1
|
Martelli A, Abate F, Roggia M, Benedetti G, Caradonna E, Calderone V, Tenore GC, Cosconati S, Novellino E, Stornaiuolo M. Trimethylamine N-Oxide (TMAO) Acts as Inhibitor of Endothelial Nitric Oxide Synthase (eNOS) and Hampers NO Production and Acetylcholine-Mediated Vasorelaxation in Rat Aortas. Antioxidants (Basel) 2025; 14:517. [PMID: 40427399 PMCID: PMC12108457 DOI: 10.3390/antiox14050517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/21/2025] [Accepted: 04/23/2025] [Indexed: 05/29/2025] Open
Abstract
Trimethylamine N-oxide (TMAO) is an endogenous osmolyte produced by enzymatic reactions starting in the human gut, where microbiota release trimethylamine (TMA) from foods, and ending in the liver, where TMA is oxidized to TMAO by flavin-containing monooxygenase 3 (FMO3). While physiological concentrations of TMAO help proteins preserve their folding, high levels of this metabolite are harmful and promote oxidative stress, inflammation, and atherosclerosis. In humans, elevated levels of circulating TMAO predispose individuals to cardiovascular diseases and chronic kidney disease and increase mortality risk, especially in the elderly. How TMAO exerts its negative effects has been only partially elucidated. In hypertensive rats, the eNOS substrate L-arginine and Taurisolo®, a nutraceutical endowed with TMAO-reducing activity, act synergistically to reduce arterial blood pressure. Here, we investigate the molecular mechanisms underpinning this synergism and prove that TMAO, the target of Taurisolo®, acts as direct inhibitor of endothelial nitric oxide synthase (eNOS) and competes with L-arginine at its catalytic site, ultimately inhibiting NO production and acetylcholine (Ach)-induced relaxation in murine aortas.
Collapse
Affiliation(s)
- Alma Martelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56120 Pisa, Italy; (A.M.); (G.B.); (V.C.)
| | - Federico Abate
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies DiSTABiF, University of Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy; (F.A.); (M.R.); (S.C.)
| | - Michele Roggia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies DiSTABiF, University of Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy; (F.A.); (M.R.); (S.C.)
| | - Giada Benedetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56120 Pisa, Italy; (A.M.); (G.B.); (V.C.)
| | - Eugenio Caradonna
- Centro Diagnostico Italiano, Department of Clinical Laboratory, 20100 Milan, Italy;
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56120 Pisa, Italy; (A.M.); (G.B.); (V.C.)
| | - Gian Carlo Tenore
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy;
| | - Sandro Cosconati
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies DiSTABiF, University of Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy; (F.A.); (M.R.); (S.C.)
| | - Ettore Novellino
- Department of Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Mariano Stornaiuolo
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy;
| |
Collapse
|
2
|
Wang JH, Lin YL, Hsu BG. Endothelial dysfunction in chronic kidney disease: Mechanisms, biomarkers, diagnostics, and therapeutic strategies. Tzu Chi Med J 2025; 37:125-134. [PMID: 40321967 PMCID: PMC12048126 DOI: 10.4103/tcmj.tcmj_284_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/03/2024] [Accepted: 01/06/2025] [Indexed: 05/08/2025] Open
Abstract
Endothelial cells regulate vascular tone, blood flow, coagulation, and inflammation, with heterogeneous populations serving specific roles throughout the body. In the kidney, endothelial cells maintain vascular integrity and function, contribute to filtration, and support other renal structures. Nitric oxide (NO) is a key signaling molecule that maintains vascular tone and endothelial function. It is synthesized by nitric oxide synthase (NOS) isoforms, with endothelial NOS playing a central role in vascular health. Chronic kidney disease (CKD) is characterized by reduced NO bioavailability, driven by the accumulation of endogenous NOS inhibitors such as asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA). Uremic toxins, oxidative stress, and proinflammatory cytokines contribute to a prothrombotic and proinflammatory state, contributing to endothelial dysfunction and exacerbating cardiovascular (CV) risks in CKD. Biomarkers such as ADMA, SDMA, endothelial microparticles, and soluble adhesion molecules offer insights into vascular health, while invasive or noninvasive diagnostic techniques can assess endothelial function in CKD. Effective management strategies focus on enhancing NO bioavailability, controlling oxidative stress, reducing inflammation, and optimizing dialysis to minimize uremic toxin levels. Emerging therapeutic approaches, including antioxidant therapies and endothelial progenitor cell-based interventions, show promise in preserving vascular function. A multifaceted approach to managing endothelial dysfunction is critical for mitigating CV complications and improving patient outcomes in CKD.
Collapse
Affiliation(s)
- Ji-Hung Wang
- Division of Cardiology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yu-Li Lin
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Bang-Gee Hsu
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| |
Collapse
|
3
|
Lei S, Liu Y. Identifying the Involvement of Gut Microbiota in Retinal Vein Occlusion by Mendelian Randomization and Genetic Correlation Analysis. Transl Vis Sci Technol 2025; 14:5. [PMID: 39786739 PMCID: PMC11725986 DOI: 10.1167/tvst.14.1.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 12/05/2024] [Indexed: 01/12/2025] Open
Abstract
Purpose Previous researches have suggested an important association between gut microbiota (GM) and vascular pathologies such as atherosclerosis. This study aimed to explore the association between 196 GM taxa and retinal vein occlusion (RVO). Methods This study used Mendelian randomization (MR), linkage disequilibrium score regression (LDSC), and polygenic overlap analysis. Genome-wide association study (GWAS) data associated with 196 GM taxa was obtained from the MiBioGen consortium, involving a large number of European-ancestry participants. GWAS data of RVO was obtained from the FinnGen consortium and another study that also involved European-ancestry participants. Inverse-variance weighted was used as the primary approach for MR estimation. Moreover, LDSC and polygenic overlap analyses were performed to evaluate the genetic correlation between GM taxa and RVO. Results The MR results identified the association of six GM taxa, including class Bacilli, order Lactobacillales, family Streptococcaceae, genus Clostridium innocuum group, genus Family XIII AD3011 group, and genus Subdoligranulum with the development of RVO. In addition, the polygenic overlap analysis supported the genetic association between GM and RVO. Conclusions Our findings confirmed the association between six GM taxa and the development of RVO, thereby highlighting the effects of GM on retinal vascular health. Translational Relevance The results may provide the rationale for developing GM-based strategies for preventing the onset of RVO.
Collapse
Affiliation(s)
- Shizhen Lei
- Department of Ophthalmology, Wuhan No.1 Hospital, Wuhan, Hubei, China
| | - Yani Liu
- Department of Otolaryngology & Head and Neck Surgery, Wuhan No.1 Hospital, Wuhan, Hubei, China
| |
Collapse
|
4
|
Wang Y, Bai M, Peng Q, Li L, Tian F, Guo Y, Jing C. Angiogenesis, a key point in the association of gut microbiota and its metabolites with disease. Eur J Med Res 2024; 29:614. [PMID: 39710789 DOI: 10.1186/s40001-024-02224-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024] Open
Abstract
The gut microbiota is a complex and dynamic ecosystem that plays a crucial role in human health and disease, including obesity, diabetes, cardiovascular diseases, neurodegenerative diseases, inflammatory bowel disease, and cancer. Chronic inflammation is a common feature of these diseases and is closely related to angiogenesis (the process of forming new blood vessels), which is often dysregulated in pathological conditions. Inflammation potentially acts as a central mediator. This abstract aims to elucidate the connection between the gut microbiota and angiogenesis in various diseases. The gut microbiota influences angiogenesis through various mechanisms, including the production of metabolites that directly or indirectly affect vascularization. For example, short-chain fatty acids (SCFAs) such as butyrate, propionate, and acetate are known to regulate immune responses and inflammation, thereby affecting angiogenesis. In the context of cardiovascular diseases, the gut microbiota promotes atherosclerosis and vascular dysfunction by producing trimethylamine N-oxide (TMAO) and other metabolites that promote inflammation and endothelial dysfunction. Similarly, in neurodegenerative diseases, the gut microbiota may influence neuroinflammation and the integrity of the blood-brain barrier, thereby affecting angiogenesis. In cases of fractures and wound healing, the gut microbiota promotes angiogenesis by activating inflammatory responses and immune effects, facilitating the healing of tissue damage. In cancer, the gut microbiota can either inhibit or promote tumor growth and angiogenesis, depending on the specific bacterial composition and their metabolites. For instance, some bacteria can activate inflammasomes, leading to the production of inflammatory factors that alter the tumor immune microenvironment and activate angiogenesis-related signaling pathways, affecting tumor angiogenesis and metastasis. Some bacteria can directly interact with tumor cells, activating angiogenesis-related signaling pathways. Diet, as a modifiable factor, significantly influences angiogenesis through diet-derived microbial metabolites. Diet can rapidly alter the composition of the microbiota and its metabolic activity, thereby changing the concentration of microbial-derived metabolites and profoundly affecting the host's immune response and angiogenesis. For example, a high animal protein diet promotes the production of pro-atherogenic metabolites like TMAO, activating inflammatory pathways and interfering with platelet function, which is associated with the severity of coronary artery plaques, peripheral artery disease, and cardiovascular diseases. A diet rich in dietary fiber promotes the production of SCFAs, which act as ligands for cell surface or intracellular receptors, regulating various biological processes, including inflammation, tissue homeostasis, and immune responses, thereby influencing angiogenesis. In summary, the role of the gut microbiota in angiogenesis is multifaceted, playing an important role in disease progression by affecting various biological processes such as inflammation, immune responses, and multiple signaling pathways. Diet-derived microbial metabolites play a crucial role in linking the gut microbiota and angiogenesis. Understanding the complex interactions between diet, the gut microbiota, and angiogenesis has the potential to uncover novel therapeutic targets for managing these conditions. Therefore, interventions targeting the gut microbiota and its metabolites, such as through fecal microbiota transplantation (FMT) and the application of probiotics to alter the composition of the gut microbiota and enhance the production of beneficial metabolites, present a promising therapeutic strategy.
Collapse
Affiliation(s)
- Yan Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Mingshuai Bai
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Qifan Peng
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Leping Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Feng Tian
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| | - Ying Guo
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| | - Changqing Jing
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
5
|
Flori L, Benedetti G, Martelli A, Calderone V. Gut-vascular axis and postbiotics: The pharmacological potential of metabolites encourages broader definitions. Pharmacol Res 2024; 208:107416. [PMID: 39276956 DOI: 10.1016/j.phrs.2024.107416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Affiliation(s)
- Lorenzo Flori
- Department of Pharmacy, University of Pisa, via Bonanno 6, Pisa 56120, Italy.
| | - Giada Benedetti
- Department of Pharmacy, University of Pisa, via Bonanno 6, Pisa 56120, Italy.
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, via Bonanno 6, Pisa 56120, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa 56120, Italy; Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Pisa 56120, Italy.
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, via Bonanno 6, Pisa 56120, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa 56120, Italy; Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Pisa 56120, Italy.
| |
Collapse
|
6
|
Skonieczna-Żydecka K, Łoniewski I, Kaczmarczyk M, Marlicz W. Gut-vascular axis and postbiotics: The need for clear definitions and further research. Pharmacol Res 2024:107405. [PMID: 39270947 DOI: 10.1016/j.phrs.2024.107405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/01/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Affiliation(s)
- Karolina Skonieczna-Żydecka
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, Szczecin 71-460, Poland
| | - Igor Łoniewski
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, Szczecin 71-460, Poland
| | - Mariusz Kaczmarczyk
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, Szczecin 71-460, Poland
| | - Wojciech Marlicz
- Department of Gastroenterology, Pomeranian Medical University in Szczecin, Unii Lubelskiej, Szczecin 71-252, Poland
| |
Collapse
|