1
|
Xiang C, Ding Q, Jiang T, Liu Y, Li C, Yang X, Jia J, Xiang J, Wang Y, Zhou H, Lu Z, Gong P, Kim JS. Reprogrammed glycolysis-induced augmentation of NIR-II excited photodynamic/photothermal therapy. Biomaterials 2025; 320:123235. [PMID: 40056609 DOI: 10.1016/j.biomaterials.2025.123235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/18/2025] [Accepted: 03/02/2025] [Indexed: 03/10/2025]
Abstract
Small molecule-based multifunctional optical diagnostic materials have garnered considerable interest due to their highly customizable structures, tunable excited-state properties, and remarkable biocompatibility. We herein report the synthesis of a multifaceted photosensitizer, PPQ-CTPA, which exhibits exceptional efficacy in generating Type I reactive oxygen species (ROS) and thermal energy under near-infrared-II (NIR-II, >1000 nm) laser excitation at 1064 nm, thereby combining photodynamic therapy (PDT) and photothermal therapy (PTT) functionalities. To enhance therapeutic efficacy, we engineered lonidamine (LND) by conjugating it with triphenylphosphonium (TPP) cations, producing LND-TPP. This compound inhibits mitochondrial glycolysis and downregulates heat shock protein 90 (HSP 90) levels in a breast cancer mouse model, potentiating both PDT and PTT. For in vivo applications, PPQ-CTPA and LND-TPP are encapsulated within the amphiphilic polymer DSPE-SS-PEG to obtain PPQ-CTPAL NPs. In breast cancer cell lines, PPQ-CTPAL NPs are decomposed by cellular GSH, simultaneously releasing the dual-functioning photosensitizer PPQ-CTPL and the mitochondria-disrupting agent LND-TPP. Upon 1064 nm laser irradiation, we found that tumor growth in breast cancer mice is effectively restrained by PPQ-CTPAL NPs. This work highlights the synergistic integration of PDT, PTT, and chemotherapy facilitated by NIR-II fluorescence, photoacoustic, and photothermal imaging under 1064 nm irradiation, underscoring the clinical potential of multifunctional phototherapeutic agents.
Collapse
Affiliation(s)
- Chunbai Xiang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University Cheng Du 610064 China
| | - Qihang Ding
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Ting Jiang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Liu
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chao Li
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xing Yang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jia Jia
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jingjing Xiang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Yue Wang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hui Zhou
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Zhiyun Lu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University Cheng Du 610064 China.
| | - Ping Gong
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| |
Collapse
|
2
|
Gong Y, Wang X, Chen W, Tsai HI, Liu Y. Cancer stem cells amino acid metabolism: Roles, mechanisms, and intervention strategies. Cell Signal 2025:111903. [PMID: 40449815 DOI: 10.1016/j.cellsig.2025.111903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2025] [Revised: 05/21/2025] [Accepted: 05/25/2025] [Indexed: 06/03/2025]
Abstract
Cancer stem cells (CSCs) are recognized as key drivers of tumor recurrence and therapy resistance due to their capacity for self-renewal and differentiation. Amino acid metabolic reprogramming, a hallmark of cancer, underpins CSC biology. Methionine, tryptophan, and glutamine support CSC survival and the maintenance of stemness, while proline plays a role in CSC differentiation and susceptibility to cell death. Consequently, the impact of amino acid metabolism on CSCs is multifaceted and complex. This review first outlines the intrinsic amino acid metabolic features of CSCs. It then provides a comprehensive analysis of the distinct roles of various amino acids in regulating CSC biology. Additionally, strategies targeting amino acid metabolism to eliminate CSCs in clinical therapies are discussed, offering new perspectives for the development of innovative tumor-targeting approaches.
Collapse
Affiliation(s)
- Yi Gong
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China
| | - Xirui Wang
- Department of Biomedical Engineering, School of Medical Imaging Xuzhou Medical University, Xuzhou 221000, China
| | - Wenlong Chen
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China
| | - Hsiang-I Tsai
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China.
| | - Yanfang Liu
- Department of Central Laboratory, Affiliated People's Hospital of Jiangsu University, Zhenjiang 212001, China.
| |
Collapse
|
3
|
Huang D, Zhang M, Yan H, Mei L, Yang A, He Y, Tam KY, Zhang SL. Unexpected Discovery of a Novel Triphenylphosphonium Alkylalcohol That Triggers Cancer Cell Death via Mitophagy and Ferroptosis. J Med Chem 2025. [PMID: 40393945 DOI: 10.1021/acs.jmedchem.5c00701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Mitochondria-targeted delivery is a promising strategy in anticancer drug development. Triphenylphosphine cation (TPP+) is the most widely used mitochondrial-targeting carrier due to the elevated mitochondrial membrane potential (MMP) in cancer cells. Here, we report the serendipitous discovery of a mitochondrial-targeting carrier, compound 23, which exhibited potent anticancer activity (IC50 = 70 nM, HCC827) with minimal toxicity to normal cells. Compound 23 selectively accumulates in cancer cell mitochondria, induces MMP depolarization, and activates mitophagy via PINK1-Parkin pathway. It also disruptes mitochondrial functions, elevates ROS levels, and inhibits the xCT-GSH-GPX4 axis, leading to lipid peroxidation and ferroptotic cell death. In vivo, 23 significantly suppressed the growth of HCC827 xenograft tumors at 10 mg/kg. These findings support compound 23 as a highly selective and effective mitochondrial-targeting anticancer agent for further investigation.
Collapse
Affiliation(s)
- Ding Huang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, PR China
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR 999078, PR China
| | - Maojie Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, PR China
- Zunyi Medical and Pharmaceutical College, Zunyi 563006, PR China
| | - Haibo Yan
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, PR China
| | - Ligang Mei
- School of Life Sciences, Chongqing University, Chongqing 401331, PR China
| | - Aiming Yang
- School of Life Sciences, Chongqing University, Chongqing 401331, PR China
| | - Yun He
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, PR China
- Therapeutic Innovation Center, Shenzhen Bay Laboratory, Shenzhen 518132, P. R. China
| | - Kin Yip Tam
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR 999078, PR China
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, PR China
| |
Collapse
|
4
|
Deng Q, Hua A, Li S, Zhang Z, Chen X, Wang Q, Wang X, Chu Z, Yang X, Li Z. Hyperbaric Oxygen Regulates Tumor pH to Boost Copper‐Doped Hydroxyethyl Starch Conjugate Nanoparticles Against Cancer Stem Cells. EXPLORATION 2025. [DOI: 10.1002/exp.20240080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/14/2024] [Indexed: 05/04/2025]
Abstract
ABSTRACTAn extracellular acidic environment and an intracellular mildly alkaline environment induced by carbonic anhydrase 9 (CA9) play a critical role in self‐renewal, invasion, migration, and drug resistance of cancer stem cells (CSCs) within hypoxic solid tumors. Here, we report an antitumor strategy leveraging hyperbaric oxygen therapy (HBO) to regulate tumor pH and boost hydroxyethyl starch‐doxorubicin‐copper nanoparticles (HHD‐Cu NPs) against CSCs. HBO overcomes tumor hypoxia, downregulates pH‐regulatory proteins such as CA9, and leads to intracellular accumulation of acidic metabolites. As a result, HBO promotes intracellular acidification of both tumor cells and CSCs, triggering efficient doxorubicin release and the potent copper‐mediated chemical dynamic effect of subsequently administered dual‐acid‐responsive HHD‐Cu NPs. The combination of HBO with HHD‐Cu NPs not only eliminates tumor cells but also inhibits CSCs, altogether leading to potent tumor inhibition. This study explores a new function of clinical‐widely used HBO and establishes a novel combination therapy for treating CSCs abundant hypoxic solid tumors.
Collapse
Affiliation(s)
- Qingyuan Deng
- Department of Nanomedicine and Biopharmaceuticals College of Life Science and Technology Huazhong University of Science and Technology Wuhan P. R. China
| | - Ao Hua
- Department of Nanomedicine and Biopharmaceuticals College of Life Science and Technology Huazhong University of Science and Technology Wuhan P. R. China
| | - Shiyou Li
- Department of Nanomedicine and Biopharmaceuticals College of Life Science and Technology Huazhong University of Science and Technology Wuhan P. R. China
| | - Zhijie Zhang
- Department of Nanomedicine and Biopharmaceuticals College of Life Science and Technology Huazhong University of Science and Technology Wuhan P. R. China
| | - Xiang Chen
- Department of Nanomedicine and Biopharmaceuticals College of Life Science and Technology Huazhong University of Science and Technology Wuhan P. R. China
| | - Qiang Wang
- Department of Nanomedicine and Biopharmaceuticals College of Life Science and Technology Huazhong University of Science and Technology Wuhan P. R. China
| | - Xing Wang
- Department of Nanomedicine and Biopharmaceuticals College of Life Science and Technology Huazhong University of Science and Technology Wuhan P. R. China
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering The University of Hong Kong Hong Kong P. R. China
- School of Biomedical Sciences The University of Hong Kong Hong Kong P. R. China
| | - Xiangliang Yang
- Department of Nanomedicine and Biopharmaceuticals College of Life Science and Technology Huazhong University of Science and Technology Wuhan P. R. China
- National Engineering Research Center for Nanomedicine Huazhong University of Science and Technology Wuhan P. R. China
- Key Laboratory of Molecular Biophysics of Ministry of Education Huazhong University of Science and Technology Wuhan P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical Huazhong University of Science and Technology Wuhan P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials Huazhong University of Science and Technology Wuhan P. R. China
| | - Zifu Li
- Department of Nanomedicine and Biopharmaceuticals College of Life Science and Technology Huazhong University of Science and Technology Wuhan P. R. China
- National Engineering Research Center for Nanomedicine Huazhong University of Science and Technology Wuhan P. R. China
- Key Laboratory of Molecular Biophysics of Ministry of Education Huazhong University of Science and Technology Wuhan P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical Huazhong University of Science and Technology Wuhan P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials Huazhong University of Science and Technology Wuhan P. R. China
| |
Collapse
|
5
|
Fan Z, Wang X, Yang X, Li Z. Boosting Oxidative Stress with Hydroxyethyl Starch Smart Nanomedicines to Eliminate Cancer Stem Cells. ACCOUNTS OF MATERIALS RESEARCH 2024; 5:1558-1570. [DOI: 10.1021/accountsmr.4c00240] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Affiliation(s)
- Zitao Fan
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology
- Huazhong University of Science and Technology
| | - Xing Wang
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology
- Huazhong University of Science and Technology
| | - Xiangliang Yang
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology
- Huazhong University of Science and Technology
- National Engineering Research Center for Nanomedicine
- Huazhong University of Science and Technology
- Key Laboratory of Molecular Biophysics of Ministry of Education
- Huazhong University of Science and Technology
| | - Zifu Li
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology
- Huazhong University of Science and Technology
- National Engineering Research Center for Nanomedicine
- Huazhong University of Science and Technology
- Key Laboratory of Molecular Biophysics of Ministry of Education
- Huazhong University of Science and Technology
| |
Collapse
|
6
|
Zang X, Lei K, Wang J, Gong R, Gao C, Jing Z, Song J, Ren H. Targeting aberrant amino acid metabolism for pancreatic cancer therapy: Opportunities for nanoparticles. CHEMICAL ENGINEERING JOURNAL 2024; 498:155071. [DOI: 10.1016/j.cej.2024.155071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Lu H, Tong W, Jiang M, Liu H, Meng C, Wang K, Mu X. Mitochondria-Targeted Multifunctional Nanoprodrugs by Inhibiting Metabolic Reprogramming for Combating Cisplatin-Resistant Lung Cancer. ACS NANO 2024; 18:21156-21170. [PMID: 39088743 DOI: 10.1021/acsnano.4c04024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
How to address the resistance of cisplatin (CDDP) has always been a clinical challenge. The resistance mechanism of platinum-based drugs is very complex, including nuclear DNA damage repair, apoptosis escape, and tumor metabolism reprogramming. Tumor cells can switch between mitochondrial oxidative phosphorylation (OXPHOS) and glycolysis and develop resistance to chemotherapy drugs through metabolic variability. In addition, due to the lack of histone protection and a relatively weak damage repair ability, mitochondrial DNA (mtDNA) is more susceptible to damage, which in turn affects mitochondrial OXPHOS and can become a potential target for platinum-based drugs. Therefore, mitochondria, as targets of anticancer drugs, have become a hot topic in tumor resistance research. This study constructed a self-assembled nanotargeted drug delivery system LND-SS-Pt-TPP/HA-CD. β-Cyclodextrin-grafted hydronic acid (HA-CD)-encapsulated prodrug nanoparticles can target CD44 on the tumor surface and further deliver the prodrug to intracellular mitochondria through a triphenylphosphine group (TPP+). Disulfide bonds can be selectively degraded by glutathione (GSH) in mitochondria, releasing lonidamine (LND) and the cisplatin prodrug (Pt(IV)). Under the action of GSH and ascorbic acid, Pt(IV) is further reduced to cisplatin (Pt(II)). Cisplatin can cause mtDNA damage, induce mitochondrial dysfunction and mitophagy, and then affect mitochondrial OXPHOS. Meanwhile, LND can reduce the hexokinase II (HK II) level, induce destruction of mitochondria, and block energy supply by glycolysis inhibition. Ultimately, this self-assembled nano targeted delivery system can synergistically kill cisplatin-resistant lung cancer cells, which supplies an overcome cisplatin resistance choice via the disrupt mitochondria therapy.
Collapse
Affiliation(s)
- Haibin Lu
- Jilin University School of Pharmaceutical Sciences, Changchun 130021, China
| | - Weifang Tong
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Meixu Jiang
- Jilin University School of Pharmaceutical Sciences, Changchun 130021, China
| | - Huimin Liu
- Jilin University School of Pharmaceutical Sciences, Changchun 130021, China
| | - Chen Meng
- Jilin University School of Pharmaceutical Sciences, Changchun 130021, China
| | - Kai Wang
- Jilin University School of Pharmaceutical Sciences, Changchun 130021, China
| | - Xupeng Mu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| |
Collapse
|
8
|
De los Santos-Jiménez J, Campos-Sandoval JA, Alonso FJ, Márquez J, Matés JM. GLS and GLS2 Glutaminase Isoenzymes in the Antioxidant System of Cancer Cells. Antioxidants (Basel) 2024; 13:745. [PMID: 38929183 PMCID: PMC11200642 DOI: 10.3390/antiox13060745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
A pathway frequently altered in cancer is glutaminolysis, whereby glutaminase (GA) catalyzes the main step as follows: the deamidation of glutamine to form glutamate and ammonium. There are two types of GA isozymes, named GLS and GLS2, which differ considerably in their expression patterns and can even perform opposing roles in cancer. GLS correlates with tumor growth and proliferation, while GLS2 can function as a context-dependent tumor suppressor. However, both isoenzymes have been described as essential molecules handling oxidant stress because of their involvement in glutathione production. We reviewed the literature to highlight the critical roles of GLS and GLS2 in restraining ROS and regulating both cellular signaling and metabolic stress due to their function as indirect antioxidant enzymes, as well as by modulating both reductive carboxylation and ferroptosis. Blocking GA activity appears to be a potential strategy in the dual activation of ferroptosis and inhibition of cancer cell growth in a ROS-mediated mechanism.
Collapse
Affiliation(s)
- Juan De los Santos-Jiménez
- Canceromics Lab, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain; (J.D.l.S.-J.); (J.A.C.-S.); (F.J.A.); (J.M.)
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Universidad de Málaga, 29590 Málaga, Spain
| | - José A. Campos-Sandoval
- Canceromics Lab, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain; (J.D.l.S.-J.); (J.A.C.-S.); (F.J.A.); (J.M.)
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Universidad de Málaga, 29590 Málaga, Spain
| | - Francisco J. Alonso
- Canceromics Lab, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain; (J.D.l.S.-J.); (J.A.C.-S.); (F.J.A.); (J.M.)
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Universidad de Málaga, 29590 Málaga, Spain
| | - Javier Márquez
- Canceromics Lab, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain; (J.D.l.S.-J.); (J.A.C.-S.); (F.J.A.); (J.M.)
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Universidad de Málaga, 29590 Málaga, Spain
| | - José M. Matés
- Canceromics Lab, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain; (J.D.l.S.-J.); (J.A.C.-S.); (F.J.A.); (J.M.)
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Universidad de Málaga, 29590 Málaga, Spain
| |
Collapse
|
9
|
Lin P, Lu Y, Zheng J, Lin Y, Zhao X, Cui L. Strategic disruption of cancer's powerhouse: precise nanomedicine targeting of mitochondrial metabolism. J Nanobiotechnology 2024; 22:318. [PMID: 38849914 PMCID: PMC11162068 DOI: 10.1186/s12951-024-02585-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/26/2024] [Indexed: 06/09/2024] Open
Abstract
Mitochondria occupy a central role in the biology of most eukaryotic cells, functioning as the hub of oxidative metabolism where sugars, fats, and amino acids are ultimately oxidized to release energy. This crucial function fuels a variety of cellular activities. Disruption in mitochondrial metabolism is a common feature in many diseases, including cancer, neurodegenerative conditions and cardiovascular diseases. Targeting tumor cell mitochondrial metabolism with multifunctional nanosystems emerges as a promising strategy for enhancing therapeutic efficacy against cancer. This review comprehensively outlines the pathways of mitochondrial metabolism, emphasizing their critical roles in cellular energy production and metabolic regulation. The associations between aberrant mitochondrial metabolism and the initiation and progression of cancer are highlighted, illustrating how these metabolic disruptions contribute to oncogenesis and tumor sustainability. More importantly, innovative strategies employing nanomedicines to precisely target mitochondrial metabolic pathways in cancer therapy are fully explored. Furthermore, key challenges and future directions in this field are identified and discussed. Collectively, this review provides a comprehensive understanding of the current state and future potential of nanomedicine in targeting mitochondrial metabolism, offering insights for developing more effective cancer therapies.
Collapse
Affiliation(s)
- Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
10
|
Wang Q, Li S, Xu C, Wang X, Yang T, Wang C, Xiong Y, Zhang Z, Yang X, Li Z. Glutaminolysis inhibition boosts photodynamic therapy to eliminate cancer stem cells. Biomaterials 2024; 306:122497. [PMID: 38310827 DOI: 10.1016/j.biomaterials.2024.122497] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
High reactive oxygen species (ROS) levels provide a therapeutic opportunity to eradicate cancer stem cells (CSCs), a population of cells responsible for tumorigenesis, progression, metastasis, and recurrence. However, enhanced antioxidant systems in this population of cells attenuate ROS-inducing therapies. Here, we developed a nanoparticle-assisted combination therapy to eliminate CSCs by employing photodynamic therapy (PDT) to yield ROS while disrupting ROS defense with glutaminolysis inhibition. Specifically, we leveraged an oleic acid-hemicyanine conjugate (CyOA) as photosensitizer, a new entity molecule HYL001 as glutaminolysis inhibitor, and a biocompatible folic acid-hydroxyethyl starch conjugate (FA-HES) as amphiphilic surfactant to construct cellular and mitochondrial hierarchical targeting nanomedicine (COHF NPs). COHF NPs inhibited glutaminolysis to reduce intracellular ROS scavengers, including glutathione (GSH) and nicotinamide adenine dinucleotide phosphate (NADPH), and to blunt oxidative phosphorylation (OXPHOS) for oxygen-conserved PDT. Compared to COLF NPs without glutaminolysis inhibitor, COHF NPs exhibited higher phototoxicity to breast cancer stem cells (BCSCs) both in vitro and in vivo. More importantly, we corroborated that marketed glutaminolysis inhibitors, such as CB839 and V9302, augment the clinically used photosensitizer (Hiporfin) for BCSCs elimination. This study develops a potent CSCs targeting strategy by combining glutaminolysis inhibition with PDT and provides significant implications for cancer therapy.
Collapse
Affiliation(s)
- Qiang Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Shiyou Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Chen Xu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Xing Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Tian Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Chong Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Yuxuan Xiong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Zhijie Zhang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| |
Collapse
|
11
|
Xiao C, Li J, Hua A, Wang X, Li S, Li Z, Xu C, Zhang Z, Yang X, Li Z. Hyperbaric Oxygen Boosts Antitumor Efficacy of Copper-Diethyldithiocarbamate Nanoparticles against Pancreatic Ductal Adenocarcinoma by Regulating Cancer Stem Cell Metabolism. RESEARCH (WASHINGTON, D.C.) 2024; 7:0335. [PMID: 38766644 PMCID: PMC11100349 DOI: 10.34133/research.0335] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/16/2024] [Indexed: 05/22/2024]
Abstract
Cuproptosis-based cancer nanomedicine has received widespread attention recently. However, cuproptosis nanomedicine against pancreatic ductal adenocarcinoma (PDAC) is severely limited by cancer stem cells (CSCs), which reside in the hypoxic stroma and adopt glycolysis metabolism accordingly to resist cuproptosis-induced mitochondria damage. Here, we leverage hyperbaric oxygen (HBO) to regulate CSC metabolism by overcoming tumor hypoxia and to augment CSC elimination efficacy of polydopamine and hydroxyethyl starch stabilized copper-diethyldithiocarbamate nanoparticles (CuET@PH NPs). Mechanistically, while HBO and CuET@PH NPs inhibit glycolysis and oxidative phosphorylation, respectively, the combination of HBO and CuET@PH NPs potently suppresses energy metabolism of CSCs, thereby achieving robust tumor inhibition of PDAC and elongating mice survival importantly. This study reveals novel insights into the effects of cuproptosis nanomedicine on PDAC CSC metabolism and suggests that the combination of HBO with cuproptosis nanomedicine holds significant clinical translation potential for PDAC patients.
Collapse
Affiliation(s)
- Chen Xiao
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Jiayuan Li
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Ao Hua
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xing Wang
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Shiyou Li
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zheng Li
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Chen Xu
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zhijie Zhang
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xiangliang Yang
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- National Engineering Research Center for Nanomedicine,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Key Laboratory of Molecular Biophysics of Ministry of Education,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Hubei Bioinformatics and Molecular Imaging Key Laboratory,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zifu Li
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- National Engineering Research Center for Nanomedicine,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Key Laboratory of Molecular Biophysics of Ministry of Education,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Hubei Bioinformatics and Molecular Imaging Key Laboratory,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|