRI, acknowledging that several cellular and molecular aspects of their mechanisms of action remain to be fully elucidated. RESULTS MIRI is a complex phenomenon in which inflammation, initially triggered during ischemia and further amplified upon reperfusion, plays a central role in its pathogenesis. Various cellular and molecular players mediate the initial pro-inflammatory response and the subsequent anti-inflammatory reparative phase following acute myocardial infarction (AMI), contributing both to ischemia- and reperfusion-induced damage as well as to the healing process. SPMs have emerged as key endogenous immunoresolvents with potent anti-inflammatory, antioxidant, and pro-resolving properties that contribute to limit excessive acute inflammation and promote tissue repair. While dysregulated SPM-related signaling has been linked to various cardiovascular diseases (CVD), their precise role in AMI and MIRI remains incompletely understood. CONCLUSION Targeting inflammation resolution may represent a promising therapeutic strategy for mitigating atheroprogression and addressing a complex condition such as MIRI.
Collapse
Affiliation(s)
- Anna De Bartolo
- Cellular and Molecular Cardiovascular Physiology and Pathophysiology Laboratory, Department of Biology, E. And E. S. (DiBEST)University of CalabriaCosenzaItaly
| | - Naomi Romeo
- Cellular and Molecular Cardiovascular Physiology and Pathophysiology Laboratory, Department of Biology, E. And E. S. (DiBEST)University of CalabriaCosenzaItaly
| | - Tommaso Angelone
- Cellular and Molecular Cardiovascular Physiology and Pathophysiology Laboratory, Department of Biology, E. And E. S. (DiBEST)University of CalabriaCosenzaItaly
- National Institute of Cardiovascular Research (INRC)BolognaItaly
| | - Carmine Rocca
- Cellular and Molecular Cardiovascular Physiology and Pathophysiology Laboratory, Department of Biology, E. And E. S. (DiBEST)University of CalabriaCosenzaItaly
- National Institute of Cardiovascular Research (INRC)BolognaItaly
| |
Collapse
|
2
|
Kang Y, Jin Q, Zhou M, Zheng H, Li D, Wang X, Zhou J, Wang Y, Lv J. Specialized pro-resolving mediators in neutrophil apoptosis regulation: unlocking novel therapeutic potential in kidney diseases. Front Immunol 2025; 16:1589923. [PMID: 40443675 PMCID: PMC12119277 DOI: 10.3389/fimmu.2025.1589923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Accepted: 04/22/2025] [Indexed: 06/02/2025] Open
Abstract
Kidney diseases represent a diverse group of disorders with pathogenic mechanisms involving multiple pathological processes, including inflammation, immunity, and cell death. Neutrophils, as primary effector cells in inflammatory immune responses, participate in defending against renal infection and injury by releasing reactive oxygen species, proteases, and cytokines. However, persistent neutrophil activation is considered a crucial driver of kidney disease progression. Neutrophil apoptosis represents a critical turning point between inflammatory progression and resolution. Specialized pro-resolving mediators (SPMs) are endogenous anti-inflammatory mediators that play a critical role in resolving inflammation. They not only induce neutrophil programmed cell death and promote macrophage-mediated efferocytosis of apoptotic cells but also inhibit neutrophil infiltration and degranulation, ultimately facilitating the restoration of inflammatory microenvironment and tissue homeostasis. This review concentrates on elucidating the mechanisms by which SPMs regulate neutrophil apoptosis and systematically demonstrates their potential as novel therapeutic targets in kidney diseases.
Collapse
Affiliation(s)
- Yi Kang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Qian Jin
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Mengqi Zhou
- Department of Traditional Chinese Medicine, Beijing Puren Hospital, Beijing, China
| | - Huijuan Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Danwen Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Xuezhe Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Jingwei Zhou
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yaoxian Wang
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Jie Lv
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Sánchez-García S, Jaén RI, Lozano-Rodríguez R, Avendaño-Ortiz J, Pascual‐Iglesias A, Hurtado-Navarro L, López-Collazo E, Boscá L, Prieto P. Lipoxin A 4 levels correlate with severity in a Spanish COVID-19 cohort: potential use of endogenous pro-resolving mediators as biomarkers. Front Immunol 2025; 15:1509188. [PMID: 39916956 PMCID: PMC11798798 DOI: 10.3389/fimmu.2024.1509188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/27/2024] [Indexed: 02/09/2025] Open
Abstract
Background SARS-CoV-2, the causative virus of the COVID-19 global pandemic, leads to a wide variety of responses among patients. Some of them present a very severe phenotype, while others only experience mild symptoms or are even asymptomatic. This differential prognosis is tightly related to the inflammatory status of the patient. Although WHO declared the end of the emergency, the pandemic caused a great socio-sanitary impact in all countries. Thus, the possible outbreak of new biological diseases in the future makes it necessary to deepen the knowledge of this uncontrolled immune response and look for reliable biomarkers to help us predict its potential health impact. Specialized pro-resolving lipid mediators (SPMs) as lipoxins are endogenous mediators synthesized from arachidonic acid in the resolution stage of any inflammatory process. These lipids have pro-resolving actions in several pathological models, including reducing NF-κB-mediated inflammation, and inducing the antioxidant response through the Nrf-2 pathway. Thus, although a potential relationship has already been suggested between low levels of SPMs and COVID-19 severity, their true role as a predictive biomarker is still unknown. Methods and results In this study, we have analyzed by ELISA the serum levels of lipoxin A4 (LXA4) in a representative Spanish cohort. We found reduced levels in deceased patients when compared to mild or severe patients, concomitant with a decrease in the LXA4 biosynthetic pathway and an increase in its degradation pathway. Furthermore, we have studied the correlation between the levels of this SPM and several pathology indicators, finding a significant correlation between increased LXA4 levels and a better prognosis of the patients. Conclusion We propose to measure systemic LXA4 as a new promising biomarker to predict the survival in patients affected by SARS-CoV-2 and presumably to other viruses that can affect humanity in the future.
Collapse
Affiliation(s)
- Sergio Sánchez-García
- Departamento de enfermedades metabólicas e inmunitarias, Instituto de Investigaciones Biomédicas “Sols-Morreale”, Madrid, Spain
| | - Rafael I. Jaén
- Departamento de enfermedades metabólicas e inmunitarias, Instituto de Investigaciones Biomédicas “Sols-Morreale”, Madrid, Spain
| | - Roberto Lozano-Rodríguez
- Innate Immune Response Group, Instituto de Investigación del Hospital Universitario La Paz (IdiPaz), Madrid, Spain
| | - José Avendaño-Ortiz
- Microbiology Department, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Alejandro Pascual‐Iglesias
- Innate Immune Response Group, Instituto de Investigación del Hospital Universitario La Paz (IdiPaz), Madrid, Spain
| | - Laura Hurtado-Navarro
- Innate Immune Response Group, Instituto de Investigación del Hospital Universitario La Paz (IdiPaz), Madrid, Spain
| | - Eduardo López-Collazo
- Innate Immune Response Group, Instituto de Investigación del Hospital Universitario La Paz (IdiPaz), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Lisardo Boscá
- Departamento de enfermedades metabólicas e inmunitarias, Instituto de Investigaciones Biomédicas “Sols-Morreale”, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia Prieto
- Departamento de enfermedades metabólicas e inmunitarias, Instituto de Investigaciones Biomédicas “Sols-Morreale”, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
4
|
Cheng L, Hu Z, Gu J, Li Q, Liu J, Liu M, Li J, Bi X. Exploring COX-Independent Pathways: A Novel Approach for Meloxicam and Other NSAIDs in Cancer and Cardiovascular Disease Treatment. Pharmaceuticals (Basel) 2024; 17:1488. [PMID: 39598398 PMCID: PMC11597362 DOI: 10.3390/ph17111488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
As a fundamental process of innate immunity, inflammation is associated with the pathologic process of various diseases and constitutes a prevalent risk factor for both cancer and cardiovascular disease (CVD). Studies have indicated that several non-steroidal anti-inflammatory drugs (NSAIDs), including Meloxicam, may prevent tumorigenesis, reduce the risk of carcinogenesis, improve the efficacy of anticancer therapies, and reduce the risk of CVD, in addition to controlling the body's inflammatory imbalances. Traditionally, most NSAIDs work by inhibiting cyclooxygenase (COX) activity, thereby blocking the synthesis of prostaglandins (PGs), which play a role in inflammation, cancer, and various cardiovascular conditions. However, long-term COX inhibition and reduced PGs synthesis can result in serious side effects. Recent studies have increasingly shown that some selective COX-2 inhibitors and NSAIDs, such as Meloxicam, may exert effects beyond COX inhibition. This emerging understanding prompts a re-evaluation of the mechanisms by which NSAIDs operate, suggesting that their benefits in cancer and CVD treatment may not solely depend on COX targeting. In this review, we will explore the potential COX-independent mechanisms of Meloxicam and other NSAIDs in addressing oncology and cardiovascular health.
Collapse
Affiliation(s)
- Lixia Cheng
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (L.C.); (Z.H.); (Q.L.); (J.L.); (M.L.); (J.L.)
| | - Zhenghui Hu
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (L.C.); (Z.H.); (Q.L.); (J.L.); (M.L.); (J.L.)
| | - Jiawei Gu
- Department of Precision Genomics, Intermountain Healthcare, 5121 Cottonwood St., Murray, UT 84107, USA;
| | - Qian Li
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (L.C.); (Z.H.); (Q.L.); (J.L.); (M.L.); (J.L.)
| | - Jiahao Liu
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (L.C.); (Z.H.); (Q.L.); (J.L.); (M.L.); (J.L.)
| | - Meiling Liu
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (L.C.); (Z.H.); (Q.L.); (J.L.); (M.L.); (J.L.)
| | - Jie Li
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (L.C.); (Z.H.); (Q.L.); (J.L.); (M.L.); (J.L.)
| | - Xiaowen Bi
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (L.C.); (Z.H.); (Q.L.); (J.L.); (M.L.); (J.L.)
| |
Collapse
|
5
|
Hu Y, Li W, Cheng X, Yang H, She ZG, Cai J, Li H, Zhang XJ. Emerging Roles and Therapeutic Applications of Arachidonic Acid Pathways in Cardiometabolic Diseases. Circ Res 2024; 135:222-260. [PMID: 38900855 DOI: 10.1161/circresaha.124.324383] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Cardiometabolic disease has become a major health burden worldwide, with sharply increasing prevalence but highly limited therapeutic interventions. Emerging evidence has revealed that arachidonic acid derivatives and pathway factors link metabolic disorders to cardiovascular risks and intimately participate in the progression and severity of cardiometabolic diseases. In this review, we systemically summarized and updated the biological functions of arachidonic acid pathways in cardiometabolic diseases, mainly focusing on heart failure, hypertension, atherosclerosis, nonalcoholic fatty liver disease, obesity, and diabetes. We further discussed the cellular and molecular mechanisms of arachidonic acid pathway-mediated regulation of cardiometabolic diseases and highlighted the emerging clinical advances to improve these pathological conditions by targeting arachidonic acid metabolites and pathway factors.
Collapse
Affiliation(s)
- Yufeng Hu
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Wei Li
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
| | - Xu Cheng
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Hailong Yang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Zhi-Gang She
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
| | - Jingjing Cai
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China (J.C.)
| | - Hongliang Li
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China (H.L.)
| | - Xiao-Jing Zhang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- School of Basic Medical Sciences, Wuhan University, China (X.-J.Z.)
| |
Collapse
|
6
|
Zhang WW, Wang SS, Ding YD, Wu XY, Chen T, Gao Y, Jin SW, Zhang PH. Cardiac Resolvin D2 ameliorates sepsis-induced cardiomyopathy via inhibiting Caspase-11/GSDMD dependent pyroptosis. Free Radic Biol Med 2024; 215:64-76. [PMID: 38437927 DOI: 10.1016/j.freeradbiomed.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Sepsis-induced cardiomyopathy (SICM) is common complication in septic patients with a high mortality and is characterized by an abnormal inflammation response, which was precisely regulated by endogenous specialized pro-resolving mediators (SPMs). However, the metabolic changes of cardiac SPMs during SICM and the roles of SPMs subset in the development of SICM remain unknown. METHODS In this work, the SPMs concentration was assessed using ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) of SICM mice and SICM patients. The cardiac function was measured by echocardiography after the treatment of a SPMs subset, termed Resolvin D2 (RvD2). Caspase-11-/-, GSDMD-/- and double deficient (Caspase-11-/-GSDMD-/-) mice were used to clarify the mechanisms of RvD2 in SICM. RESULTS We found that endogenous cardiac SPMs were disorders and RvD2 was decreased significantly and correlated with left ventricular ejection fraction (LVEF) and β-BNP, cTnT in Lipopolysaccharide/Cecum ligation and puncture (CLP) induced SICM models. Treatment with RvD2 attenuated lethality, cardiac dysfunction and cardiomyocytes death during SICM. Mechanistically, RvD2 alleviated SICM via inhibiting Caspase-11/GSDMD-mediated cardiomyocytes pyroptosis. Finally, the plasma levels of RvD2 were also decreased and significantly correlated with IL-1β, β-BNP, cTnT and LVEF in patients with SICM. Of note, plasma RvD2 level is indicator of SICM patients from healthy controls or sepsis patients. CONCLUSION These findings suggest that decreased cardiac RvD2 may involve in the pathogenesis of SICM. In addition, treatment with RvD2 represents a novel therapeutic strategy for SICM by inhibiting cardiomyocytes pyroptosis.
Collapse
Affiliation(s)
- Wen-Wu Zhang
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Zhejiang, China; Provincial Key Laboratory of Precision Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Shun-Shun Wang
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Zhejiang, China; Provincial Key Laboratory of Precision Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Yang-Dong Ding
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Zhejiang, China; Provincial Key Laboratory of Precision Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Xin-Yi Wu
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Zhejiang, China; Provincial Key Laboratory of Precision Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Ting Chen
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Zhejiang, China; Provincial Key Laboratory of Precision Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Ye Gao
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Zhejiang, China; Provincial Key Laboratory of Precision Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Sheng-Wei Jin
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Zhejiang, China; Provincial Key Laboratory of Precision Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China.
| | - Pu-Hong Zhang
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, 325027, China; Department of Critical Care, The First Affiliated Hospital of Wannan Medical College, Anhui, 241004, China.
| |
Collapse
|