1
|
Zhang K, Yuan B, Dai X, Chen W, Zhang C, Qiao Y, Cao W, Chen Y, Duan X, Zhang X, Yang W, Li X, Zhao J, Liu K, Dong Z, Lu J. Selection and identification of DNA aptamer binding VDAC1 for tumor tissue imaging and targeted drug delivery. Int J Biol Macromol 2025; 306:141249. [PMID: 39984095 DOI: 10.1016/j.ijbiomac.2025.141249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/14/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
Hepatocellular carcinoma (HCC) represents a significant health concern. Identifying novel molecular targets is crucial for clinical diagnosis and targeted treatment of HCC. Aptamers are capable of binding specifically to cancer cells via target protein molecules. Consequently, aptamers are frequently employed to identify novel cancer biomarkers. The invasiveness of tumor cells is closely associated with the recurrence and metastasis of tumors. In this study, the highly invasive Huh7-P3 cells were initially constructed, and subsequently, several aptamers that could specifically recognize Huh7-P3 were developed using cell-based Systematic Evolution of Ligands by Exponential Enrichment (SELEX). The selected aptamer, designated S2-2, demonstrated the capacity to bind to multiple cancer cells. Furthermore, tissue imaging demonstrated that S2-2 exhibited a specific recognition of HCC tissue, while demonstrating no binding to normal tissue. Subsequently, voltage-dependent anion channel 1 (VDAC1) was identified as a potential target for S2-2. Furthermore, Doxorubicin (Dox)-loaded S2-2 was shown to specifically kill target Huh7-P3 cells. In vivo fluorescence imaging revealed that S2-2 was capable of specifically targeting tumors. Importantly, S2-2-Dox enhanced the anti-tumor efficacy of Dox in cell-line-derived xenograft (CDX) model. This study may provide a promising biomarker and molecular target for the clinical diagnosis and targeted therapy of cancers with high VDAC1 expression.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Baoyin Yuan
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Xiaoshuo Dai
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Wei Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Chengjuan Zhang
- Department of Pathology, Henan Cancer Hospital, Zhengzhou University, Zhengzhou, Henan Province 450003, PR China
| | - Yan Qiao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; State Key Laboratory of Metabolic Disorders and Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, PR China
| | - Wenbo Cao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; State Key Laboratory of Metabolic Disorders and Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, PR China
| | - Yihuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Xiaoxuan Duan
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Xiaoyan Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; State Key Laboratory of Metabolic Disorders and Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, PR China
| | - Wanjing Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; State Key Laboratory of Metabolic Disorders and Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, PR China
| | - Xiang Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; State Key Laboratory of Metabolic Disorders and Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, PR China
| | - Jimin Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; State Key Laboratory of Metabolic Disorders and Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, PR China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; State Key Laboratory of Metabolic Disorders and Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, PR China
| | - Ziming Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; State Key Laboratory of Metabolic Disorders and Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, PR China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; State Key Laboratory of Metabolic Disorders and Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, PR China.
| |
Collapse
|
2
|
Rafailovska E, Xhemaili E, Naumovska Z, Gigopulu O, Miova B, Suturkova L, Stefkov G. Unlocking the Antidiabetic Potential of CBD: In Vivo Preclinical Studies. Pharmaceuticals (Basel) 2025; 18:446. [PMID: 40283884 PMCID: PMC12030168 DOI: 10.3390/ph18040446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Diabetes mellitus is a growing global health concern, driving the exploration of new therapies like cannabidiol (CBD), which shows potential in improving insulin sensitivity and glycemic control, though its effects on glucose metabolism remain unclear. This study evaluates CBD's dose-dependent effects on glycemia, insulin, and hepatic carbohydrate metabolism in diabetic rats. Methods: The Oral Glucose Tolerance Test (OGTT) was performed in healthy rats to compare intragastric vs. intraperitoneal CBD (0.5, 5, 50 mg/kg). Diabetic rats were treated with intragastric CBD (25, 50, 100 mg/kg) or metformin (70 mg/kg) for 8 days. Blood glucose, insulin, lipid profiles, and key carbohydrate-metabolizing enzymes were analyzed. Results: In the OGTT, intragastric CBD reduced glycemic AUC, with 50 mg/kg showing the strongest effect, while intraperitoneal CBD had no impact. In diabetic rats, metformin and 25 mg/kg CBD lowered blood glucose, but only CBD increased insulin. The 50 mg/kg dose caused the greatest glucose reduction and moderate insulin rise, while 100 mg/kg had no effect. At 25 mg/kg, CBD inhibited glucose-6-phosphatase and increased glucose-6-phosphate. The 50 mg/kg dose further suppressed gluconeogenic enzymes, reduced glycogen phosphorylase and liver glucose, and enhanced glucose-6-phosphate, showing the strongest metabolic effects. The 100 mg/kg dose increased hexokinase but had weaker metabolic effects. Metformin improved glucose utilization and glycogen storage. CBD at 25 and 50 mg/kg reduced triacylglycerols and increased HDL, while 100 mg/kg had no effect. Conclusions: This study provides strong evidence of CBD's antidiabetic potential, especially at 50 mg/kg, particularly through its modulation of glucose metabolism and tendency to regulate insulin levels.
Collapse
Affiliation(s)
- Elena Rafailovska
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje, Arhimedova 3, 1000 Skopje, North Macedonia; (E.R.); (B.M.)
| | - Elona Xhemaili
- Department of Pharmacy, Faculty of Medical Sciences, University of Tetovo, Ilinden bb, 1200 Tetovo, North Macedonia;
| | - Zorica Naumovska
- Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Majka Tereza 47, 1000 Skopje, North Macedonia; (Z.N.); (O.G.); (L.S.)
| | - Olga Gigopulu
- Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Majka Tereza 47, 1000 Skopje, North Macedonia; (Z.N.); (O.G.); (L.S.)
| | - Biljana Miova
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje, Arhimedova 3, 1000 Skopje, North Macedonia; (E.R.); (B.M.)
| | - Ljubica Suturkova
- Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Majka Tereza 47, 1000 Skopje, North Macedonia; (Z.N.); (O.G.); (L.S.)
| | - Gjoshe Stefkov
- Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Majka Tereza 47, 1000 Skopje, North Macedonia; (Z.N.); (O.G.); (L.S.)
| |
Collapse
|
3
|
Vigano M, Wang L, As’sadiq A, Samarani S, Ahmad A, Costiniuk CT. Impact of cannabinoids on cancer outcomes in patients receiving immune checkpoint inhibitor immunotherapy. Front Immunol 2025; 16:1497829. [PMID: 40109334 PMCID: PMC11919899 DOI: 10.3389/fimmu.2025.1497829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/10/2025] [Indexed: 03/22/2025] Open
Abstract
Cannabinoids relieve pain, nausea, anorexia and anxiety, and improve quality of life in several cancer patients. The immunotherapy with checkpoint inhibitors (ICIs), although very successful in a subset of patients, is accompanied by moderate to severe immune-related adverse events (ir-AE) that often necessitate its discontinuation. Because of their role in symptomatic relief, cannabinoids have been used in combination with immune checkpoint inhibitor (ICI) immunotherapy. A few studies strongly suggest that the use of medicinal cannabis in cancer patients attenuates many of the ir-AE associated with the use of ICI immunotherapy and increase its tolerability. However, no significant beneficial effects on overall survival, progression free survival or cancer relapses were observed; rather, some of the studies noted adverse effects of concurrent administration of cannabinoids with ICI immunotherapy on the clinical benefits of the latter. Because of cannabinoids' well documented immunosuppressive effects mediated through the cannabinoid recptor-2 (CB2), we propose considering this receptor as an inhibitory immune checkpoint per se. A simultaneous neutralization of CB2, concurrent with cannabinoid treatment, may lead to better clinical outcomes in cancer patients receiving ICI immunotherapy. In this regard, cannabinoids such as cannabidiol (CBD) and cannabigerol (CBG), with little agonism for CB2, may be better therapeutic choices. Additional strategies e.g., the use of monoacylglycerol lipase (MAGL) inhibitors that degrade some endocannabinoids as well as lipogenesis and formation of lipid bilayers in cancer cells may also be explored. Future studies should take into consideration gut microbiota, CYP450 polymorphism and haplotypes, cannabinoid-drug interactions as well as genetic and somatic variations occurring in the cannabinoid receptors and their signaling pathways in cancer cells for personalized cannabis-based therapies in cancer patients receiving ICIs. This may lead to rational knowledge-based regimens tailored to individual cancer patients.
Collapse
Affiliation(s)
- MariaLuisa Vigano
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Lixing Wang
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Alia As’sadiq
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Suzanne Samarani
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Ali Ahmad
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Cecilia T. Costiniuk
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Infectious Diseases and Chronic Viral Illnesses Service, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
4
|
Liu Y, Chen A, Wu Y, Ni J, Wang R, Mao Y, Sun N, Mi Y. Identification of mitochondrial carrier homolog 2 as an important therapeutic target of castration-resistant prostate cancer. Cell Death Dis 2025; 16:70. [PMID: 39910035 PMCID: PMC11799199 DOI: 10.1038/s41419-025-07406-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/12/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
We here investigate the expression of the mitochondrial carrier homolog 2 (MTCH2) and its potential function in castration-resistant prostate cancer (CRPC). Bioinformatic analyses reveal that MTCH2 overexpression is associated with critical clinical parameters of prostate cancer. Single-cell sequencing data indicate elevated MTCH2 expression in the prostate cancer epithelium. MTCH2 is also upregulated in locally treated CRPC tissue and various primary human CRPC cells. Using genetic silencing via shRNA and knockout (KO) through the CRISPR-sgRNA approach, we showed that the depletion of MTCH2 impaired mitochondrial function, resulting in a reduced oxygen consumption rate, diminished complex I activity, and decreased ATP levels, mitochondrial depolarization, and increased reactive oxygen species production in primary CRPC cells. The silencing or KO of MTCH2 significantly inhibited cell viability, proliferation, and migration, together with a marked increase in apoptosis in the primary CRPC cells. In contrast, ectopic expression of MTCH2 provided CRPC cells with pro-tumorigenic properties, enhancing ATP production and promoting cell proliferation and migration. MTCH2 silencing also markedly inhibited the growth of subcutaneous xenografts of the primary CRPC cells in nude mice. The MTCH2-silenced xenografts exhibited increased apoptosis, elevated lipid peroxidation, and decreased ATP levels. These results provide new insights into the role of MTCH2 in supporting mitochondrial function and CRPC progression.
Collapse
Affiliation(s)
- Yankui Liu
- Department of Pathology, Affiliated Hospital of Jiangnan University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Anjie Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yufan Wu
- Department of Urology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Jiang Ni
- Department of Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Rong Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yong Mao
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China.
| | - Ning Sun
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| | - Yuanyuan Mi
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, China.
| |
Collapse
|
5
|
Park JH, Hwang YN, Na HH, Kim DY, Lee HJ, Kwon TH, Park JS, Kim KC. Cannabigerol Treatment Shows Antiproliferative Activity and Causes Apoptosis of Human Colorectal Cancer Cells. J Pharmacopuncture 2024; 27:332-339. [PMID: 39741567 PMCID: PMC11656058 DOI: 10.3831/kpi.2024.27.4.332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 08/22/2024] [Accepted: 09/20/2024] [Indexed: 01/03/2025] Open
Abstract
Objectives To determine growth inhibitory and anti-cancer effects of Cannabigerol (CBG) in human colorectal cancer cells. Methods Anti-proliferative effect of CBG was examined using MTT assay and two colorectal cancer cells (SW480 and LoVo cells). Cell death ratio was analyzed using Annexin V/PI staining experiment. Cell cycle distribution was analyzed using flow cytometry. We also performed western blot analysis on apoptotic marker proteins. Results CBG showed growth inhibitory effect in colorectal cancer cells using MTT assay. IC50 concentration of CBG was 34.89 μM in SW480 cells and 23.51 μM in LoVo cells. Annexin V/PI staining showed that CBG treatment increased apoptotic cells from 4.8% to 31.7% in SW480 cells and from 7.7% to 33.9% in LoVo cells. Flow cytometry confirmed that CBG increased sub G1 population via G1 arrest in both SW480 and LoVo cells. Western blot analysis showed that CBG increased expression levels of cell death-related proteins such as cleaved PARP-1, cleaved caspase 9, p53, and caspase 3. Conclusion CBG treatment shows antiproliferative activity and causes apoptosis of colorectal cancer cells, suggesting that CBG is applicable as a promising anticancer drug.
Collapse
Affiliation(s)
- Ju-Hee Park
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Yu-Na Hwang
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Han-Heom Na
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea
- Kangwon Center for System Imaging, Chuncheon, Republic of Korea
| | - Do-Yeon Kim
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Hyo-Jun Lee
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Tae-Hyung Kwon
- Chuncheon Bioindustry Foundation, Chuncheon, Republic of Korea
| | - Jin-Sung Park
- Korean Pharmacopuncture Institute, Seoul, Republic of Korea
| | - Keun-Cheol Kim
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea
- Kangwon Center for System Imaging, Chuncheon, Republic of Korea
| |
Collapse
|
6
|
Mudhish E, Ebrahim HY, Helal IE, Alhowiriny AT, El Sayed KA. Cannabidiol Suppresses Metastatic Castration-Resistant Prostate Cancer Progression and Recurrence through Modulating Tryptophan Catabolism. ACS Pharmacol Transl Sci 2024; 7:3902-3913. [PMID: 39698265 PMCID: PMC11651199 DOI: 10.1021/acsptsci.4c00448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 12/20/2024]
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) is an aggressive phenotype of prostate cancer (PC). Tryptophan oxidative catabolism by indoleamine 2,3-dioxygenase-1 (IDO1) cleaves the indole ring to kynurenine (Kyn), an endogenous ligand for the aryl hydrocarbon receptor (AhR), which activates multiple tumorigenesis pathways. The IDO1-Kyn-AhR axis is aberrantly dysregulated in mCRPC. (-)-Cannabidiol (CBD) is a nonpsychoactive phytocannabinoid. CBD showed antitumor activities against human malignancies, including PC. CBD showed potent in vitro dose-dependent reduction of viability and clonogenicity of diverse human PC cell lines. CBD reduced the expression of IDO1 and AhR in PC cells. A daily 15 mg/kg oral dose of CBD for 30 days effectively suppressed the progression of the mCRPC CWR-R1ca-Luc cells xenografted in male nude mice. Continued CBD oral dosing for an additional 45 days suppressed the CWR-R1ca-Luc tumor locoregional and distant recurrences after the primary tumors' surgical excision. Collected CBD-treated tumors showed a reduced level of IDO1 expression. CBD-treated mice displayed a significant systemic reduction of Kyn. CBD is a novel, nonpsychoactive phytocannabinoid lead useful for the control of mCRPC via targeting the tryptophan catabolism.
Collapse
Affiliation(s)
- Ethar
A. Mudhish
- School
of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, Louisiana 71201, United States
| | - Hassan Y. Ebrahim
- School
of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, Louisiana 71201, United States
| | - Iman E. Helal
- School
of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, Louisiana 71201, United States
- Department
of Pharmacognosy, Faculty of Pharmacy, Mansoura
University, Mansoura 35516, Egypt
| | - Abdullah T. Alhowiriny
- School
of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, Louisiana 71201, United States
| | - Khalid A. El Sayed
- School
of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, Louisiana 71201, United States
| |
Collapse
|
7
|
Zhu Z, Tang G, Shi M, Fang M, Zhang X, Xu H. Identification of the Oncogenic Role of the Circ_0001326/miR-577/VDAC1 Cascade in Prostate Cancer. J Biochem Mol Toxicol 2024; 38:e70034. [PMID: 39555732 DOI: 10.1002/jbt.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/19/2024] [Accepted: 10/18/2024] [Indexed: 11/19/2024]
Abstract
Prostate cancer (PCa) is one of the leading causes of cancer death among men worldwide. Circular RNAs (circRNAs) have been implicated in the pathogenesis of PCa. However, the precise action of circ_0001326 in PCa malignant progression is still unknown. The levels of circ_0001326, miR-577 and voltage dependent anion channel 1 (VDAC1) were determined by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. Cell proliferation, colony formation, apoptosis, migration and invasion were evaluated by the Cell Counting Kit-8 (CCK-8), EdU staining, colony formation, flow cytometry, wound-healing and transwell assays, respectively. Targeted relationships among circ_0001326, miR-577 and VDAC1 were confirmed by dual-luciferase reporter assays. Xenograft experiments were performed to detect the role of circ_0001326 in tumor growth. Our data revealed that circ_0001326 was overexpressed in PCa tissues and cells. Circ_0001326 depletion repressed PCa cell proliferation, migration, and invasion and enhanced apoptosis in vitro, as well as hampered tumor growth in vivo. Mechanistically, circ_0001326 directly targeted miR-577, and VDAC1 was directly targeted and suppressed by miR-577. Moreover, the effects of circ_0001326 knockdown on PCa cell functional behaviors were mediated by miR-577. VDAC1 silencing phenocopied miR-577 overexpression in regulating PCa cell functional behaviors in vitro. Furthermore, circ_0001326 regulated VDAC1 expression through sponging miR-577. Our findings showed that circ_0001326 regulated PCa cell functional behaviors at least partly through targeting the miR-577/VDAC1 axis.
Collapse
Affiliation(s)
- Zhirong Zhu
- Department of Urology, Shaoxing People's Hospital, Shaoxing, China
| | - Guiliang Tang
- Department of Urology, Shaoxing People's Hospital, Shaoxing, China
| | - Mengqi Shi
- Department of Urology, Shaoxing People's Hospital, Shaoxing, China
| | - Mengjie Fang
- Department of Urology, Shaoxing People's Hospital, Shaoxing, China
| | - Xiaolong Zhang
- Department of Urology, Shaoxing People's Hospital, Shaoxing, China
| | - Huali Xu
- Department of Urology, Shaoxing People's Hospital, Shaoxing, China
| |
Collapse
|
8
|
Kato T, Sugihara E, Hata Y, Kawakami K, Fujita Y, Mizutani K, Ando T, Sakai Y, Sakurai K, Toyota S, Ehara H, Ito M, Ito H. Diagnostic potential of SDHB mRNA contained in serum extracellular vesicles among patients with prostate cancer. Prostate 2024; 84:1515-1524. [PMID: 39279231 DOI: 10.1002/pros.24792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Androgen receptor signaling inhibitors(ARSIs) have been used to treat patients with metastatic prostate cancer (PC) and castration-resistant prostate cancer (CRPC). In this study, we aimed to identify novel serum extracellular vesicle (EV)-based biomarkers to diagnose ARSI-resistance and therapeutic targets for ARSI-resistant CRPC. METHODS Total RNA contained in serum EVs from 5 cases of CRPC before ARSI treatment and after acquiring ARSI-resistance was subjected to RNA-sequencing. The expression changes of selected RNAs contained in EVs were confirmed in 48 cases of benign prostatic hyperplasia (BPH) and 107 PC using reverse transcription-quantitative PCR (RT-qPCR) and compared with tissue RNA expression using public datasets. RESULTS RNA-sequencing revealed that mitochondrial oxidative phosphorylation (OXPHOS)-related genes were increased in EVs after acquiring ARSI-resistance. Among them, RT-qPCR and datasets analysis demonstrated that SDHB mRNA was upregulated after acquiring ARSI-resistance in EVs and ARSI-exposed PC tissue compared to ARSI-naïve EVs and tissue, respectively. SDHB mRNA levels both in EVs and tissue were increased in localized PC compared with BPH and decreased in advanced PC. Tissue expression of SDHB mRNA was significantly correlated with those of other OXPHOS-related genes. SDHB mRNA in EVs (EV-SDHB) was elevated among 3 out of 7 ARSI-treating patients with stable PSA levels who later progressed to ARSI-resistant CRPC. CONCLUSIONS The levels of OXPHOS-related mRNAs in EVs correlated with those in PC tissue, among which SDHB mRNA was found to be a novel biomarker to diagnose ARSI-resistance. EV-SDHB may be useful for early diagnosis of ARSI-resistance.
Collapse
MESH Headings
- Humans
- Male
- Extracellular Vesicles/metabolism
- RNA, Messenger/blood
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/diagnosis
- Prostatic Neoplasms, Castration-Resistant/blood
- Prostatic Neoplasms, Castration-Resistant/pathology
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Succinate Dehydrogenase/genetics
- Succinate Dehydrogenase/metabolism
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Aged
- Middle Aged
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/diagnosis
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms/blood
- Prostatic Neoplasms/metabolism
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Drug Resistance, Neoplasm
- Prostatic Hyperplasia/genetics
- Prostatic Hyperplasia/blood
- Prostatic Hyperplasia/diagnosis
- Prostatic Hyperplasia/metabolism
- Androgen Antagonists/therapeutic use
- Androgen Antagonists/pharmacology
Collapse
Affiliation(s)
- Taku Kato
- Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University School of Medicine, Toyoake, Japan
- Department of Urology, Asahi University Hospital, Gifu, Japan
| | - Eiji Sugihara
- Open Facility Center, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yuko Hata
- Open Facility Center, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kyojiro Kawakami
- Research Team for Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Yasunori Fujita
- Molecular and Cellular Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Kosuke Mizutani
- Department of Urology, Central Japan International Medical Center, Gifu, Japan
| | - Tatsuya Ando
- Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yasuhiro Sakai
- Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University School of Medicine, Toyoake, Japan
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Kouhei Sakurai
- Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| | - Shohei Toyota
- Department of Urology, Asahi University Hospital, Gifu, Japan
| | - Hidetoshi Ehara
- Department of Urology, Asahi University Hospital, Gifu, Japan
| | - Masafumi Ito
- Research Team for Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Hiroyasu Ito
- Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| |
Collapse
|
9
|
Li S, Li W, Malhi NK, Huang J, Li Q, Zhou Z, Wang R, Peng J, Yin T, Wang H. Cannabigerol (CBG): A Comprehensive Review of Its Molecular Mechanisms and Therapeutic Potential. Molecules 2024; 29:5471. [PMID: 39598860 PMCID: PMC11597810 DOI: 10.3390/molecules29225471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Cannabigerol (CBG), a non-psychoactive cannabinoid found in cannabis, has emerged as a promising therapeutic agent with a diverse range of potential applications. Unlike its well-known counterpart tetrahydrocannabinol (THC), CBG does not induce intoxication, making it an attractive option in the clinic. Recent research has shed light on CBG's intriguing molecular mechanisms, highlighting its potential to modulate multiple physiological processes. This review delves into the current understanding of CBG's molecular interactions and explores its therapeutic power to alleviate various conditions, including cancer, metabolic, pain, and inflammatory disorders, amongst others. We discuss how CBG interacts with the endocannabinoid system and other key signaling pathways, such as CB1, CB2, TPR channels, and α2-adrenoceptor, potentially influencing inflammation, pain, neurodegeneration, and other ailments. Additionally, we highlight the ongoing research efforts aimed at elucidating the full spectrum of CBG's therapeutic potential and its safety profile in clinical settings. Through this comprehensive analysis, we aim to provide a deeper understanding of CBG's role in promoting human health and pave the way for future research endeavors.
Collapse
Affiliation(s)
- Shijia Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (S.L.); (J.H.); (Q.L.); (Z.Z.)
| | - Weini Li
- Department of Biomedical Science, Cedars-Sinai Medical Center, Cedars-Sinai Cancer Institute, Los Angeles, CA 90067, USA; (W.L.); (R.W.)
| | - Naseeb Kaur Malhi
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA;
| | - Junwei Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (S.L.); (J.H.); (Q.L.); (Z.Z.)
| | - Quanqi Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (S.L.); (J.H.); (Q.L.); (Z.Z.)
| | - Ziwei Zhou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (S.L.); (J.H.); (Q.L.); (Z.Z.)
| | - Ruiheng Wang
- Department of Biomedical Science, Cedars-Sinai Medical Center, Cedars-Sinai Cancer Institute, Los Angeles, CA 90067, USA; (W.L.); (R.W.)
| | - Jiangling Peng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (S.L.); (J.H.); (Q.L.); (Z.Z.)
| | - Tong Yin
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Honggen Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China;
| |
Collapse
|
10
|
Lin TY, Gu SY, Lin YH, Shih JH, Lin JH, Chou TY, Lee YC, Chang SF, Lang YD. Paclitaxel-resistance facilitates glycolytic metabolism via Hexokinase-2-regulated ABC and SLC transporter genes in ovarian clear cell carcinoma. Biomed Pharmacother 2024; 180:117452. [PMID: 39341074 DOI: 10.1016/j.biopha.2024.117452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Ovarian clear cell carcinoma (OCCC) frequently develops resistance to platinum-based therapies, which is regarded as an aggressive subtype. However, metabolic changes in paclitaxel resistance remain unclear. Herein, we present the metabolic alternations of paclitaxel resistance in bioenergetic profiling in OCCC. Paclitaxel-resistant OCCC cells were developed and metabolically active with oxygen consumption rates (OCR) compared to parental cells. Metabolite profiling analysis revealed that paclitaxel-resistant OCCC cells reduced intracellular ATP and GTP influx rates, increasing the NADH/NAD+ ratio. We further demonstrated that paclitaxel-resistant OCCC cells led to characteristic alternations of metabolite levels in energy-requiring and energy-releasing steps of glycolysis and their corresponding glycolytic enzymes. Copy number alterations and RNA sequencing analysis demonstrated that ATP-binding cassette (ABC) transporters and solute carrier (SLC) transporter genes involved in glycolysis metabolism and molecular transport were enriched in paclitaxel-resistant OCCC cells. We first identified that Hexokinase 2 (HK2) expression is upregulated in paclitaxel-resistant OCCC cells to determine the quantity of glucose entering glycolysis. Utilizing proteolysis-targeting chimera (PROTAC) HK2 degraders, we also found that paclitaxel sensitivity, viability, and oxygen consumption rates under paclitaxel treatment were restored by HK2 degraders treatment, and decreased downstream expression of the ABC and SLC transporters was shown in OCCC cells. Taken together, these findings highlight the paclitaxel resistance in OCCC elucidates metabolic alternation, including ABC- and SLC- drug transporters, thereby affecting glycolysis metabolism in response to paclitaxel resistance, and HK2 may become a novel potential therapeutic target for paclitaxel resistance.
Collapse
Affiliation(s)
- Tsai-Yu Lin
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Shin-Yuan Gu
- Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan; Department of Pathology and Precision Medicine Research Center, Taipei Medical University Hospital and Precision Health Center, Taipei Medical University, Taipei, Taiwan
| | - Yi-Hui Lin
- Department of Obstetrics and Gynecology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Jou-Ho Shih
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jiun-Han Lin
- Department of Industrial Technology, Ministry of Economic Affairs, Taipei, Taiwan; Food Industry Research and Development Institute, Hsinchu City, Taiwan
| | - Teh-Ying Chou
- Department of Pathology and Precision Medicine Research Center, Taipei Medical University Hospital and Precision Health Center, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ching Lee
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| | - Shwu-Fen Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yaw-Dong Lang
- Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan; Department of Pathology and Precision Medicine Research Center, Taipei Medical University Hospital and Precision Health Center, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
11
|
Aguzzi C, Zeppa L, Morelli MB, Marinelli O, Giangrossi M, Amantini C, Santoni G, Sazzad H, Nabissi M. Anticancer effect of minor phytocannabinoids in preclinical models of multiple myeloma. Biofactors 2024; 50:1208-1219. [PMID: 38760945 PMCID: PMC11627469 DOI: 10.1002/biof.2078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/24/2024] [Indexed: 05/20/2024]
Abstract
Multiple myeloma (MM) is a blood cancer caused by uncontrolled growth of clonal plasmacells. Bone disease is responsible for the severe complications of MM and is caused by myeloma cells infiltrating the bone marrow and inducing osteoclast activation. To date, no treatment for MM is truly curative since patients relapse and become refractory to all drug classes. Cannabinoids are already used as palliative in cancer patients. Furthermore, their proper anticancer effect was demonstrated in many cancer models in vitro, in vivo, and in clinical trials. Anyway, few information was reported on the effect of cannabinoids on MM and no data has been provided on minor phytocannabinoids such as cannabigerol (CBG), cannabichromene (CBC), cannabinol (CBN), and cannabidivarin (CBDV). Scientific literature also reported cannabinoids beneficial effect against bone disease. Here, we examined the cytotoxic activity of CBG, CBC, CBN, and CBDV in vitro in MM cell lines, their effect in modulating MM cells invasion toward bone cells and the bone resorption. Subsequently, according to the in vitro results, we selected CBN for in vivo study in a MM xenograft mice model. Results showed that the phytocannabinoids inhibited MM cell growth and induced necrotic cell death. Moreover, the phytocannabinoids reduced the invasion of MM cells toward osteoblast cells and bone resorption in vitro. Lastly, CBN reduced in vivo tumor mass. Together, our results suggest that CBG, CBC, CBN, and CBDV can be promising anticancer agents for MM.
Collapse
Affiliation(s)
- Cristina Aguzzi
- School of PharmacyUniversity of CamerinoCamerinoMCItaly
- Integrative Therapy Discovery LabUniversity of CamerinoCamerinoMCItaly
| | - Laura Zeppa
- School of PharmacyUniversity of CamerinoCamerinoMCItaly
- Integrative Therapy Discovery LabUniversity of CamerinoCamerinoMCItaly
| | - Maria Beatrice Morelli
- School of PharmacyUniversity of CamerinoCamerinoMCItaly
- Integrative Therapy Discovery LabUniversity of CamerinoCamerinoMCItaly
| | - Oliviero Marinelli
- School of PharmacyUniversity of CamerinoCamerinoMCItaly
- Integrative Therapy Discovery LabUniversity of CamerinoCamerinoMCItaly
| | | | - Consuelo Amantini
- School of Bioscience and Veterinary MedicineUniversity of CamerinoCamerinoMCItaly
| | | | | | - Massimo Nabissi
- School of PharmacyUniversity of CamerinoCamerinoMCItaly
- Integrative Therapy Discovery LabUniversity of CamerinoCamerinoMCItaly
| |
Collapse
|
12
|
Huang C, Zhang L, Shen P, Wu Z, Li G, Huang Y, Ao T, Luo L, Hu C, Wang N, Quzhuo R, Tian L, Huangfu C, Liao Z, Gao Y. Cannabidiol mitigates radiation-induced intestine ferroptosis via facilitating the heterodimerization of RUNX3 with CBFβ thereby promoting transactivation of GPX4. Free Radic Biol Med 2024; 222:288-303. [PMID: 38830513 DOI: 10.1016/j.freeradbiomed.2024.05.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
Radiation enteritis remains a major challenge for radiotherapy against abdominal and pelvic malignancies. Nevertheless, there is no approved effective therapy to alleviate irradiation (IR)-induced gastrointestinal (GI) toxicity. In the current study, Cannabidiol (CBD) was found to mitigate intestinal injury by GPX4-mediated ferroptosis resistance upon IR exposure. RNA-sequencing was employed to investigate the underlying mechanism involved in the radio-protective effect of CBD, wherein runt-related transcription factor 3 (RUNX3) and its target genes were changed significantly. Further experiment showed that the transactivation of GPX4 triggered by the direct binding of RUNX3 to its promoter region, or by stimulating the transcriptional activity of NF-κB via RUNX3-mediated LILRB3 upregulation was critical for the anti-ferroptotic effect of CBD upon IR injury. Specially, CBD was demonstrated to be a molecular glue skeleton facilitating the heterodimerization of RUNX3 with its transcriptional chaperone core-biding factor β (CBFβ) thereby promoting their nuclear localization and the subsequent transactivation of GPX4 and LILRB3. In short, our study provides an alternative strategy to counteract IR-induced enteritis during the radiotherapy on abdominal/pelvic neoplasms.
Collapse
Affiliation(s)
- Congshu Huang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Liangliang Zhang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Pan Shen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Zekun Wu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Gaofu Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yijian Huang
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Ting Ao
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Lin Luo
- School of Nursing, Capital Medical University, Beijing, 100069, China
| | - Changkun Hu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ningning Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Renzeng Quzhuo
- Department of General Internal Medicine, Naqu People's Hospital, Nagqu, Xizang Autonomous Region, 852007, China
| | - Lishan Tian
- Navy Qingdao Special Service Recuperation Center, Qingdao, 266071, China
| | - Chaoji Huangfu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Zebin Liao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Yue Gao
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| |
Collapse
|
13
|
ALSalamat HA, Abuarab SF, Salamah HM, Ishqair AH, Dwikat MF, Nourelden AZ, Qandil AN, Barakat Y, Barakat M. Cannabis and cancer: unveiling the potential of a green ally in breast, colorectal, and prostate cancer. J Cannabis Res 2024; 6:24. [PMID: 38755733 PMCID: PMC11097556 DOI: 10.1186/s42238-024-00233-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/14/2024] [Indexed: 05/18/2024] Open
Abstract
Cancer comes in second place on the list of causes of death worldwide. In 2018, the 5-year prevalence of breast cancer (BC), prostate cancer (PC), and colorectal cancer (CRC) were 30%, 12.3%, and 10.9%, respectively. Cannabinoids are chemicals derived from the Cannabis sativa plant; the most investigated cannabinoids are cannabinol, delta 9-tetrahydrocannabinol (Δ9-THC), and cannabidiol. In humans, the endogenous endocannabinoid system consists of endocannabinoids, cannabinoids receptors (CBs), and enzymes that degrade the endocannabinoids. In this review, we will review the most recent literature for evidence that discusses the role of cannabis in the treatment of the three types of neoplasms mentioned. Studies have proved that BC cells express CB receptors; many in-vivo studies showed that cannabinoids cause apoptosis and inhibit proliferation and migration. Also, researchers found that treating BC mice with THC and JWH-133 (CB2 receptor agonist) slowed the tumor growth. Regarding CRC, cannabidiol was found to decrease the viability of chemotherapy-resistant CRC cells and inhibit metastasis by antagonizing the G-protein-coupled receptor 55 (GPR55; a novel cannabinoid receptor) necessary for metastasis. Moreover, cannabidiol had anti-angiogenetic effects by reducing the expression of vascular endothelial growth factor (VEGF) in addition to anti-inflammatory effects. Finally, studies demonstrated that PC cells highly express CB1 and CB2 receptors and that cannabinoids are capable of inhibiting the release of exosomes and microvesicles related to cancer progression. Cannabinoids also have antiproliferative, anti-invasive, anti-fibroblastic, cell cycle arrest, and proapoptotic effects on PC cells.
Collapse
Affiliation(s)
- Husam A ALSalamat
- Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, Al-Salt, 19117, Jordan
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy,, University of Jordan, Amman, 19328, Jordan
- International Medical Research Association (IMedRA), Cairo, Egypt
| | - Sara Feras Abuarab
- Department of Clinical Pharmacy and Therapeutics, School of Pharmacy, Applied Science Private University, Amman, 541350, Jordan
| | - Hazem Mohamed Salamah
- International Medical Research Association (IMedRA), Cairo, Egypt
- School of Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Anas Hasan Ishqair
- International Medical Research Association (IMedRA), Cairo, Egypt
- Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Mohammad Fuad Dwikat
- International Medical Research Association (IMedRA), Cairo, Egypt
- Faculty of Medicine, An-Najah National University, Nablus, Palestine
| | - Anas Zakarya Nourelden
- International Medical Research Association (IMedRA), Cairo, Egypt
- Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Aseel N Qandil
- Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, Al-Salt, 19117, Jordan
| | - Yasmeen Barakat
- Department of Clinical Pharmacy and Therapeutics, School of Pharmacy, Applied Science Private University, Amman, 541350, Jordan
| | - Muna Barakat
- Department of Clinical Pharmacy and Therapeutics, School of Pharmacy, Applied Science Private University, Amman, 541350, Jordan.
| |
Collapse
|
14
|
Ma L, Liu M, Liu C, Zhang H, Yang S, An J, Qu G, Song S, Cao Q. Research Progress on the Mechanism of the Antitumor Effects of Cannabidiol. Molecules 2024; 29:1943. [PMID: 38731434 PMCID: PMC11085351 DOI: 10.3390/molecules29091943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Cannabidiol (CBD), a non-psychoactive ingredient extracted from the hemp plant, has shown therapeutic effects in a variety of diseases, including anxiety, nervous system disorders, inflammation, and tumors. CBD can exert its antitumor effect by regulating the cell cycle, inducing tumor cell apoptosis and autophagy, and inhibiting tumor cell invasion, migration, and angiogenesis. This article reviews the proposed antitumor mechanisms of CBD, aiming to provide references for the clinical treatment of tumor diseases and the rational use of CBD.
Collapse
Affiliation(s)
- Li Ma
- Department of Immunology, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China; (L.M.); (M.L.); (C.L.); (H.Z.)
| | - Mengke Liu
- Department of Immunology, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China; (L.M.); (M.L.); (C.L.); (H.Z.)
| | - Chuntong Liu
- Department of Immunology, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China; (L.M.); (M.L.); (C.L.); (H.Z.)
| | - Huachang Zhang
- Department of Immunology, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China; (L.M.); (M.L.); (C.L.); (H.Z.)
| | - Shude Yang
- Department of Edible Mushrooms, School of Agriculture, Ludong University, Yantai 264025, China;
| | - Jing An
- Division of Infectious Diseases and Global Health, School of Medicine, University of California San Diego (UCSD), La Jolla, CA 92037, USA;
| | - Guiwu Qu
- Department of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai 264003, China;
| | - Shuling Song
- Department of Immunology, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China; (L.M.); (M.L.); (C.L.); (H.Z.)
| | - Qizhi Cao
- Department of Immunology, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China; (L.M.); (M.L.); (C.L.); (H.Z.)
| |
Collapse
|
15
|
Podinic T, Limoges L, Monaco C, MacAndrew A, Minhas M, Nederveen J, Raha S. Cannabidiol Disrupts Mitochondrial Respiration and Metabolism and Dysregulates Trophoblast Cell Differentiation. Cells 2024; 13:486. [PMID: 38534330 PMCID: PMC10968792 DOI: 10.3390/cells13060486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Trophoblast differentiation is a crucial process in the formation of the placenta where cytotrophoblasts (CTs) differentiate and fuse to form the syncytiotrophoblast (ST). The bioactive components of cannabis, such as Δ9-THC, are known to disrupt trophoblast differentiation and fusion, as well as mitochondrial dynamics and respiration. However, less is known about the impact of cannabidiol (CBD) on trophoblast differentiation. Due to the central role of mitochondria in stem cell differentiation, we evaluated the impact of CBD on trophoblast mitochondrial function and differentiation. Using BeWo b30 cells, we observed decreased levels of mRNA for markers of syncytialization (GCM1, ERVW1, hCG) following 20 µM CBD treatment during differentiation. In CTs, CBD elevated transcript levels for the mitochondrial and cellular stress markers HSP60 and HSP70, respectively. Furthermore, CBD treatment also increased the lipid peroxidation and oxidative damage marker 4-hydroxynonenal. Mitochondrial membrane potential, basal respiration and ATP production were diminished with the 20 µM CBD treatment in both sub-lineages. mRNA levels for endocannabinoid system (ECS) components (FAAH, NAPEPLD, TRPV1, CB1, CB2, PPARγ) were altered differentially by CBD in CTs and STs. Overall, we demonstrate that CBD impairs trophoblast differentiation and fusion, as well as mitochondrial bioenergetics and redox homeostasis.
Collapse
Affiliation(s)
- Tina Podinic
- Graduate Program in Medical Sciences, Department of Pediatrics, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada; (T.P.); (L.L.); (C.M.); (A.M.)
| | - Louise Limoges
- Graduate Program in Medical Sciences, Department of Pediatrics, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada; (T.P.); (L.L.); (C.M.); (A.M.)
| | - Cristina Monaco
- Graduate Program in Medical Sciences, Department of Pediatrics, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada; (T.P.); (L.L.); (C.M.); (A.M.)
| | - Andie MacAndrew
- Graduate Program in Medical Sciences, Department of Pediatrics, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada; (T.P.); (L.L.); (C.M.); (A.M.)
| | - Mahek Minhas
- Department of Pediatrics, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada; (M.M.); (J.N.)
- Department of Kinesiology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
| | - Joshua Nederveen
- Department of Pediatrics, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada; (M.M.); (J.N.)
- Department of Kinesiology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
| | - Sandeep Raha
- Graduate Program in Medical Sciences, Department of Pediatrics, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada; (T.P.); (L.L.); (C.M.); (A.M.)
| |
Collapse
|
16
|
Liu Y. Alzheimer's disease, aging, and cannabidiol treatment: a promising path to promote brain health and delay aging. Mol Biol Rep 2024; 51:121. [PMID: 38227160 DOI: 10.1007/s11033-023-09162-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by progressive memory loss, neurodegeneration, and cognitive decline. Aging is one of the risk factors for AD. Although the mechanisms underlying aging and the incidence rate of AD are unclear, aging and AD share some hallmarks, such as oxidative stress and chronic inflammation. Cannabidiol (CBD), the major non-psychoactive phytocannabinoid extracted from Cannabis sativa, has recently emerged as a potential candidate for delaying aging and a valuable therapeutic tool for the treatment of aging-related neurodegenerative diseases due to its antioxidant and anti-inflammation properties. This article reviews the relevant literature on AD, CBD treatment for AD, cellular senescence, aging, and CBD treatment for aging in recent years. By analyzing these published data, we attempt to explore the complex correlation between cellular senescence, aging, and Alzheimer's disease, clarify the positive feedback effect between the senescence of neurocytes and Alzheimer's disease, and summarize the role and possible molecular mechanisms of CBD in preventing aging and treating AD. These data may provide new ideas on how to effectively prevent and delay aging, and develop effective treatment strategies for age-related diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Yanying Liu
- Department of Basic Medicine, School of Medicine, Qingdao Huanghai University, Qingdao, 266427, China.
| |
Collapse
|
17
|
Ding YK, Ning Y, Xin D, Fu YJ. Dual cytoplasmic-peroxisomal compartmentalization engineering and multiple metabolic engineering strategies for high yield non-psychoactive cannabinoid in Saccharomyces cerevisiae. Biotechnol J 2024; 19:e2300590. [PMID: 38375558 DOI: 10.1002/biot.202300590] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 02/21/2024]
Abstract
CBG (Cannabigerol), a nonpsychoactive cannabinoid, has garnered attention due to its extensive antimicrobial and anti-inflammatory properties. However, the natural content of CBG in Cannabis sativa L. is minimal. In this study, we developed an engineered cell factory for CBG production using Saccharomyces cerevisiae. We introduced the CBGA biosynthetic pathway into S. cerevisiae and employed several strategies to enhance CBGA production. These strategies included dynamically inhibiting the competitive bypass of key metabolic pathways regulated by Erg20p. Additionally, we implemented a dual cytoplasmic-peroxisomal compartmentalization approach to further increase CBGA production. Furthermore, we ensured efficient CBGA production by optimizing NADPH and acetyl-CoA pools. Ultimately, our engineered strain achieved a CBG titer of 138 mg L-1 through fed-batch fermentation in a 5 L bioreactor, facilitated by microwave decarboxylation extraction. These findings underscore the significant potential of yeast cell factories for achieving higher yields in cannabinoid production.
Collapse
Affiliation(s)
- Yun-Kun Ding
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - Yuan Ning
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - Di Xin
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - Yu-Jie Fu
- College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
18
|
Gęgotek A, Jarocka-Karpowicz I, Atalay Ekiner S, Skrzydlewska E. The Anti-Inflammatory Action of Cannabigerol Accompanied by the Antioxidant Effect of 3-O-ethyl Ascorbic Acid in UVA-Irradiated Human Keratinocytes. J Pharmacol Exp Ther 2023; 387:170-179. [PMID: 37652708 DOI: 10.1124/jpet.123.001731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 09/02/2023] Open
Abstract
Excessive daily exposure of human skin to natural UVA radiation leads to impaired redox homeostasis in epidermal keratinocytes, resulting in changes in their proteome. Commonly used antioxidants usually exhibit protection in a narrowed range, which makes it necessary to combine their effects. Therefore, the aim of this study was to analyze the protective effect of cannabigerol (CBG) and 3-O-ethyl ascorbic acid (EAA), used separately and together, on the proteomic profile of UVA irradiated keratinocytes. Proteomic analysis with the use of the Q Exactive HF mass spectrometer, combined with biostatistic tests, performed on UVA-irradiated keratinocytes indicated enhanced and lowered expression of 186 and 160 proteins, respectively. CBG treatment after UVA irradiation reduced these numbers to 110 upregulated and 49 downregulated proteins, while EAA eliminated all these changes. CBG completely eliminated the UV-induced effect on the expression of pro-inflammatory proteins and significantly increased the level of proteins responsible for cellular locomotion. On the other hand, CBG reduced the level of UVA-induced 4-hydroxynonenal protein adducts fivefold, whereas EAA had no effect on this modification. At the same time, CBG and EAA did not modify the expression/structure of proteins in relation to the nonirradiated control keratinocytes in the case of an unaccompanied use or slightly modified the protein profile when used in a mixture. The combined protective effects of CBG on protein structure and EAA on protein expression profile allowed us to obtain a wider protection of cells against UVA radiation, compared with when the compounds were used alone. SIGNIFICANCE STATEMENT: Proteomic analysis of human skin cells allows to conclude that 3-O-ethyl ascorbic acid eliminates UVA-induced changes in the expression of keratinocyte proteins, while cannabigerol significantly reduces 4-hydroxynonenal protein adducts. The combined protective effects of cannabigerol on protein structure and of 3-O-ethyl ascorbic acid on protein expression profile allowed to obtain a wider protection of cells against UVA radiation.
Collapse
Affiliation(s)
- Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Poland
| | | | | | | |
Collapse
|
19
|
Reece AS, Hulse GK. Perturbation of 3D nuclear architecture, epigenomic aging and dysregulation, and cannabinoid synaptopathy reconfigures conceptualization of cannabinoid pathophysiology: part 2-Metabolome, immunome, synaptome. Front Psychiatry 2023; 14:1182536. [PMID: 37854446 PMCID: PMC10579598 DOI: 10.3389/fpsyt.2023.1182536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/11/2023] [Indexed: 10/20/2023] Open
Abstract
The second part of this paper builds upon and expands the epigenomic-aging perspective presented in Part 1 to describe the metabolomic and immunomic bases of the epigenomic-aging changes and then considers in some detail the application of these insights to neurotoxicity, neuronal epigenotoxicity, and synaptopathy. Cannabinoids are well-known to have bidirectional immunomodulatory activities on numerous parts of the immune system. Immune perturbations are well-known to impact the aging process, the epigenome, and intermediate metabolism. Cannabinoids also impact metabolism via many pathways. Metabolism directly impacts immune, genetic, and epigenetic processes. Synaptic activity, synaptic pruning, and, thus, the sculpting of neural circuits are based upon metabolic, immune, and epigenomic networks at the synapse, around the synapse, and in the cell body. Many neuropsychiatric disorders including depression, anxiety, schizophrenia, bipolar affective disorder, and autistic spectrum disorder have been linked with cannabis. Therefore, it is important to consider these features and their complex interrelationships in reaching a comprehensive understanding of cannabinoid dependence. Together these findings indicate that cannabinoid perturbations of the immunome and metabolome are important to consider alongside the well-recognized genomic and epigenomic perturbations and it is important to understand their interdependence and interconnectedness in reaching a comprehensive appreciation of the true nature of cannabinoid pathophysiology. For these reasons, a comprehensive appreciation of cannabinoid pathophysiology necessitates a coordinated multiomics investigation of cannabinoid genome-epigenome-transcriptome-metabolome-immunome, chromatin conformation, and 3D nuclear architecture which therefore form the proper mechanistic underpinning for major new and concerning epidemiological findings relating to cannabis exposure.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
20
|
Jameel M, Fatma H, Nadtochii LA, Siddique HR. Molecular Insight into Prostate Cancer: Preventive Role of Selective Bioactive Molecules. Life (Basel) 2023; 13:1976. [PMID: 37895357 PMCID: PMC10608662 DOI: 10.3390/life13101976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Prostate cancer (CaP) is one of the most prevalent male malignancies, accounting for a considerable number of annual mortalities. However, the prompt identification of early-stage CaP often faces delays due to diverse factors, including socioeconomic inequalities. The androgen receptor (AR), in conjunction with various other signaling pathways, exerts a central influence on the genesis, progression, and metastasis of CaP, with androgen deprivation therapy (ADT) serving as the primary therapeutic strategy. Therapeutic modalities encompassing surgery, chemotherapy, hormonal intervention, and radiotherapy have been formulated for addressing early and metastatic CaP. Nonetheless, the heterogeneous tumor microenvironment frequently triggers the activation of signaling pathways, culminating in the emergence of chemoresistance, an aspect to which cancer stem cells (CSCs) notably contribute. Phytochemicals emerge as reservoirs of bioactive agents conferring manifold advantages against human morbidity. Several of these phytochemicals demonstrate potential chemoprotective and chemosensitizing properties against CaP, with selectivity exhibited towards malignant cells while sparing their normal counterparts. In this context, the present review aims to elucidate the intricate molecular underpinnings associated with metastatic CaP development and the acquisition of chemoresistance. Moreover, the contributions of phytochemicals to ameliorating CaP initiation, progression, and chemoresistance are also discussed.
Collapse
Affiliation(s)
- Mohd Jameel
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India (H.F.)
| | - Homa Fatma
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India (H.F.)
| | - Liudmila A. Nadtochii
- Department of Microbiology, Saint Petersburg State Chemical & Pharmaceutical University, 197022 Saint Petersburg, Russia
| | - Hifzur R. Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India (H.F.)
| |
Collapse
|
21
|
O’Reilly E, Khalifa K, Cosgrave J, Azam H, Prencipe M, Simpson JC, Gallagher WM, Perry AS. Cannabidiol Inhibits the Proliferation and Invasiveness of Prostate Cancer Cells. JOURNAL OF NATURAL PRODUCTS 2023; 86:2151-2161. [PMID: 37703852 PMCID: PMC10521019 DOI: 10.1021/acs.jnatprod.3c00363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Indexed: 09/15/2023]
Abstract
Prostate cancer is the fifth leading cause of cancer death in men, responsible for over 375,000 deaths in 2020. Novel therapeutic strategies are needed to improve outcomes. Cannabinoids, chemical components of the cannabis plant, are a possible solution. Preclinical evidence demonstrates that cannabinoids can modulate several cancer hallmarks of many tumor types. However, the therapeutic potential of cannabinoids in prostate cancer has not yet been fully explored. The aim of this study was to investigate the antiproliferative and anti-invasive properties of cannabidiol (CBD) in prostate cancer cells in vitro. CBD inhibited cell viability and proliferation, accompanied by reduced expression of key cell cycle proteins, specifically cyclin D3 and cyclin-dependent kinases CDK2, CDK4, and CDK1, and inhibition of AKT phosphorylation. The effects of CBD on cell viability were not blocked by cannabinoid receptor antagonists, a transient receptor potential vanilloid 1 (TRPV1) channel blocker, or an agonist of the G-protein-coupled receptor GPR55, suggesting that CBD acts independently of these targets in prostate cancer cells. Furthermore, CBD reduced the invasiveness of highly metastatic PC-3 cells and increased protein expression of E-cadherin. The ability of CBD to inhibit prostate cancer cell proliferation and invasiveness suggests that CBD may have potential as a future chemotherapeutic agent.
Collapse
Affiliation(s)
- Eve O’Reilly
- UCD
School of Biology and Environmental Science, University College Dublin, Dublin D04 C1P1, Ireland
- Cancer
Biology and Therapeutics Laboratory, Conway Institute of Biomolecular
and Biomedical Research, University College
Dublin, Dublin D04 C1P1, Ireland
| | - Karima Khalifa
- UCD
School of Biology and Environmental Science, University College Dublin, Dublin D04 C1P1, Ireland
- Cancer
Biology and Therapeutics Laboratory, Conway Institute of Biomolecular
and Biomedical Research, University College
Dublin, Dublin D04 C1P1, Ireland
| | - Joanne Cosgrave
- UCD
School of Biology and Environmental Science, University College Dublin, Dublin D04 C1P1, Ireland
- Cancer
Biology and Therapeutics Laboratory, Conway Institute of Biomolecular
and Biomedical Research, University College
Dublin, Dublin D04 C1P1, Ireland
| | - Haleema Azam
- Cancer
Biology and Therapeutics Laboratory, Conway Institute of Biomolecular
and Biomedical Research, University College
Dublin, Dublin D04 C1P1, Ireland
- UCD
School of Biomolecular and Biomedical Science, University College Dublin, Dublin D04 C1P1, Ireland
| | - Maria Prencipe
- Cancer
Biology and Therapeutics Laboratory, Conway Institute of Biomolecular
and Biomedical Research, University College
Dublin, Dublin D04 C1P1, Ireland
- UCD
School of Biomolecular and Biomedical Science, University College Dublin, Dublin D04 C1P1, Ireland
| | - Jeremy C. Simpson
- UCD
School of Biology and Environmental Science, University College Dublin, Dublin D04 C1P1, Ireland
| | - William M. Gallagher
- Cancer
Biology and Therapeutics Laboratory, Conway Institute of Biomolecular
and Biomedical Research, University College
Dublin, Dublin D04 C1P1, Ireland
- UCD
School of Biomolecular and Biomedical Science, University College Dublin, Dublin D04 C1P1, Ireland
| | - Antoinette S. Perry
- UCD
School of Biology and Environmental Science, University College Dublin, Dublin D04 C1P1, Ireland
- Cancer
Biology and Therapeutics Laboratory, Conway Institute of Biomolecular
and Biomedical Research, University College
Dublin, Dublin D04 C1P1, Ireland
| |
Collapse
|
22
|
Reece AS, Hulse GK. Perturbation of 3D nuclear architecture, epigenomic dysregulation and aging, and cannabinoid synaptopathy reconfigures conceptualization of cannabinoid pathophysiology: part 1-aging and epigenomics. Front Psychiatry 2023; 14:1182535. [PMID: 37732074 PMCID: PMC10507876 DOI: 10.3389/fpsyt.2023.1182535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/07/2023] [Indexed: 09/22/2023] Open
Abstract
Much recent attention has been directed toward the spatial organization of the cell nucleus and the manner in which three-dimensional topologically associated domains and transcription factories are epigenetically coordinated to precisely bring enhancers into close proximity with promoters to control gene expression. Twenty lines of evidence robustly implicate cannabinoid exposure with accelerated organismal and cellular aging. Aging has recently been shown to be caused by increased DNA breaks. These breaks rearrange and maldistribute the epigenomic machinery to weaken and reverse cellular differentiation, cause genome-wide DNA demethylation, reduce gene transcription, and lead to the inhibition of developmental pathways, which contribute to the progressive loss of function and chronic immune stimulation that characterize cellular aging. Both cell lineage-defining superenhancers and the superanchors that control them are weakened. Cannabis exposure phenocopies the elements of this process and reproduces DNA and chromatin breakages, reduces the DNA, RNA protein and histone synthesis, interferes with the epigenomic machinery controlling both DNA and histone modifications, induces general DNA hypomethylation, and epigenomically disrupts both the critical boundary elements and the cohesin motors that create chromatin loops. This pattern of widespread interference with developmental programs and relative cellular dedifferentiation (which is pro-oncogenic) is reinforced by cannabinoid impairment of intermediate metabolism (which locks in the stem cell-like hyper-replicative state) and cannabinoid immune stimulation (which perpetuates and increases aging and senescence programs, DNA damage, DNA hypomethylation, genomic instability, and oncogenesis), which together account for the diverse pattern of teratologic and carcinogenic outcomes reported in recent large epidemiologic studies in Europe, the USA, and elsewhere. It also accounts for the prominent aging phenotype observed clinically in long-term cannabis use disorder and the 20 characteristics of aging that it manifests. Increasing daily cannabis use, increasing use in pregnancy, and exponential dose-response effects heighten the epidemiologic and clinical urgency of these findings. Together, these findings indicate that cannabinoid genotoxicity and epigenotoxicity are prominent features of cannabis dependence and strongly indicate coordinated multiomics investigations of cannabinoid genome-epigenome-transcriptome-metabolome, chromatin conformation, and 3D nuclear architecture. Considering the well-established exponential dose-response relationships, the diversity of cannabinoids, and the multigenerational nature of the implications, great caution is warranted in community cannabinoid penetration.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
23
|
Nunn AVW, Guy GW, Bell JD. Informing the Cannabis Conjecture: From Life's Beginnings to Mitochondria, Membranes and the Electrome-A Review. Int J Mol Sci 2023; 24:13070. [PMID: 37685877 PMCID: PMC10488084 DOI: 10.3390/ijms241713070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Before the late 1980s, ideas around how the lipophilic phytocannabinoids might be working involved membranes and bioenergetics as these disciplines were "in vogue". However, as interest in genetics and pharmacology grew, interest in mitochondria (and membranes) waned. The discovery of the cognate receptor for tetrahydrocannabinol (THC) led to the classification of the endocannabinoid system (ECS) and the conjecture that phytocannabinoids might be "working" through this system. However, the how and the "why" they might be beneficial, especially for compounds like CBD, remains unclear. Given the centrality of membranes and mitochondria in complex organisms, and their evolutionary heritage from the beginnings of life, revisiting phytocannabinoid action in this light could be enlightening. For example, life can be described as a self-organising and replicating far from equilibrium dissipating system, which is defined by the movement of charge across a membrane. Hence the building evidence, at least in animals, that THC and CBD modulate mitochondrial function could be highly informative. In this paper, we offer a unique perspective to the question, why and how do compounds like CBD potentially work as medicines in so many different conditions? The answer, we suggest, is that they can modulate membrane fluidity in a number of ways and thus dissipation and engender homeostasis, particularly under stress. To understand this, we need to embrace origins of life theories, the role of mitochondria in plants and explanations of disease and ageing from an adaptive thermodynamic perspective, as well as quantum mechanics.
Collapse
Affiliation(s)
- Alistair V. W. Nunn
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK; (G.W.G.); (J.D.B.)
- The Guy Foundation, Beaminster DT8 3HY, UK
| | - Geoffrey W. Guy
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK; (G.W.G.); (J.D.B.)
- The Guy Foundation, Beaminster DT8 3HY, UK
| | - Jimmy D. Bell
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK; (G.W.G.); (J.D.B.)
| |
Collapse
|
24
|
Li W, Xu X. Advances in mitophagy and mitochondrial apoptosis pathway-related drugs in glioblastoma treatment. Front Pharmacol 2023; 14:1211719. [PMID: 37456742 PMCID: PMC10347406 DOI: 10.3389/fphar.2023.1211719] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
Glioblastoma (GBM) is the most common malignant tumor of the central nervous system (CNS). It is a leading cause of death among patients with intracranial malignant tumors. GBM exhibits intra- and inter-tumor heterogeneity, leading to drug resistance and eventual tumor recurrence. Conventional treatments for GBM include maximum surgical resection of glioma tissue, temozolomide administration, and radiotherapy, but these methods do not effectively halt cancer progression. Therefore, development of novel methods for the treatment of GBM and identification of new therapeutic targets are urgently required. In recent years, studies have shown that drugs related to mitophagy and mitochondrial apoptosis pathways can promote the death of glioblastoma cells by inducing mitochondrial damage, impairing adenosine triphosphate (ATP) synthesis, and depleting large amounts of ATP. Some studies have also shown that modern nano-drug delivery technology targeting mitochondria can achieve better drug release and deeper tissue penetration, suggesting that mitochondria could be a new target for intervention and therapy. The combination of drugs targeting mitochondrial apoptosis and autophagy pathways with nanotechnology is a promising novel approach for treating GBM.This article reviews the current status of drug therapy for GBM, drugs targeting mitophagy and mitochondrial apoptosis pathways, the potential of mitochondria as a new target for GBM treatment, the latest developments pertaining to GBM treatment, and promising directions for future research.
Collapse
|
25
|
Sang R, Fan R, Deng A, Gou J, Lin R, Zhao T, Hai Y, Song J, Liu Y, Qi B, Du G, Cheng M, Wei G. Degradation of Hexokinase 2 Blocks Glycolysis and Induces GSDME-Dependent Pyroptosis to Amplify Immunogenic Cell Death for Breast Cancer Therapy. J Med Chem 2023. [PMID: 37376788 DOI: 10.1021/acs.jmedchem.3c00118] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Hexokinase 2 (HK2) is the principal rate-limiting enzyme in the aerobic glycolysis pathway and determines the quantity of glucose entering glycolysis. However, the current HK2 inhibitors have poor activity, so we used proteolysis-targeting chimera (PROTAC) technology to design and synthesize novel HK2 degraders. Among them, C-02 has the best activity to degrade HK2 protein and inhibit breast cancer cells. It is demonstrated that C-02 could block glycolysis, cause mitochondrial damage, and then induce GSDME-dependent pyroptosis. Furthermore, pyroptosis induces cell immunogenic death (ICD) and activates antitumor immunity, thus improving antitumor immunotherapy in vitro and in vivo. These findings show that the degradation of HK2 can effectively inhibit the aerobic metabolism of breast cancer cells, thereby inhibiting their malignant proliferation and reversing the immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Ruoxi Sang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong 518057, China
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Renming Fan
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong 518057, China
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Aohua Deng
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong 518057, China
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Jiakui Gou
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ruizhuo Lin
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong 518057, China
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Ting Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yongrui Hai
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong 518057, China
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Junke Song
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yang Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bing Qi
- Institute of Oncology, The Second Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi 710038, China
| | - Guanhua Du
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Gaofei Wei
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong 518057, China
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| |
Collapse
|
26
|
Maccarinelli F, Coltrini D, Mussi S, Bugatti M, Turati M, Chiodelli P, Giacomini A, De Cillis F, Cattane N, Cattaneo A, Ligresti A, Asperti M, Poli M, Vermi W, Presta M, Ronca R. Iron supplementation enhances RSL3-induced ferroptosis to treat naïve and prevent castration-resistant prostate cancer. Cell Death Discov 2023; 9:81. [PMID: 36872341 PMCID: PMC9986230 DOI: 10.1038/s41420-023-01383-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/07/2023] Open
Abstract
Prostate cancer (PCa) is a leading cause of death in the male population commonly treated with androgen deprivation therapy that often relapses as androgen-independent and aggressive castration-resistant prostate cancer (CRPC). Ferroptosis is a recently described form of cell death that requires abundant cytosolic labile iron to promote membrane lipid peroxidation and which can be induced by agents that inhibit the glutathione peroxidase-4 activity such as RSL3. Exploiting in vitro and in vivo human and murine PCa models and the multistage transgenic TRAMP model of PCa we show that RSL3 induces ferroptosis in PCa cells and demonstrate for the first time that iron supplementation significantly increases the effect of RSL3 triggering lipid peroxidation, enhanced intracellular stress and leading to cancer cell death. Moreover, the combination with the second generation anti-androgen drug enzalutamide potentiates the effect of the RSL3 + iron combination leading to superior inhibition of PCa and preventing the onset of CRPC in the TRAMP mouse model. These data open new perspectives in the use of pro-ferroptotic approaches alone or in combination with enzalutamide for the treatment of PCa.
Collapse
Affiliation(s)
- Federica Maccarinelli
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Daniela Coltrini
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Silvia Mussi
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Mattia Bugatti
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Marta Turati
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Paola Chiodelli
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Arianna Giacomini
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Floriana De Cillis
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Nadia Cattane
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Alessia Ligresti
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Italy
| | - Michela Asperti
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Maura Poli
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - William Vermi
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Marco Presta
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Roberto Ronca
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy.
| |
Collapse
|