1
|
Li X, Zhao C. Interleukin-6 in neuroimmunological disorders: Pathophysiology and therapeutic advances with satralizumab. Autoimmun Rev 2025; 24:103826. [PMID: 40324548 DOI: 10.1016/j.autrev.2025.103826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 05/01/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025]
Abstract
Interleukin-6 (IL-6) is a multifunctional cytokine produced by various cells of the innate and adaptive immune systems. It acts as a regulatory factor in immunity, inflammation, metabolism, and cellular function in multiple organs and systems. The functionality of IL-6 is achieved through multiple signal transduction pathways, such as the JAK/STAT and the NF-κB signaling pathways. In this review, we highlighted the inflammatory and non-inflammatory functions of IL-6, as well as the associated signaling pathways. The involvement of IL-6 in neuroimmunological disorders suggests that the interleukin-6 receptor (IL-6R) monoclonal antibody, satralizumab, is a potential therapeutic strategy. Phase III clinical trials have already validated the safety and efficiency of satralizumab in treating neuromyelitis optica spectrum disorders (NMOSD) and acetylcholine receptor (AChR) seropositive generalized myasthenia gravis (gMG). This review aims to elucidate the pathophysiological role of IL-6, and explore the clinical implications of satralizumab in neuroimmunological diseases, providing insights into its potential therapeutic applications.
Collapse
Affiliation(s)
- Xicheng Li
- Department of Neurology and Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders (NCND), China
| | - Chongbo Zhao
- Department of Neurology and Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders (NCND), China.
| |
Collapse
|
2
|
Cai J, Wang J, Wang Z, Wang J, Jia Y, Ma X. Perspectives on the α5 nicotinic acetylcholine receptor in lung cancer progression. Front Cell Dev Biol 2025; 13:1489958. [PMID: 40143965 PMCID: PMC11937065 DOI: 10.3389/fcell.2025.1489958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are widely expressed in a variety of cell types and are involved in multiple physiological regulatory mechanisms in cells, tissues and systems. Increasing evidence suggests that the α5 nicotinic acetylcholine receptor (α5-nAChR), encoded by the CHRNA5 gene, is one of a key mediator involved in lung cancer development and immune responses. Several studies have shown that it is a regulator that stimulates processes via various signaling pathways, including STAT3 in lung cancer. In addition, α5-nAChR has a profound effect on lung immune response through multiple immune-related factor pathways. In this review, we focus on the perspectives on α5-nAChR in lung cancer progression, which indicates that targeting α5-nAChR could provide novel anticancer and immune therapy strategies for lung cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoli Ma
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
3
|
Tizabi Y, Antonelli MC, Tizabi D, Aschner M. Role of Glial Cells and Receptors in Schizophrenia Pathogenesis. Neurochem Res 2025; 50:85. [PMID: 39869278 DOI: 10.1007/s11064-025-04336-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/28/2025]
Abstract
The specific pathogeneses of schizophrenia (SCZ) remain an enigma despite extensive research that has implicated both genetic and environmental factors. Recent revelations that dysregulated immune system caused by glial cell overactivation result in neuroinflammation, a key player in neurodegenerative as well as neuropsychiatric disorders including SCZ are providing novel clues on potential therapeutic interventions. Here, we review the roles of glial cells (Dr. Arne Schousboe's passion) and two of their most implicated receptors, toll-like receptors (TLRs), and nicotinic cholinergic receptors, in SCZ pathology with suggestions as potential targets in this devastating neuropsychiatric condition.
Collapse
Affiliation(s)
- Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA.
| | - Marta C Antonelli
- Facultad de Medicina, UBA, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", Buenos Aires, Argentina
| | - Daniela Tizabi
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
4
|
Jalaiei A, Asadi MR, Daneshmandpour Y, Rezazadeh M, Ghafouri-Fard S. Clinical, molecular, physiologic, and therapeutic feature of patients with CHRNA4 and CHRNB2 deficiency: A systematic review. J Neurochem 2025; 169:e16200. [PMID: 39193833 DOI: 10.1111/jnc.16200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/03/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024]
Abstract
The α4β2 nAChRs are crucial ion channels that control neurotransmitter release and play a role in various physiologic and pathologic processes. CHRNA4 encodes the α4-nAChRs, while CHRNB2 encodes the β2-nAChRs. Recent studies have found different variants of α4β2-nAChRs in individuals with conditions such as AD, ADHD, ALS, PD, and brain abnormalities. We conducted a scoping review following a six-stage methodology structure and adhering to PRISMA guidelines. We systematically reviewed articles using relevant keywords up to October 2, 2023. In this summary, we cover the clinical symptoms reported, the genes and protein structure of CHRNA4 and CHRNB2, mutations in these genes, inheritance patterns, the functional impact of mutations and polymorphisms in CHRNA4 and CHRNB2, and the epidemiology of these diseases. Recent research indicates that nAChRs may play a significant role in neurodegenerative disorders, possibly impacting neuronal function through yet undiscovered regulatory pathways. Studying how nAChRs interact with disease-related aggregates in neurodegenerative conditions may lead to new treatment options for these disorders.
Collapse
Affiliation(s)
- Abbas Jalaiei
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Asadi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Daneshmandpour
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Rezazadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Gotti C, Clementi F, Zoli M. Special issue "The multifaceted activities of nervous and non-nervous neuronal nicotinic acetylcholine receptors in physiology and pathology". Pharmacol Res 2024; 205:107239. [PMID: 38801984 DOI: 10.1016/j.phrs.2024.107239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Affiliation(s)
| | - Francesco Clementi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, Centre for Neuroscience and Neurotechnology (CfNN), University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
6
|
Pechlivanidou M, Vakrakou AG, Karagiorgou K, Tüzün E, Karachaliou E, Chroni E, Afrantou T, Grigoriadis N, Argyropoulou C, Paschalidis N, Şanlı E, Tsantila A, Dandoulaki M, Ninou EI, Zisimopoulou P, Mantegazza R, Andreetta F, Dudeck L, Steiner J, Lindstrom JM, Tzanetakos D, Voumvourakis K, Giannopoulos S, Tsivgoulis G, Tzartos SJ, Tzartos J. Neuronal nicotinic acetylcholine receptor antibodies in autoimmune central nervous system disorders. Front Immunol 2024; 15:1388998. [PMID: 38863705 PMCID: PMC11165060 DOI: 10.3389/fimmu.2024.1388998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024] Open
Abstract
Background Neuronal nicotinic acetylcholine receptors (nAChRs) are abundant in the central nervous system (CNS), playing critical roles in brain function. Antigenicity of nAChRs has been well demonstrated with antibodies to ganglionic AChR subtypes (i.e., subunit α3 of α3β4-nAChR) and muscle AChR autoantibodies, thus making nAChRs candidate autoantigens in autoimmune CNS disorders. Antibodies to several membrane receptors, like NMDAR, have been identified in autoimmune encephalitis syndromes (AES), but many AES patients have yet to be unidentified for autoantibodies. This study aimed to develop of a cell-based assay (CBA) that selectively detects potentially pathogenic antibodies to subunits of the major nAChR subtypes (α4β2- and α7-nAChRs) and its use for the identification of such antibodies in "orphan" AES cases. Methods The study involved screening of sera derived from 1752 patients from Greece, Turkey and Italy, who requested testing for AES-associated antibodies, and from 1203 "control" patients with other neuropsychiatric diseases, from the same countries or from Germany. A sensitive live-CBA with α4β2-or α7-nAChR-transfected cells was developed to detect antibodies against extracellular domains of nAChR major subunits. Flow cytometry (FACS) was performed to confirm the CBA findings and indirect immunohistochemistry (IHC) to investigate serum autoantibodies' binding to rat brain tissue. Results Three patients were found to be positive for serum antibodies against nAChR α4 subunit by CBA and the presence of the specific antibodies was quantitatively confirmed by FACS. We detected specific binding of patient-derived serum anti-nAChR α4 subunit antibodies to rat cerebellum and hippocampus tissue. No serum antibodies bound to the α7-nAChR-transfected or control-transfected cells, and no control serum antibodies bound to the transfected cells. All patients positive for serum anti-nAChRs α4 subunit antibodies were negative for other AES-associated antibodies. All three of the anti-nAChR α4 subunit serum antibody-positive patients fall into the AES spectrum, with one having Rasmussen encephalitis, another autoimmune meningoencephalomyelitis and another being diagnosed with possible autoimmune encephalitis. Conclusion This study lends credence to the hypothesis that the major nAChR subunits are autoimmune targets in some cases of AES and establishes a sensitive live-CBA for the identification of such patients.
Collapse
Affiliation(s)
| | - Aigli G. Vakrakou
- First Department of Neurology, School of Medicine, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Karagiorgou
- Tzartos NeuroDiagnostics, Athens, Greece
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Erdem Tüzün
- Department of Neuroscience, Aziz Sancar Institute for Experimental Medical Research, Istanbul University, Istanbul, Türkiye
| | - Eleni Karachaliou
- Tzartos NeuroDiagnostics, Athens, Greece
- Second Department of Neurology, School of Medicine, “Attikon” University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elisabeth Chroni
- Department of Neurology, School of Medicine, University of Patras, Patras, Greece
| | - Theodora Afrantou
- Second Department of Neurology, “AHEPA“ University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- Second Department of Neurology, “AHEPA“ University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Nikolaos Paschalidis
- Mass Cytometry-CyTOF Laboratory, Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Elif Şanlı
- Department of Neuroscience, Aziz Sancar Institute for Experimental Medical Research, Istanbul University, Istanbul, Türkiye
| | | | | | | | | | - Renato Mantegazza
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesca Andreetta
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy
| | - Leon Dudeck
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Jon Martin Lindstrom
- Department of Neuroscience, Medical School, University of Pennsylvania, Philadelphia, PA, United States
| | - Dimitrios Tzanetakos
- Second Department of Neurology, School of Medicine, “Attikon” University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Voumvourakis
- Second Department of Neurology, School of Medicine, “Attikon” University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Sotirios Giannopoulos
- Second Department of Neurology, School of Medicine, “Attikon” University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, School of Medicine, “Attikon” University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Socrates J. Tzartos
- Tzartos NeuroDiagnostics, Athens, Greece
- Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
- Department of Pharmacy, University of Patras, Patras, Greece
| | - John Tzartos
- Second Department of Neurology, School of Medicine, “Attikon” University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
7
|
Soares ÉN, Costa ACDS, Ferrolho GDJ, Ureshino RP, Getachew B, Costa SL, da Silva VDA, Tizabi Y. Nicotinic Acetylcholine Receptors in Glial Cells as Molecular Target for Parkinson's Disease. Cells 2024; 13:474. [PMID: 38534318 PMCID: PMC10969434 DOI: 10.3390/cells13060474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by resting tremor, bradykinesia, rigidity, and postural instability that also includes non-motor symptoms such as mood dysregulation. Dopamine (DA) is the primary neurotransmitter involved in this disease, but cholinergic imbalance has also been implicated. Current intervention in PD is focused on replenishing central DA, which provides remarkable temporary symptomatic relief but does not address neuronal loss and the progression of the disease. It has been well established that neuronal nicotinic cholinergic receptors (nAChRs) can regulate DA release and that nicotine itself may have neuroprotective effects. Recent studies identified nAChRs in nonneuronal cell types, including glial cells, where they may regulate inflammatory responses. Given the crucial role of neuroinflammation in dopaminergic degeneration and the involvement of microglia and astrocytes in this response, glial nAChRs may provide a novel therapeutic target in the prevention and/or treatment of PD. In this review, following a brief discussion of PD, we focus on the role of glial cells and, specifically, their nAChRs in PD pathology and/or treatment.
Collapse
Affiliation(s)
- Érica Novaes Soares
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
| | - Ana Carla dos Santos Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
| | - Gabriel de Jesus Ferrolho
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
- Laboratory of Neurosciences, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
| | - Rodrigo Portes Ureshino
- Department of Biological Sciences, Universidade Federal de São Paulo, Diadema 09961-400, SP, Brazil
- Laboratory of Molecular and Translational Endocrinology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, SP, Brazil
| | - Bruk Getachew
- Department of Pharmacology, College of Medicine, Howard University, 520 W Street NW, Washington, DC 20059, USA
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
| | - Victor Diogenes Amaral da Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
- Laboratory of Neurosciences, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
| | - Yousef Tizabi
- Department of Pharmacology, College of Medicine, Howard University, 520 W Street NW, Washington, DC 20059, USA
| |
Collapse
|
8
|
Nakane S, Koike H, Hayashi T, Nakatsuji Y. Autoimmune Autonomic Neuropathy: From Pathogenesis to Diagnosis. Int J Mol Sci 2024; 25:2296. [PMID: 38396973 PMCID: PMC10889307 DOI: 10.3390/ijms25042296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Autoimmune autonomic ganglionopathy (AAG) is a disease of autonomic failure caused by ganglionic acetylcholine receptor (gAChR) autoantibodies. Although the detection of autoantibodies is important for distinguishing the disease from other neuropathies that present with autonomic dysfunction, other factors are important for accurate diagnosis. Here, we provide a comprehensive review of the clinical features of AAG, highlighting differences in clinical course, clinical presentation, and laboratory findings from other neuropathies presenting with autonomic symptoms. The first step in diagnosing AAG is careful history taking, which should reveal whether the mode of onset is acute or chronic, followed by an examination of the time course of disease progression, including the presentation of autonomic and extra-autonomic symptoms. AAG is a neuropathy that should be differentiated from other neuropathies when the patient presents with autonomic dysfunction. Immune-mediated neuropathies, such as acute autonomic sensory neuropathy, are sometimes difficult to differentiate, and therefore, differences in clinical and laboratory findings should be well understood. Other non-neuropathic conditions, such as postural orthostatic tachycardia syndrome, chronic fatigue syndrome, and long COVID, also present with symptoms similar to those of AAG. Although often challenging, efforts should be made to differentiate among the disease candidates.
Collapse
Affiliation(s)
- Shunya Nakane
- Department of Neurology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Haruki Koike
- Division of Neurology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Tomohiro Hayashi
- Department of Neurology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yuji Nakatsuji
- Department of Neurology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
9
|
Pavy-Le Traon A, Foubert-Samier A, Fabbri M. An overview on pure autonomic failure. Rev Neurol (Paris) 2024; 180:94-100. [PMID: 38129276 DOI: 10.1016/j.neurol.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Pure autonomic failure (PAF) is a neurodegenerative disease affecting the sympathetic component of the autonomic nervous system and presenting as orthostatic hypotension (OH). It is a rare, sporadic disease of adults. Although OH is the primary symptom, the autonomic dysfunction may be more generalised, leading to genitourinary and intestinal dysfunction and sweating disorders. Autonomic symptoms in PAF may be similar to those observed in other autonomic neuropathies that need to be ruled out. PAF belongs to the group of α synucleinopathies and is characterised by predominant peripheral deposition of α-synuclein in autonomic ganglia and nerves. However, in a significant number of cases, PAF may convert into another synucleinopathy with central nervous system involvement with varying prognosis: Parkinson's disease (PD), multiple system atrophy (MSA), or dementia with Lewy bodies (DLB). The clinical features, the main differential diagnoses, the risk factors for "phenoconversion" to another synucleinopathy as well as an overview of treatment will be discussed.
Collapse
Affiliation(s)
- A Pavy-Le Traon
- Neurology department, French reference center for Multiple System Atrophy, CHU de Toulouse, Toulouse, France; I2MC Institute-Inserm U1297, Toulouse, France
| | - A Foubert-Samier
- Bordeaux University, Inserm, Bordeaux Population Health Research Center, UMR1219, Bordeaux, France; Neurodegenerative Diseases Neurology Department, CHU de Bordeaux, IMNc, CRMR AMS, Bordeaux, France; Bordeaux University, CNRS, IMN, UMR 5293, Bordeaux, France
| | - M Fabbri
- Neurology department, French reference center for Multiple System Atrophy, CHU de Toulouse, Toulouse, France; Department of Clinical Pharmacology and Neurosciences, Toulouse Parkinson Expert Centre, Toulouse NeuroToul Center of Excellence in Neurodegeneration (COEN), French NS-Park/F-CRIN Network, University of Toulouse 3, CHU of Toulouse, Inserm, Toulouse, France
| |
Collapse
|
10
|
Wang L, Xie Y, Myrzagali S, Pu W, Liu E. Metal ions as effectual tools for cancer with traditional Chinese medicine. ACUPUNCTURE AND HERBAL MEDICINE 2023; 3:296-308. [DOI: 10.1097/hm9.0000000000000083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Malignant tumor has become a major threat affecting human health, and is one of the main causes of human death. Recent studies have shown that many traditional Chinese medicines (TCM) have good anti-tumor activity, which may improve the therapeutic effect of routine treatment and quality of life with lower toxicity. However, the efficacy of TCM alone for the treatment of tumors is limited. Metal ions are essential substances for maintaining normal physiological activities. This article summarized the multiple mechanisms in which metal ions are involved in the prevention and treatment of tumors in TCM.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingqiu Xie
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Sandugash Myrzagali
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Weiling Pu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Erwei Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
11
|
Golfinopoulou R, Giudicelli V, Manso T, Kossida S. Delving into Molecular Pathways: Analyzing the Mechanisms of Action of Monoclonal Antibodies Integrated in IMGT/mAb-DB for Myasthenia Gravis. Vaccines (Basel) 2023; 11:1756. [PMID: 38140161 PMCID: PMC10747390 DOI: 10.3390/vaccines11121756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Myasthenia Gravis (MG) is a rare autoimmune disease presenting with auto-antibodies that affect the neuromuscular junction. In addition to symptomatic treatment options, novel therapeutics include monoclonal antibodies (mAbs). IMGT®, the international ImMunoGeneTics information system®, extends the characterization of therapeutic antibodies with a systematic description of their mechanisms of action (MOA) and makes them available through its database for mAbs and fusion proteins, IMGT/mAb-DB. METHODS Using available literature data combined with amino acid sequence analyses from mAbs managed in IMGT/2Dstructure-DB, the IMGT® protein database, biocuration allowed us to define in a standardized way descriptions of MOAs of mAbs that target molecules towards MG treatment. RESULTS New therapeutic targets include FcRn and molecules such as CD38, CD40, CD19, MS4A1, and interleukin-6 receptor. A standardized graphical representation of the MOAs of selected mAbs was created and integrated within IMGT/mAb-DB. The main mechanisms involved in these mAbs are either blocking or neutralizing. Therapies directed to B cell depletion and plasma cells have a blocking MOA with an immunosuppressant effect along with Fc-effector function (MS4A1, CD38) or FcγRIIb engager effect (CD19). Monoclonal antibodies targeting the complement also have a blocking MOA with a complement inhibitor effect, and treatments targeting T cells have a blocking MOA with an immunosuppressant effect (CD40) and Fc-effector function (IL6R). On the other hand, FcRn antagonists present a neutralizing MOA with an FcRn inhibitor effect. CONCLUSION The MOA of each new mAb needs to be considered in association with the immunopathogenesis of each of the subtypes of MG in order to integrate the new mAbs as a viable and safe option in the therapy decision process. In IMGT/mAb-DB, mAbs for MG are characterized by their sequence, domains, and chains, and their MOA is described.
Collapse
Affiliation(s)
- Rebecca Golfinopoulou
- IMGT, The International ImMunoGeneTics Information System, National Center for Scientific Research (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), 34090 Montpellier, France; (R.G.); (V.G.)
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Véronique Giudicelli
- IMGT, The International ImMunoGeneTics Information System, National Center for Scientific Research (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), 34090 Montpellier, France; (R.G.); (V.G.)
| | - Taciana Manso
- IMGT, The International ImMunoGeneTics Information System, National Center for Scientific Research (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), 34090 Montpellier, France; (R.G.); (V.G.)
| | - Sofia Kossida
- IMGT, The International ImMunoGeneTics Information System, National Center for Scientific Research (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), 34090 Montpellier, France; (R.G.); (V.G.)
| |
Collapse
|