1
|
Colleoni A, Galli G, Dallanoce C, De Amici M, Gorostiza P, Matera C. Light-Activated Pharmacological Tools for Exploring the Cholinergic System. Med Res Rev 2025. [PMID: 40123150 DOI: 10.1002/med.22108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/25/2025]
Abstract
Cholinergic transmission plays a critical role in both the central and peripheral nervous systems, affecting processes such as learning, memory, and inflammation. Conventional cholinergic drugs generally suffer from poor selectivity and temporal precision, leading to undesired effects and limited therapeutic efficacy. Photopharmacology aims to overcome the limitations of traditional drugs using photocleavable or photoswitchable ligands and spatiotemporal patterns of illumination. Spanning from muscarinic and nicotinic modulators to cholinesterase inhibitors, this review explores the development and application of light-activated compounds as tools for unraveling the role of cholinergic signaling in both physiological and pathological contexts, while also paving the way for innovative phototherapeutic approaches.
Collapse
Grants
- This research was supported by the European Union-Next Generation EU, Mission 4, Component 1 (CUP J53C24002040004), EU Horizon 2020 Framework Programme for Research and Innovation, European Innovation Council Pathfinder (PHOTOTHERAPORT, 101130883), Human Brain Project (WaveScalES, SGA3, 945539), Information and Communication Technologies (Deeper, ICT-36-2020-101016787), and Piano di Sostegno alla Ricerca 2023 (Azione A, Linea 2, PSR2023_DIP_021_CMATE). It was also supported by the Government of Catalonia (CERCA Programme; AGAUR 2021-SGR-01410), Spanish Ministry of Science and Innovation (DEEP RED, grant PID2019-111493RB-I00; EPILLUM, grant AEI/10.13039/501100011033; and Research Network in Biomedicine eBrains-Spain, RED2022-134823-E).
Collapse
Affiliation(s)
- Alessio Colleoni
- Section of Medicinal Chemistry "Pietro Pratesi", Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Perugia, Italy
| | - Giulia Galli
- Section of Medicinal Chemistry "Pietro Pratesi", Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Clelia Dallanoce
- Section of Medicinal Chemistry "Pietro Pratesi", Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Marco De Amici
- Section of Medicinal Chemistry "Pietro Pratesi", Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Pau Gorostiza
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Barcelona, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Carlo Matera
- Section of Medicinal Chemistry "Pietro Pratesi", Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
2
|
Bavo F, Chechik L, Huynh K, Kolanowski A, Richardson A, Tardrew S, Basrur N, Levandoski MM, Fro̷lund B. Structural Determinants of Oxantel Analogs Reveal Modulatory Selectivity of α3β2 and α4β2 Neuronal Nicotinic Acetylcholine Receptors. ACS OMEGA 2025; 10:7338-7349. [PMID: 40028068 PMCID: PMC11866191 DOI: 10.1021/acsomega.4c11196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/24/2025] [Accepted: 01/30/2025] [Indexed: 03/05/2025]
Abstract
Nicotinic acetylcholine receptors (nAChRs), ligand-gated ion channels involved in key physiological processes, show pharmacological diversity across receptor subtypes and species. The structurally similar anthelmintic compounds pyrantel, morantel, and oxantel differentially affect the α3β2 and α4β2 nAChR subtypes. Mutation analysis located the modulator binding sites to β(+)/α(-) interface pockets, homologous to the orthosteric agonist sites. We present here the synthesis and pharmacological characterization of 10 oxantel analogs with various phenyl substituents, planarity, and N-methylation, thereby elucidating the structural determinants of nAChR allosteric modulation by oxantel. Two-electrode voltage-clamp in Xenopus laevis oocytes expressing α3β2 and α4β2, respectively, revealed that selectivity and pharmacological profiles were most severely affected by the position of the hydroxy group (meta in oxantel) and the nature of the phenyl substituent. Oxantel is a PAM for α3β2 receptors, with EC50 = 3.9 μM and E max = 1.98 (relative to ACh alone, EC50 = 3.4 μM), but a NAM for α4β2 receptors, with EC50 = 200 μM and E max = 0.75 (relative to ACh alone, EC50 = 1.1 μM). Examples of large changes in modulatory activity of the analogs include the o-OH in 2a, resulting in a α3β2-selective PAM (EC50 = 0.061 μM and E max = 2.08), and the p-OH in 2c elucidated stricter requirement for activity at α3β2 (EC50 = 5.8 μM and E max = 1.01) compared to α4β2 (EC50 = 96 μM and E max = 0.88). These results, rationalized by in-silico docking studies, highlight distinct analog selectivity between the two subtypes and fine-tuning their pharmacological profiles.
Collapse
Affiliation(s)
- Francesco Bavo
- Department
of Drug Design and Pharmacology, University
of Copenhagen, Copenhagen 2100, Denmark
| | - Lucy Chechik
- Department
of Chemistry, Program of Neuroscience, Grinnell
College, Grinnell, Iowa 50112-1690, United States
| | - Khoa Huynh
- Department
of Drug Design and Pharmacology, University
of Copenhagen, Copenhagen 2100, Denmark
| | - Anna Kolanowski
- Department
of Chemistry, Program of Neuroscience, Grinnell
College, Grinnell, Iowa 50112-1690, United States
| | - Avery Richardson
- Department
of Chemistry, Program of Neuroscience, Grinnell
College, Grinnell, Iowa 50112-1690, United States
| | - Sydney Tardrew
- Department
of Chemistry, Program of Neuroscience, Grinnell
College, Grinnell, Iowa 50112-1690, United States
| | - Nipun Basrur
- Department
of Chemistry, Program of Neuroscience, Grinnell
College, Grinnell, Iowa 50112-1690, United States
| | - Mark M. Levandoski
- Department
of Chemistry, Program of Neuroscience, Grinnell
College, Grinnell, Iowa 50112-1690, United States
| | - Bente Fro̷lund
- Department
of Drug Design and Pharmacology, University
of Copenhagen, Copenhagen 2100, Denmark
| |
Collapse
|
3
|
Qiao X, Li X, Zhang M, Liu N, Wu Y, Lu S, Chen T. Targeting cryptic allosteric sites of G protein-coupled receptors as a novel strategy for biased drug discovery. Pharmacol Res 2025; 212:107574. [PMID: 39755133 DOI: 10.1016/j.phrs.2024.107574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/31/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025]
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of membrane receptors and are highly effective targets for therapeutic drugs. GPCRs couple different downstream effectors, including G proteins (such as Gi/o, Gs, G12, and Gq) and β-arrestins (such as β-arrestin 1 and β-arrestin 2) to mediate diverse cellular and physiological responses. Biased signaling allows for the specific activation of certain pathways from the full range of receptors' signaling capabilities. Targeting more variable allosteric sites, which are spatially different from the highly conserved orthosteric sites, represents a novel approach in biased GPCR drug discovery, leading to innovative strategies for targeting GPCRs. Notably, the emergence of cryptic allosteric sites on GPCRs has expanded the repertoire of available drug targets and improved receptor subtype selectivity. Here, we conduct a summary of recent progress in the structural determination of cryptic allosteric sites on GPCRs and elucidate the biased signaling mechanisms induced by allosteric modulators. Additionally, we discuss means to identify cryptic allosteric sites and design biased allosteric modulators based on cryptic allosteric sites through structure-based drug design, which is an advanced pharmacotherapeutic approach for treating GPCR-associated diseases.
Collapse
Affiliation(s)
- Xin Qiao
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaolong Li
- Department of Orthopedics, Changhai Hospital, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Mingyang Zhang
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ning Liu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Yanmei Wu
- Department of General Surgery, Changhai Hospital, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China.
| | - Shaoyong Lu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.
| | - Ting Chen
- Department of Cardiology, Changzheng Hospital, The Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| |
Collapse
|
4
|
Lu X, Li D, Wang Y, Zhang G, Wen T, Lu Y, Jia N, Wang X, Chang S, Zhang X, Lin J, Chen YH, Yang X, Shen Y. Structural insights into the activation mechanism of the human zinc-activated channel. Nat Commun 2025; 16:442. [PMID: 39774710 PMCID: PMC11707272 DOI: 10.1038/s41467-024-55807-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025] Open
Abstract
The zinc-activated channel (ZAC) is an atypical mammalian cys-loop receptor (CLR) that is activated by zinc ions and protons, allowing cations to pass through. The molecular mechanism that ligands use to activate ZAC remains elusive. Here, we present three cryo-electron microscopy reconstructions of human ZAC (hZAC) under different conditions. These three hZAC structures display highly similar conformations to one another, forming symmetrical homo-pentamers with a central ion-conduction pore. The hZAC protomer comprises an extracellular domain (ECD) and a transmembrane domain (TMD), sharing more structural similarity with anion-permeable CLRs, such as glycine receptors and type A γ-aminobutyric acid receptors. Notably, hZAC possesses a distinctive C-tail that establishes a disulfide bond with the loop M2-M3 in the TMD and occupies what is typically the canonical neurotransmitter orthosteric site in other mammalian CLRs. Moreover, the tip of the cys-loop creates an unprecedented orthosteric site in hZAC. The binding of Zn2+ triggers a conformational shift in the cys-loop, which presumably prompts the loop M2-M3 to move and open the channel gate. This study sheds light on the assembly of the channel, its structural features, and the process of signal transduction in hZAC.
Collapse
Affiliation(s)
- Xuhang Lu
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300350, China
| | - Dongmei Li
- College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Yaojie Wang
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300350, China
| | - Gaohua Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianlei Wen
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300350, China
| | - Yue Lu
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300350, China
| | - Nan Jia
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300350, China
| | - Xuedi Wang
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300350, China
| | - Shenghai Chang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Center of Cryo Electron Microscopy, Zhejiang University, Hangzhou, 310058, China
| | - Xing Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Center of Cryo Electron Microscopy, Zhejiang University, Hangzhou, 310058, China
| | - Jianping Lin
- College of Pharmacy, Nankai University, Tianjin, 300350, China.
| | - Yu-Hang Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xue Yang
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300350, China.
| | - Yuequan Shen
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300350, China.
- Southwest United Graduate School, Kunming, 650092, China.
| |
Collapse
|
5
|
Zou H, Chen Y, Zhu X, Zhao X, Cao J, Chen Y, Zhang Z, Zhu Y, Li Q, Li M. Spinosad blocks CHRNA5 mediated EGFR signaling pathway activation to inhibit lung adenocarcinoma proliferation. Biomed Pharmacother 2024; 177:117105. [PMID: 39002438 DOI: 10.1016/j.biopha.2024.117105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/26/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is the leading cause of cancer death worldwide, with high incidence and low survival rates. Nicotinic acetylcholine receptors play an important role in the progression of LUAD. In this study, a screening of 17 nicotinic acetylcholine receptor allosteric agents revealed that spinosad effectively suppressed the proliferation of LUAD cells. The experiments demonstrated that spinosad induced cell cycle arrest in the G1 phase and stimulated apoptosis, thereby impeding the growth of LUAD and enhancing the responsiveness to gefitinib in vitro and vivo. Mechanistic insights obtained through transcriptome sequencing, Co-IP, and protein immunoblots indicated that spinosad disrupted the interaction between CHRNA5 and EGFR, thereby inhibiting the formation of downstream complexes and activation of the EGFR signaling pathway. The supplementation of exogenous acetylcholine showed to mitigate the inhibition of LUAD cell proliferation induced by spinosad. This study elucidates the therapeutic effects and mechanisms of spinosad in LUAD, and offers a theoretical and experimental foundation for novel LUAD treatments.
Collapse
Affiliation(s)
- Hongling Zou
- College of Life Science, Sichuan Normal University, Chengdu, Sichuan 610101, China; Cancer Institute of Integrative Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China
| | - Yan Chen
- Zhuji People's Hospital Affiliated to Wenzhou Medical University, Zhuji, Zhejiang 311899, China
| | - Xinping Zhu
- Cancer Institute of Integrative Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China
| | - Xinyun Zhao
- College of Life Science, Sichuan Normal University, Chengdu, Sichuan 610101, China; Cancer Institute of Integrative Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China
| | - Jili Cao
- Cancer Institute of Integrative Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China
| | - Yuxin Chen
- Cancer Institute of Integrative Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China; Hangzhou Medical College, Hangzhou, Zhejiang 310059, China
| | - Ziru Zhang
- Cancer Institute of Integrative Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China; Hangzhou Medical College, Hangzhou, Zhejiang 310059, China
| | - Yongqiang Zhu
- Cancer Institute of Integrative Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China
| | - Qun Li
- College of Life Science, Sichuan Normal University, Chengdu, Sichuan 610101, China.
| | - Mingqian Li
- Cancer Institute of Integrative Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China; Hangzhou Medical College, Hangzhou, Zhejiang 310059, China.
| |
Collapse
|
6
|
Gotti C, Clementi F, Zoli M. Special issue "The multifaceted activities of nervous and non-nervous neuronal nicotinic acetylcholine receptors in physiology and pathology". Pharmacol Res 2024; 205:107239. [PMID: 38801984 DOI: 10.1016/j.phrs.2024.107239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Affiliation(s)
| | - Francesco Clementi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, Centre for Neuroscience and Neurotechnology (CfNN), University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
7
|
Appiani R, Viscarra F, Biggin PC, Bermudez I, Giraudo A, Pallavicini M, Bolchi C. Selective Potentiation of the (α4) 3(β2) 2 Nicotinic Acetylcholine Receptor Response by NS9283 Analogues. ACS Chem Neurosci 2024; 15:1501-1514. [PMID: 38511291 DOI: 10.1021/acschemneuro.3c00797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
NS9283, 3-(3-pyridyl)-5-(3-cyanophenyl)-1,2,4-oxadiazole, is a selective positive allosteric modulator of (α4)3(β2)2 nicotinic acetylcholine receptors (nAChRs). It has good subtype selective therapeutic potential afforded by its specific binding to the unique α4-α4 subunit interface present in the (α4)3(β2)2 nAChR. However, there is currently a lack of structure activity relationship (SAR) studies aimed at developing a class of congeners endowed with the same profile of activity that can help consolidate the druggability of the α4-α4 subunit interface. In this study, new NS9283 analogues were designed, synthesized, and characterized for their ability to selectively potentiate the ACh activity at heterologous (α4)3(β2)2 nAChRs vs nAChR subtypes (α4)2(β2)3, α5α4β2, and α7. With few exceptions, all the NS9283 analogues exerted positive modulation of the (α4)3(β2)2 nAChR ACh-evoked responses. Above all, those modified at the 3-cyanophenyl moiety by replacement with 3-nitrophenyl (4), 4-cyanophenyl (10), and N-formyl-4-piperidinyl (20) showed the same efficacy as NS9283, although with lower potency. Molecular dynamics simulations of NS9283 and some selected analogues highlighted consistency between potentiation activity and pose of the ligand inside the α4-α4 site with the main interaction being with the complementary (-) side and induction of a significant conformational change of the Trp156 residue in the principal (+) side.
Collapse
Affiliation(s)
- Rebecca Appiani
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Mangiagalli 25, Milano I-20133, Italy
| | - Franco Viscarra
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
- Structural Bioinformatics and Computational Biochemistry Unit, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Philip C Biggin
- Structural Bioinformatics and Computational Biochemistry Unit, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Isabel Bermudez
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Alessandro Giraudo
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Mangiagalli 25, Milano I-20133, Italy
| | - Marco Pallavicini
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Mangiagalli 25, Milano I-20133, Italy
| | - Cristiano Bolchi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Mangiagalli 25, Milano I-20133, Italy
| |
Collapse
|
8
|
Bele T, Turk T, Križaj I. Nicotinic acetylcholine receptors in cancer: Limitations and prospects. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166875. [PMID: 37673358 DOI: 10.1016/j.bbadis.2023.166875] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/09/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) have long been considered to solely mediate neurotransmission. However, their widespread distribution in the human body suggests a more diverse physiological role. Additionally, the expression of nAChRs is increased in certain cancers, such as lung cancer, and has been associated with cell proliferation, epithelial-to-mesenchymal cell transition, angiogenesis and apoptosis prevention. Several compounds that interact with these receptors have been identified as potential therapeutic agents. They have been tested as drugs for treating nicotine addiction, alcoholism, depression, pain and Alzheimer's disease. This review focuses on nAChR-mediated signalling in cancer, presenting opportunities for the development of innovative nAChR-based anticancer drugs. It displays the differences in expression of each nAChR subunit between normal and cancer cells for selected cancer types, highlighting their possible involvement in specific cases. Antagonists of nAChRs that could complement existing cancer therapies are summarised and critically discussed. We hope that this review will stimulate further research on the role of nAChRs in cancer potentially leading to innovative cancer therapies.
Collapse
Affiliation(s)
- T Bele
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia.
| | - T Turk
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia.
| | - I Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|