1
|
Peng X, Tang F, Yang Y, Li T, Hu X, Li S, Wu W, He K. Bidirectional effects and mechanisms of traditional Chinese medicine. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115578. [PMID: 35917892 DOI: 10.1016/j.jep.2022.115578] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/24/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The bidirectional property of traditional Chinese medicines (TCMs) was recorded in the classic work Medicine Origin (Yi Xue Qi Yuan) as early as the Jin and Yuan dynasties of ancient China. Since then, this imperative theory has been applied to guide the clinical application of TCMs. Studies have been performed to investigate this phenomenon only over the last three decades. A limited number of reviews on the bidirectional role of TCMs have been published, and almost all current studies are published in the Chinese language. AIM OF THE REVIEW The aim of this review is to provide the first comprehensive evidence regarding the bidirectional effects and the underlying mechanisms of TCMs and their active compounds. MATERIALS AND METHODS Information relevant to opposing pharmacological activities or opposing properties exerted by TCM prescriptions, herbal medicines, and their active compound, as well as their mechanisms was summarized by searching Chinese and English databases, including the Chinese National Knowledge Infrastructure (CNKI), Wan Fang Data, Chinese Scientific Journal Database (VIP), Google Scholar, PubMed, Web of Science, Science Direct, and Wiley Online Library. RESULTS Although the bidirectional regulation of TCMs has been applied in the clinic since ancient times in China, only limited reviews have been published in Chinese. The existing data showed that bidirectional effects can be found in TCM prescriptions, herbal medicines, and pure active compounds. Additionally, the bidirectional role of TCMs was primarily reported in the modulation of immune function, blood circulation and hemostasis, gastrointestinal motility, the central nervous system and blood pressure. This may because the therapeutic outcomes of these disorders are more obvious than those of other complicated diseases. Intriguingly, some herbal medicines have multiple bidirectional activities; for instance, Panax ginseng C. A. Meyer showed bidirectional regulation of immune function and the central nervous system; Astragalus membranaceus can bidirectionally regulate blood pressure and immune function; and Rheum officinale Baill exerts bidirectional effects on blood circulation and hemostasis, gastrointestinal motility and immune function. The mechanisms underlying the bidirectional effects of TCMs are largely attributed to the complexity of herbal constituents, dosage differences, the processing of herbal medicine, and compatibility of medicines, the physiological conditions of patients and adaptogenic effects. CONCLUSION Uncovering the bidirectional effects and mechanisms of TCMs is of great importance for both scientific research and clinical applications. This review may help to facilitate the recognition of the bidirectional role of TCMs, to explain some seemingly-opposite phenomena in the pharmacological study of herbal medicines and to provide guidance for TCM practitioners.
Collapse
Affiliation(s)
- Xiaonian Peng
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, 418000, Hunan, China.
| | - Fang Tang
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, 418000, Hunan, China.
| | - Yong Yang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| | - Tiandan Li
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, 418000, Hunan, China.
| | - Xiaochao Hu
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, 418000, Hunan, China.
| | - Sha Li
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, 418000, Hunan, China.
| | - Weihua Wu
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, 418000, Hunan, China.
| | - Kai He
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, 418000, Hunan, China.
| |
Collapse
|
2
|
Li D, Li Y, Yang S, Yu Z, Xing Y, Wu M. Mechanism and Potential Target of Blood-Activating Chinese Botanical Drugs Combined With Anti-Platelet Drugs: Prevention and Treatment of Atherosclerotic Cardiovascular Diseases. Front Pharmacol 2022; 13:811422. [PMID: 35721128 PMCID: PMC9204194 DOI: 10.3389/fphar.2022.811422] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/25/2022] [Indexed: 11/14/2022] Open
Abstract
Atherosclerotic cardiovascular diseases (ASCVDs) are the most important diseases that endanger people’s health, leading to high morbidity and mortality worldwide. In addition, various thrombotic events secondary to cardiovascular and cerebrovascular diseases need must be considered seriously. Therefore, the development of novel anti-platelet drugs with high efficiency, and fewer adverse effects has become a research focus for preventing of cardiovascular diseases (CVDs). Blood-activation and stasis-removal from circulation have been widely considered as principles for treating syndromes related to CVDs. Blood-activating Chinese (BAC botanical drugs, as members of traditional Chinese medicine (TCM), have shown to improve hemodynamics and hemorheology, and inhibit thrombosis and atherosclerosis. Modern medical research has identified that a combination of BAC botanical drugs and anti-platelet drugs, such as aspirin or clopidogrel, not only enhances the anti-platelet effects, but also reduces the risk of bleeding and protects the vascular endothelium. The anti-platelet mechanism of Blood-activating Chinese (BAC) botanical drugs and their compounds is not clear; therefore, their potential targets need to be explored. With the continuous development of bioinformatics and “omics” technology, some unconventional applications of BAC botanical drugs have been discovered. In this review, we will focus on the related targets and signaling pathways of anti-atherosclerotic treatments involving a combination of BAC botanical drugs and anti-platelet drugs reported in recent years.
Collapse
Affiliation(s)
- Dan Li
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yujuan Li
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shengjie Yang
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zongliang Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanwei Xing
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Wu
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Wan YW, Liu W, Feng MT, Pu J, Zhuang SW, He B, Liu X. LXRβ is involved in the control of platelet production from megakaryocytes. Blood Cells Mol Dis 2021; 89:102568. [PMID: 33862368 DOI: 10.1016/j.bcmd.2021.102568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 11/30/2022]
Abstract
Liver X receptor β (LXRβ), a nuclear receptor involved in important cellular processes such as cholesterol, glucose and fatty acid metabolism, was suggested to be involved in platelet aggregation but its detailed roles are not clear. In the present study, we evaluated the contribution of LXRβ to platelet functions and production. In the systemic collagen-epinephrine thrombosis mouse model, LXRβ-deficient mice showed increased area of blood clots compared with control wide-type littermates. The aggregation of LXRβ-deficient platelets in response to ADP was stronger than that of control mice platelets. More importantly, the number of platelets in blood of LXRβ-deficient mice was significantly higher than that of wild-type mice, especially for female mice. Knockdown of LXRβ expression in human megakaryoblastic Dami cells also enhanced cell polyploidization, formation of proplatelets and production of platelet-like particles. Increase in expression levels of proteins related to oxidative phosphorylation such as NADH:ubiquinone oxidoreductase core subunit V1 (Ndufv1) was observed in LXRβ-knockdown Dami cells. The levels of Ndufv1 in LXRβ-deficient mice platelets were also higher than that of wild-type mice. Taken together, our findings suggested LXRβ might participate in control of platelet production from megakaryocytes by regulating mitochondrial metabolism.
Collapse
Affiliation(s)
- Yu-Wei Wan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wang Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mu-Ting Feng
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Jun Pu
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Shao-Wei Zhuang
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Ben He
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China.
| | - Xuan Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
4
|
Xu ZY, Xu Y, Xie XF, Tian Y, Sui JH, Sun Y, Lin DS, Gao X, Peng C, Fan YJ. Anti-platelet aggregation of Panax notoginseng triol saponins by regulating GP1BA for ischemic stroke therapy. Chin Med 2021; 16:12. [PMID: 33468191 PMCID: PMC7816336 DOI: 10.1186/s13020-021-00424-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 01/08/2021] [Indexed: 12/20/2022] Open
Abstract
Background Panax notoginseng triol saponins (PTS) has been used clinically for ischemic stroke therapy (IST) in China for more than 17 years due to its anti-platelet aggregation and neuro-protective effects, but its mechanism of action is not fully understand. In this study, anti-platelet aggregation-related protein analysis and computer simulations of drug-protein binding interactions were performed to explore the mechanism of the effects of PTS against ischemic stroke in an ischemia reperfusion model. Methods Three oral doses of PTS were administered in a model of middle cerebral artery occlusion (MCAO) in rats. Panax notoginseng total saponins (PNS) and a combination of PTS and aspirin were chosen for comparison. To evaluate therapeutic effects and explore possible mechanisms of anti-platelet aggregation, we measured cerebral infarct size and water content in brain tissue, histomorphological changes, expression of related factors (such as arachidonic acid metabolites) and platelet receptors in serum, as well as the binding affinity of PTS for platelet adhesion receptors. Results Compared with PNS, PTS showed a stronger and more potent anti-platelet aggregation effect in MCAO model rats. The combination of PTS and aspirin could reduce adverse gastrointestinal effects by regulating the TXA2/PGI2 ratio. We demonstrated for the first time that PTS was able to regulate Glycoprotein Ib-α (GP1BA) in a model animal. The binding of ginsenoside Rg1 and GP1BA could form a stable structure. Moreover, PTS could reduce von Willebrand factor (VWF)-mediated platelet adhesion to damaged vascular endothelium, and thus enhance the probability of anti-platelet aggregation and anti-thrombosis under pathological conditions. Conclusions Our results showed that GP1BA was closely related to the anti-platelet aggregation action of PTS, which provided new scientific and molecular evidence for its clinical application.![]()
Collapse
Affiliation(s)
- Zhi-Yi Xu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, Sichuan, China.,Chengdu Huasun Technology Group Inc., Ltd, Shuxin Avenue No.1168, Western Hi-tech Zone, Chengdu, 611731, Sichuan, China
| | - Yang Xu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, Sichuan, China
| | - Xiao-Fang Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Liutai Avenue NO. 1166, Wenjiang District, Chengdu, 611137, Sichuan, China
| | - Yin Tian
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Liutai Avenue NO. 1166, Wenjiang District, Chengdu, 611137, Sichuan, China
| | - Jun-Hui Sui
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, Sichuan, China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, Sichuan, China
| | - Da-Sheng Lin
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Liutai Avenue NO. 1166, Wenjiang District, Chengdu, 611137, Sichuan, China.,Chengdu Huasun Technology Group Inc., Ltd, Shuxin Avenue No.1168, Western Hi-tech Zone, Chengdu, 611731, Sichuan, China
| | - Xing Gao
- Chengdu Huasun Technology Group Inc., Ltd, Shuxin Avenue No.1168, Western Hi-tech Zone, Chengdu, 611731, Sichuan, China
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Liutai Avenue NO. 1166, Wenjiang District, Chengdu, 611137, Sichuan, China.
| | - Yu-Jiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, Sichuan, China.
| |
Collapse
|
5
|
Xue K, Ruan L, Hu J, Fu Z, Tian D, Zou W. Panax notoginseng saponin R1 modulates TNF-α/NF-κB signaling and attenuates allergic airway inflammation in asthma. Int Immunopharmacol 2020; 88:106860. [PMID: 32771949 DOI: 10.1016/j.intimp.2020.106860] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUD Panax notoginseng saponin R1 (PNS-R1) is one of the most important chemical monomers derived from the panax notoginseng, and our previous study found that PNS-R1 reduced glucocorticoid-induced apoptosis in asthmatic airway epithelial cells. Thus, in this study, we explored the effects of the PNS-R1 on inflammation of allergic asthma. METHODS The asthmatic mice were administered 15 mg/kg PNS-R1 by intraperitoneal injection three days before sensitized to OVA. The effects of PNS-R1 on asthmatic mice were detected by airway hyperresponsiveness, inflammation, mucus hypersecretion and inflammatory cytokines such as interleukin (IL)-13, IL-4, IL-5, IL-8 and tumor necrosis factor (TNF)-α were studied. We also treated human bronchial epithelial cells (16HBE) with house dust mites (HDM) and then detected the secretion of cellular inflammatory factors (IL-13 and TNF-α). Western blot and immunofluorescence were used to examine the effect of PNS-R1 on TNF-α/NF-κB pathway. TNF-α/NF-κB/IKK signal pathway activator was used in PNS-R1-treated asthmatic mice. RESULTS PNS-R1 significantly reduced the airway inflammatory, mucus secretion and hyperresponsiveness in asthma model. It also reduced the levels of IL-13, IL-4, IL-5 and IL-8 in bronchoalveolar lavage fluid (BALF) and IgE and OVA-specific IgE in serum for asthma mice. PNS-R1 reduced IL-13 and TNF-α secretion in HDM-treated 16HBE cells. In addition, PNS-R1 suppressed TNF-α/NF-κB pathway in both asthmatic mice and 16HBE. Activation of NF-kB pathway reversed the therapeutic effect of PNS-R1 on asthmatic mice. CONCLUSION The results indicated that PNS-R1 effectively suppresses allergic airway inflammation of asthma partly through TNF-α/NF-κB pathway. PNS-R1 may play a potential role in allergic asthma treatment in the future.
Collapse
Affiliation(s)
- Kunjiao Xue
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, PR China
| | - Lingying Ruan
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, PR China
| | - Jie Hu
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, PR China
| | - Zhou Fu
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Daiyin Tian
- Chongqing Key Laboratory of Pediatrics, Chongqing, PR China.
| | - Wenjing Zou
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, PR China.
| |
Collapse
|
6
|
Yin SJ, Luo YQ, Zhao CP, Chen H, Zhong ZF, Wang S, Wang YT, Yang FQ. Antithrombotic effect and action mechanism of Salvia miltiorrhiza and Panax notoginseng herbal pair on the zebrafish. Chin Med 2020; 15:35. [PMID: 32322295 PMCID: PMC7164150 DOI: 10.1186/s13020-020-00316-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022] Open
Abstract
Background Salvia miltiorrhiza (Danshen, DS) and Panax notoginseng (Sanqi, SQ) are famous traditional Chinese herbs, and their herbal pair (DS–SQ) has been popular used as anti-thrombotic medicines. However, there is still a lack of sufficient scientific evidence to illustrate the optimum combination ratio of these two herbs as well as its action mechanisms. The purpose of this study is to investigate the anti-thrombotic effects of DS–SQ on zebrafish and explore its possible action mechanism. Methods Firstly, the chemical components in DS–SQ extract were analyzed by LC–ESI–MS/MS. Then, a phenylhydrazine (PHZ)-induced zebrafish thrombosis model was developed for evaluating the anti-thrombotic effects of DS–SQ extracts with different combination ratios and their nine pure compounds. Followed, Real-time quantitative PCR (RT-qPCR) assays were performed to investigate the potential antithrombotic mechanisms of DS–SQ. Results Thirty-three components were tentatively identified by LC–MS analysis. DS–SQ at the ratio of 10:1 presented the best anti-thrombotic effect, and rosmarinic acid, lithospermic acid and salvianolic acid B of DS showed good anti-thrombotic activity on zebrafish thrombosis model. The RT-qPCR assays indicated that DS–SQ (10:1) could cure the PHZ-induced thrombosis by downregulating the expression of PKCα, PKCβ, fga, fgb, fgg and vWF in zebrafish. Conclusions DS–SQ with the combination ratio of 10:1 showed optimum anti-thrombotic effect on PHZ-induced zebrafish thrombosis model, which provided a reference for reasonable clinical applications of DS–SQ herbal pair.
Collapse
|
7
|
Jia-Xi L, Chun-Xia Z, Ying H, Meng-Han Z, Ya-Nan W, Yue-Xin Q, Jing Y, Wen-Zhi Y, Miao-Miao J, De-An G. Application of multiple chemical and biological approaches for quality assessment of Carthamus tinctorius L. (safflower) by determining both the primary and secondary metabolites. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 58:152826. [PMID: 30836217 DOI: 10.1016/j.phymed.2019.152826] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/23/2018] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The florets of Carthamus tinctorius L. (safflower) serve as the source of a reputable herbal medicine targeting gynecological diseases. Conventional investigations regarding the quality control of safflower, however, mainly focused on the secondary metabolites with primary metabolites ignored. PURPOSE To holistically evaluate the quality difference of safflower samples collected from five different producing regions by multiple chemical and biological approaches with both the primary and secondary metabolites considered. METHODS A precursor ions list-triggered data-dependent MS2 approach was established by ultra-high performance liquid chromatography/Q-Orbitrap mass spectrometry (UHPLC/Q-Orbitrap MS) to comprehensively identify the secondary metabolites from safflower. Primary metabolites were identified by various 1D and 2D nuclear magnetic resonance (NMR) experiments. Similarity evaluation and quantitative assays of all the characterized primary metabolites and a quinochalcone C-glycoside (QCG) marker, hydroxysafflor yellow A (HSYA), were performed by quantitative 1H NMR (qNMR) using an external standard method. Multiple in vitro models with respect to the antioxidant, anti-platelet aggregation, and antioxidant stress injury effects, were assayed to determine the efficacy differences. RESULTS Totally thirteen primary metabolites (including one nucleoside, two sugars, five organic alkali/acids, and five amino acids) and 135 secondary metabolites (97 QCGs and 38 flavonoids) could be identified or tentatively characterized from safflower. Good chemical consistency was observed between the commercial safflower samples and a standard safflower sample, with similarity varying in the range of 0.95‒0.99. The results from qNMR-oriented quantitative experiments (thirteen primary metabolites and HSYA) and biological assays indicated the quality of safflower samples from Xinjiang (XJ-2 and XJ-4), Hunan (HuN-1 and HuN-2), and Sichuan (SC), was comparable to the standard safflower sample. CONCLUSION The integration of multiple chemical (using two analytical platforms, UHPLC/Q-Orbitrap MS and NMR) and biological (four in vitro models) approaches by determining both the primary and secondary metabolites demonstrated a powerful strategy that could facilitate the holistic quality evaluation of traditional Chinese medicine.
Collapse
Affiliation(s)
- Lu Jia-Xi
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Tianjin 300193, China
| | - Zhang Chun-Xia
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Tianjin 300193, China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Tianjin 300193, China
| | - Hu Ying
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Tianjin 300193, China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Tianjin 300193, China
| | - Zhang Meng-Han
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Tianjin 300193, China
| | - Wang Ya-Nan
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qian Yue-Xin
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Tianjin 300193, China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Tianjin 300193, China
| | - Yang Jing
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Tianjin 300193, China
| | - Yang Wen-Zhi
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Tianjin 300193, China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Tianjin 300193, China.
| | - Jiang Miao-Miao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Tianjin 300193, China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Tianjin 300193, China.
| | - Guo De-An
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Tianjin 300193, China; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| |
Collapse
|
8
|
Tan CN, Zhang Q, Li CH, Fan JJ, Yang FQ, Hu YJ, Hu G. Potential target-related proteins in rabbit platelets treated with active monomers dehydrocorydaline and canadine from Rhizoma corydalis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 54:231-239. [PMID: 30668373 DOI: 10.1016/j.phymed.2018.09.200] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 08/20/2018] [Accepted: 09/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Dehydrocorydaline (DHC) and canadine (THB) are two active alkaloid compounds in Corydalis yanhusuo (Y.H. Chou & Chun C. Hsu) W.T. Wang ex Z.Y. Su & C.Y. Wu (Papaveraceae) (Rhizoma Corydalis). DHC and THC were previously shown to exert anti-platelet aggregation effect dose-dependently, but their exact mechanisms had not yet been addressed. Therefore, it is essential to study the mechanisms of DHC and THB affecting on platelet's function. PURPOSE To investigate the anti-platelet effects and corresponding signal cascades of DHC and THB on platelet aggregation. METHODS Firstly, in vitro anti-platelet aggregation of DHC and THB induced by different agonists including thrombin (THR), adenosine diphosphate (ADP) and arachidonic acid (AA) were determined through turbidimetry method. Then the possible target-related platelet proteins after treated with DHC/THB were separated and identified by two dimensional gel electrophoresis (2-DE) and MALDI-TOF-MS/MS analysis, respectively. Finally, the signal cascades network induced by DHC/THB were predicted through functional analysis of these proteins along with the determination of platelet DAG concentration. RESULTS The platelet aggregation stimulated by THR, ADP and AA were inhibited by DHC and THB dose-dependently to a certain degree. Meanwhile, DHC and THB had the strongest effect on ADP- and THR-induced platelet aggregation respectively. In addition, treatment of these two compounds caused regulations of about sixty proteins in platelet, including cytoskeleton proteins, cell signaling proteins, proteins related to material energy metabolism, etc. CONCLUSIONS: Using proteomic analysis combined with platelet aggregation test and ELISA, this study was successful in exploring the possible mechanisms of DHC/THB on platelet aggregation. DHC might inhibit platelet aggregation by a mechanism involving the ADP receptors P2Y1 and P2Y12, and the effect of THB on platelet function may be related to its binding to THR receptor PAR1 for mediated Gi signaling pathway. These results provide fundamental information for the anti-thrombotic effect of RC.
Collapse
Affiliation(s)
- Cheng-Ning Tan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Qian Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Chun-Hong Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Jiao-Jiao Fan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China.
| | - Yuan-Jia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, PR China
| | - Guang Hu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
9
|
Yang YY, Yang FQ, Gao JL. Differential proteomics for studying action mechanisms of traditional Chinese medicines. Chin Med 2019; 14:1. [PMID: 30636970 PMCID: PMC6325846 DOI: 10.1186/s13020-018-0223-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/31/2018] [Indexed: 12/13/2022] Open
Abstract
Differential proteomics, which has been widely used in studying of traditional Chinese medicines (TCMs) during the past 10 years, is a powerful tool to visualize differentially expressed proteins and analyzes their functions. In this paper, the applications of differential proteomics in exploring the action mechanisms of TCMs on various diseases including cancers, cardiovascular diseases, diabetes, liver diseases, kidney disorders and obesity, etc. were reviewed. Furthermore, differential proteomics in studying of TCMs identification, toxicity, processing and compatibility mechanisms were also included. This review will provide information for the further applications of differential proteomics in TCMs studies.
Collapse
Affiliation(s)
- Yi-Yao Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331 People’s Republic of China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331 People’s Republic of China
| | - Jian-Li Gao
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang People’s Republic of China
| |
Collapse
|
10
|
Liu W, Li YL, Feng MT, Zhao YW, Ding X, He B, Liu X. Application of Feedback System Control Optimization Technique in Combined Use of Dual Antiplatelet Therapy and Herbal Medicines. Front Physiol 2018; 9:491. [PMID: 29780330 PMCID: PMC5945866 DOI: 10.3389/fphys.2018.00491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/17/2018] [Indexed: 11/13/2022] Open
Abstract
Aim: Combined use of herbal medicines in patients underwent dual antiplatelet therapy (DAPT) might cause bleeding or thrombosis because herbal medicines with anti-platelet activities may exhibit interactions with DAPT. In this study, we tried to use a feedback system control (FSC) optimization technique to optimize dose strategy and clarify possible interactions in combined use of DAPT and herbal medicines. Methods: Herbal medicines with reported anti-platelet activities were selected by searching related references in Pubmed. Experimental anti-platelet activities of representative compounds originated from these herbal medicines were investigated using in vitro assay, namely ADP-induced aggregation of rat platelet-rich-plasma. FSC scheme hybridized artificial intelligence calculation and bench experiments to iteratively optimize 4-drug combination and 2-drug combination from these drug candidates. Results: Totally 68 herbal medicines were reported to have anti-platelet activities. In the present study, 7 representative compounds from these herbal medicines were selected to study combinatorial drug optimization together with DAPT, i.e., aspirin and ticagrelor. FSC technique first down-selected 9 drug candidates to the most significant 5 drugs. Then, FSC further secured 4 drugs in the optimal combination, including aspirin, ticagrelor, ferulic acid from DangGui, and forskolin from MaoHouQiaoRuiHua. Finally, FSC quantitatively estimated the possible interactions between aspirin:ticagrelor, aspirin:ferulic acid, ticagrelor:forskolin, and ferulic acid:forskolin. The estimation was further verified by experimentally determined Combination Index (CI) values. Conclusion: Results of the present study suggested that FSC optimization technique could be used in optimization of anti-platelet drug combinations and might be helpful in designing personal anti-platelet therapy strategy. Furthermore, FSC analysis could also identify interactions between different drugs which might provide useful information for research of signal cascades in platelet.
Collapse
Affiliation(s)
- Wang Liu
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu-Long Li
- Institute for Personalized Medicine, State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Mu-Ting Feng
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu-Wei Zhao
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xianting Ding
- Institute for Personalized Medicine, State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ben He
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuan Liu
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
Li CH, Chen C, Zhang Q, Tan CN, Hu YJ, Li P, Wan JB, Feng G, Xia ZN, Yang FQ. Differential proteomic analysis of platelets suggested target-related proteins in rabbit platelets treated with Rhizoma Corydalis. PHARMACEUTICAL BIOLOGY 2017; 55:76-87. [PMID: 27653279 PMCID: PMC7011957 DOI: 10.1080/13880209.2016.1229340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
CONTEXT Corydalis yanhusuo W.T. Wang (Papaveraceae) (Rhizoma Corydalis) showed inhibitory effects on rabbit platelet aggregation induced by ADP, thrombin (THR) or arachidonic acid (AA). OBJECTIVE This study separates and identifies the possible target-related platelet proteins and suggests possible signal cascades of RC antiplatelet aggregation. MATERIALS AND METHODS Based on comparative proteomics, the differentially expressed platelet proteins treated before and after with 50 mg/mL RC 90% ethanol extract (for 15 min at 37 °C) were analyzed and identified by two dimensional gel electrophoresis (2-DE) and MALDI-TOF-MS/MS. To further verify the possible signalling pathways of RC antiplatelet aggregation function, the concentration of calcium (Ca2+) was measured by Fura-2/AM fluorescence (Ex 340/380 nm, Em 500 nm) (RC final concentrations of 0.0156-0.1563 mg/mL), the levels of P-selectin and cyclic guanosine monophosphate (cGMP) were quantified by ELISA (OD. 450 nm) (RC final concentrations of 0.0156-1.5625 mg/mL), and the 5-hydroxytryptamine (5-HT) level was measured using ortho-phthalaldehyde (OPT) fluorescence (Ex 340 nm, Em 470 nm) (RC final concentrations of 0.3125-1.5625 mg/mL). RESULTS The expression of 52 proteins were altered in rabbit platelets after the treatment and the MALDI-TOF-MS analysis indicated that those proteins include 12 cytoskeleton proteins, 7 cell signalling proteins, 3 molecular chaperone proteins, 6 proteins related to platelet function, 16 enzymes and 7 other related proteins. Furthermore, RC extract could decrease the levels of 5-HT [inhibition rate of 96.80% (p < 0.05, vs. THR-activated group) treated with 0.7813 mg/mL of RC], Ca2+ [172.73 ± 5.07 to 113.56 ± 5.46 nM (p < 0.001, vs. THR-activated group) treated with 0.0313 mg/mL of RC] and P-selectin [13.48 ± 0.96 ng/3 × 108 to 11.64 ± 0.17 ng/3 × 108 (p < 0.05, vs. THR-activated group) treated with 0.0156 mg/mL of RC], and increase in cGMP level [38.93 ± 0.57 to 50.26 ± 4.05 ng/3 × 108 (p < 0.05, vs. THR-activated group) treated with 1.5165 mg/mL of RC] in ADP (10 μmol/L), THR (0.25 u/mL) or AA-(0.205 mmol/L) activated rabbit platelets. DISCUSSION AND CONCLUSION The present study indicated that P2Y12 receptor might be one of the direct target proteins of RC in platelets. The signal cascades network of RC after binding with P2Y12 receptor is mediating Gαi proteins to activate downstream signalling pathways (AC and/or PI3K signalling pathways) for the inhibition of platelet aggregation.
Collapse
Affiliation(s)
- Chun-Hong Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
| | - Cen Chen
- Division of Imaging Science & Biomedical Engineering, King's College, London, UK
| | - Qian Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
| | - Chen-Ning Tan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
| | - Yuan-Jia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Gang Feng
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
| | - Zhi-Ning Xia
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
- CONTACT Feng-Qing Yang, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
| |
Collapse
|
12
|
Duan L, Xiong X, Hu J, Liu Y, Li J, Wang J. Panax notoginseng Saponins for Treating Coronary Artery Disease: A Functional and Mechanistic Overview. Front Pharmacol 2017; 8:702. [PMID: 29089889 PMCID: PMC5651167 DOI: 10.3389/fphar.2017.00702] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/20/2017] [Indexed: 12/29/2022] Open
Abstract
Coronary artery disease (CAD) is a major public health problem and the chief cause of morbidity and mortality worldwide. Panax notoginseng, a valuable herb in traditional Chinese medicine (TCM) with obvious efficacy and favorable safety, shows a great promise as a novel option for CAD and is increasingly recognized clinically. Firstly, this review introduced recent clinical trials on treatment with PNS either alone or in combination with conventional drugs as novel treatment strategies. Then we discussed the mechanisms of P. notoginseng and Panax notoginseng saponins (PNS), which can regulate signaling pathways associated with inflammation, lipid metabolism, the coagulation system, apoptosis, angiogenesis, atherosclerosis, and myocardial ischaemia.
Collapse
Affiliation(s)
- Lian Duan
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Science, Beijing, China
- Graduate School, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Xingjiang Xiong
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Science, Beijing, China
| | - Junyuan Hu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Science, Beijing, China
- Graduate School, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Yongmei Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Science, Beijing, China
| | - Jun Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Science, Beijing, China
| | - Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Science, Beijing, China
| |
Collapse
|
13
|
Wang T, Guo R, Zhou G, Zhou X, Kou Z, Sui F, Li C, Tang L, Wang Z. Traditional uses, botany, phytochemistry, pharmacology and toxicology of Panax notoginseng (Burk.) F.H. Chen: A review. JOURNAL OF ETHNOPHARMACOLOGY 2016; 188:234-58. [PMID: 27154405 DOI: 10.1016/j.jep.2016.05.005] [Citation(s) in RCA: 289] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 05/02/2016] [Accepted: 05/02/2016] [Indexed: 05/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax notoginseng (Burk.) F.H. Chen is a widely used traditional Chinese medicine known as Sanqi or Tianqi in China. This plant, which is distributed primarily in the southwest of China, has wide-ranging pharmacological effects and can be used to treat cardiovascular diseases, pain, inflammation and trauma as well as internal and external bleeding due to injury. AIMS OF THE REVIEW This paper provides up-to-date information on investigations of this plant, including its botany, ethnopharmacology, phytochemistry, pharmacology and toxicology. The possible uses and perspectives for future investigation of this plant are also discussed. MATERIALS AND METHODS The relevant information on Panax notoginseng (Burk.) F.H. Chen was collected from numerous resources, including classic books about Chinese herbal medicine, and scientific databases, including Pubmed, SciFinder, ACS, Ebsco, Elsevier, Taylor, Wiley and CNKI. RESULTS More than 200 chemical compounds have been isolated from Panax notoginseng (Burk.) F.H. Chen, including saponins, flavonoids and cyclopeptides. The plant has pharmacological effects on the cardiovascular system, immune system as well as anti-inflammatory, anti-atherosclerotic, haemostatic and anti-tumour activities, etc. CONCLUSIONS Panax notoginseng is a valuable traditional Chinese medical herb with multiple pharmacological effects. This review summarizes the botany, ethnopharmacology, phytochemistry, pharmacology and toxicology of P. notoginseng, and presents the constituents and their corresponding chemical structures found in P. notoginseng comprehensively for the first time. Future research into its phytochemistry of bio-active components should be performed by using bioactivity-guided isolation strategies. Further work on elucidation of the structure-function relationship among saponins, understanding of multi-target network pharmacology of P. notoginseng, as well as developing its new clinical usage and comprehensive utilize will enhance the therapeutic potentials of P. notoginseng.
Collapse
Affiliation(s)
- Ting Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, No. 16, Nanxiaojie, Dongzhimennei Ave., Beijing 100700, China
| | - Rixin Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, No. 16, Nanxiaojie, Dongzhimennei Ave., Beijing 100700, China
| | - Guohong Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, No. 16, Nanxiaojie, Dongzhimennei Ave., Beijing 100700, China
| | - Xidan Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, No. 16, Nanxiaojie, Dongzhimennei Ave., Beijing 100700, China
| | - Zhenzhen Kou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, No. 16, Nanxiaojie, Dongzhimennei Ave., Beijing 100700, China
| | - Feng Sui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, No. 16, Nanxiaojie, Dongzhimennei Ave., Beijing 100700, China
| | - Chun Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, No. 16, Nanxiaojie, Dongzhimennei Ave., Beijing 100700, China
| | - Liying Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, No. 16, Nanxiaojie, Dongzhimennei Ave., Beijing 100700, China.
| | - Zhuju Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, No. 16, Nanxiaojie, Dongzhimennei Ave., Beijing 100700, China.
| |
Collapse
|
14
|
Protective Effects of Scutellarin on Human Cardiac Microvascular Endothelial Cells against Hypoxia-Reoxygenation Injury and Its Possible Target-Related Proteins. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:278014. [PMID: 26557144 PMCID: PMC4628680 DOI: 10.1155/2015/278014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/25/2015] [Accepted: 04/25/2015] [Indexed: 11/17/2022]
Abstract
Scutellarin (SCU) is one of the main components of traditional Chinese medicine plant Erigeron breviscapus (Vant.) Hand.-Mazz. In this paper, we studied the protective effects of SCU on human cardiac microvascular endothelial cells (HCMECs) against hypoxia-reoxygenation (HR) injury and its possible target-related proteins. Results of MTT assay showed that pretreatment of SCU at doses of 1, 5, and 10 μM for 2 h could significantly inhibit the decrease in cell viability of HCMECs induced by HR injury. Subcellular fractions of cells treated with vehicle control, 1 μM SCU, HR injury, or 1 μM SCU + HR injury were separated by ultracentrifugation. The protein expression profiles of cytoplasm and membrane/nuclei fractions were checked using protein two-dimensional electrophoresis (2-DE). Proteins differentially expressed between control and SCU-treated group, control and HR group, or HR and SCU + HR group were identified using mass spectrometry (MS/MS). Possible interaction network of these target-related proteins was predicted using bioinformatic analysis. The influence of SCU on the expression levels of these proteins was confirmed using Western blotting assay. The results indicated that proteins such as p27BBP protein (EIF6), heat shock 60 kDa protein 1 (HSPD1), and chaperonin containing TCP1 subunit 6A isoform (CCT6A) might play important roles in the effects of SCU.
Collapse
|
15
|
Qiang H, Liu H, Ling M, Wang K, Zhang C. Early Steroid-Induced Osteonecrosis of Rabbit Femoral Head and Panax notoginseng Saponins: Mechanism and Protective Effects. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:719370. [PMID: 25866538 PMCID: PMC4378605 DOI: 10.1155/2015/719370] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/26/2015] [Accepted: 03/03/2015] [Indexed: 12/31/2022]
Abstract
Background. This study was aimed at investigating the pathogenesis of oxidative stress in steroid-induced avascular necrosis of the femoral head (SANFH) and at exploring the mechanism and protective effects of Panax notoginseng saponins (PNS) on early SANFH. Methods. 80 adult New Zealand rabbits were randomly divided into control group, model group, and PNS group. In model group, equine serum was injected into auricular vein; then methylprednisolone was injected into gluteus. In PNS group, PNS was applied for 14 consecutive days before methylprednisolone management. At different time points, serum and femoral heads were prepared for T-AOC, SOD, GSH-PX, ·OH, and MDA determination. Two weeks after steroid management, all femoral heads were assessed with MRI and HE staining. Results. Typical early osteonecrosis symptoms were observed in model group. Our results showed that PNS could significantly ameliorate the decrease of T-AOC level, improve SOD and GSH-PX activity, suppress ·OH ability, and augment MDA level. Besides, PNS improved MRI and pathological changes of the femoral head, markedly reducing the incidence of osteonecrosis. Conclusion. Based on our research, we found oxidative stress played a positive role in the occurrence of SANFH where reactive oxygen species was the direct cause. PNS could protect rabbits against early steroid-induced osteonecrosis of femoral head by its antioxidative effect.
Collapse
Affiliation(s)
- Hui Qiang
- The Second Department of Orthopaedics, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710068, China
| | - Huitong Liu
- The Second Department of Orthopaedics, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710068, China
- The First Department of Orthopaedics, Fuzhou Second Hospital of Xiamen University, Fuzhou, Fujian 350007, China
| | - Ming Ling
- The Second Department of Orthopaedics, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710068, China
| | - Kunzheng Wang
- The First Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Chen Zhang
- The First Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| |
Collapse
|
16
|
Yang X, Xiong X, Wang H, Wang J. Protective effects of panax notoginseng saponins on cardiovascular diseases: a comprehensive overview of experimental studies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2014; 2014:204840. [PMID: 25152758 PMCID: PMC4131460 DOI: 10.1155/2014/204840] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 05/28/2014] [Indexed: 12/27/2022]
Abstract
Panax notoginseng saponins (PNS) are one of the most important compounds derived from roots of the herb Panax notoginseng which are traditionally used as a hemostatic medicine to control internal and external bleeding in China for thousands of years. To date, at least twenty saponins were identified and some of them including notoginsenoside R1, ginsenoside Rb1, and ginsenoside Rg1 were researched frequently in the area of cardiovascular protection. However, the protective effects of PNS on cardiovascular diseases based on experimental studies and its underlying mechanisms have not been reviewed systematically. This paper reviewed the pharmacology of PNS and its monomers Rb1, Rg1, and R1 in the treatment for cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaochen Yang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing 100053, China
| | - Xingjiang Xiong
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing 100053, China
| | - Heran Wang
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, China
| | - Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing 100053, China
| |
Collapse
|
17
|
Won YJ, Kim BK, Shin YK, Jung SH, Yoo SK, Hwang SY, Sung JH, Kim SK. Pectinase-treated Panax ginseng extract (GINST) rescues testicular dysfunction in aged rats via redox-modulating proteins. Exp Gerontol 2014; 53:57-66. [DOI: 10.1016/j.exger.2014.02.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 02/12/2014] [Accepted: 02/20/2014] [Indexed: 12/20/2022]
|
18
|
Liu J, Li J, Deng X. Proteomic analysis of differential protein expression in platelets of septic patients. Mol Biol Rep 2014; 41:3179-85. [PMID: 24562620 DOI: 10.1007/s11033-014-3177-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 01/16/2014] [Indexed: 12/26/2022]
Abstract
Sepsis is one of the major health problems all over the world. Early diagnostic of sepsis is an attractive strategy to decrease the mortality of septic patients. However, an effective biomarker that fulfills all the necessary requirements for the accurate characterization of sepsis is still unavailable until now. In this study, the 2-DE technique followed by mass spectrometry and a database search was used for searching and identifying the differential expressed proteins in platelets between septic patients and paired healthy controls. Platelet 2-DE profiles of septic patients and paired healthy controls with high resolution and reproducibility were obtained. Differential platelet 2-DE profiles between septic patients and paired healthy controls were established. Differential protein spots between normal healthy volunteers and septic patients from platelet 2-DE profiles were identified by 2-DE followed with mass spectrometry and a database search. Five proteins with increased expression were identified between septic patients and healthy controls from platelet samples. These up-expressed proteins were EF-hand calcium-binding domain-containing protein 7, actin, interleukin-1β, glycoprotein IX, and glycoprotein IIB. Sepsis induces a complex regulation of platelet protein changes. Our study highlights the important role of these differential expressed proteins in sepsis, which deserve further research as potential candidates for therapeutic strategies. Furthermore, our research is beneficial for the future developments of sepsis diagnosis and therapy.
Collapse
Affiliation(s)
- Ji Liu
- Department of Anesthesiology, 306 Hospital of PLA, Beijing, 100101, China
| | | | | |
Collapse
|
19
|
Liu J, Wang Y, Qiu L, Yu Y, Wang C. Saponins ofPanax notoginseng: chemistry, cellular targets and therapeutic opportunities in cardiovascular diseases. Expert Opin Investig Drugs 2014; 23:523-39. [DOI: 10.1517/13543784.2014.892582] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Liu Y, Yin H, Chen K. Platelet proteomics and its advanced application for research of blood stasis syndrome and activated blood circulation herbs of Chinese medicine. SCIENCE CHINA-LIFE SCIENCES 2013; 56:1000-6. [PMID: 24114444 DOI: 10.1007/s11427-013-4551-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/25/2013] [Indexed: 11/25/2022]
Abstract
The development of novel and efficient antiplatelet agents that have few adverse effects and methods that improve antiplatelet resistance has long been the focus of international research on the prevention and treatment of cardiovascular and cerebrovascular diseases. Recent advances in platelet proteomics have provided a technology platform for high-quality research of platelet pathophysiology and the development of new antiplatelet drugs. The study of blood stasis syndrome (BSS) and activated blood circulation of traditional Chinese medicine (TCM) is one of the most active fields where the integration of TCM and western medicine in China has been successful. Activated blood circulation herbs (ABC herbs) of Chinese medicine are often used in the treatment of BSS. Most ABC herbs have antiplatelet and anti-atherosclerosis activity, but knowledge about their targets is lacking. Coronary heart disease (CHD), BSS, and platelet activation are closely related. By screening and identifying activated platelet proteins that are differentially expressed in BSS of CHD, platelet proteomics has helped researchers interpret the antiplatelet mechanism of action of ABC herbs and provided many potential biomarkers for BSS that could be used to evaluate the clinical curative effect of new antiplatelet drugs. In this article the progress of platelet proteomics and its advanced application for research of BSS and ABC herbs of Chinese medicine are reviewed.
Collapse
Affiliation(s)
- Yue Liu
- Cardiovascular Diseases Centre, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | | | | |
Collapse
|
21
|
Zhang A, Sun H, Wu G, Sun W, Yuan Y, Wang X. Proteomics analysis of hepatoprotective effects for scoparone using MALDI-TOF/TOF mass spectrometry with bioinformatics. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 17:224-9. [PMID: 23514563 DOI: 10.1089/omi.2012.0064] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abstract Scoparone is an active ingredient of Yinchenhao (Artemisia annua L.), a well-known Chinese medicinal plant, and has been utilized in prevention and therapy of liver damage. However, the molecular drug targets associated with the pharmacological effects of scoparone are largely unknown. In the present article, we extend the previous research on Yinchenhao through a study of its active ingredient and thus the putative targets of scoparone. We employed two-dimensional gel electrophoresis, and all proteins expressed were identified by MALDI-TOF/TOF MS and database research. Protein-interacting networks and pathways were also mapped and evaluated. The possible protein network associated with scoparone was constructed, and contribution of these proteins to the protective effect of scoparone against the carbon tetrachloride-induced acute liver injury in rats are discussed herein. Hepatoprotective effects of scoparone on liver injury in rats were associated with regulated expression of six proteins which were closely related in our protein-protein interaction network, and appear to be involved in antioxidation and signal transduction, energy production, immunity, metabolism, and chaperoning. These observations collectively provide new insights on the molecular mechanisms of scoparone action against hepatic damage in rats.
Collapse
Affiliation(s)
- Aihua Zhang
- National TCM Key Lab of Serum Pharmacochemistry, Key Pharmacometabolomics Platform of Chinese Medicines, and Heilongjiang University of Chinese Medicine, Harbin, China
| | | | | | | | | | | |
Collapse
|
22
|
Proteomics study on the hepatoprotective effects of traditional Chinese medicine formulae Yin-Chen-Hao-Tang by a combination of two-dimensional polyacrylamide gel electrophoresis and matrix-assisted laser desorption/ionization-time of flight mass spectrometry. J Pharm Biomed Anal 2012; 75:173-9. [PMID: 23262417 DOI: 10.1016/j.jpba.2012.11.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 11/12/2012] [Accepted: 11/15/2012] [Indexed: 11/20/2022]
Abstract
Proteomics can bring breakthroughs in the study of traditional Chinese medicine (TCM). Yin-Chen-Hao-Tang (YCHT), a famous TCM formulae, has been used to alleviate various types of liver injury. However, the underlying mechanisms and drug targets of YCHT associated with the hepatic injury are largely unknown. To identify the possible target proteins of YCHT, two-dimensional gel electrophoresis (2-DE)-based proteomics was performed and proteins altered after YCHT treatment were identified by MALDI-TOF/TOF-MS. Interestingly, 15 modulated proteins were identified, out of which 7 were found to be significantly altered by YCHT. YCHT treatment caused a statistically significant down-regulation of zinc finger protein 407, haptoglobin, macroglobulin, alpha-1-antitrypsin; significant up-regulation of transthyretin, vitamin D-binding protein, and prothrombin, appear to be involved in metabolism, energy generation, chaperone, antioxidation, signal transduction, protein folding and apoptosis. Finally, interaction network from 7 differentially expressed protein to the signal-related proteins was established using bioinformatic analysis. Of note, these signal-related proteins could be included in a network together with 7 proteins through direct interaction or only one intermediate partner. Functional pathway analysis suggested that these proteins were closely related in the protein-protein interaction network and the modulation of multiple vital physiological pathways. Thus, our data will help to understand the molecular mechanisms of hepatoprotective effects of YCHT.
Collapse
|
23
|
Application of proteomics in the mechanistic study of traditional Chinese medicine. Biochem Soc Trans 2012; 39:1348-52. [PMID: 21936813 DOI: 10.1042/bst0391348] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Systems biology is considered to be the possible technology that could bring breakthroughs in the study of TCM (traditional Chinese medicine). Proteomics, as one of the major components of systems biology, has been used in the mechanistic study of TCM, providing some interesting results. In the present paper, we review the current application of proteomics in the mechanistic study of TCM. Proteomics technologies and strategies that might be used in the future to improve study of TCM are also discussed.
Collapse
|
24
|
Lu M, Cai Z. Advances of MALDI-TOF MS in the Analysis of Traditional Chinese Medicines. Top Curr Chem (Cham) 2012; 331:143-64. [DOI: 10.1007/128_2012_383] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Altered proteomic pattern in platelets of rats with sepsis. Blood Cells Mol Dis 2012; 48:30-5. [DOI: 10.1016/j.bcmd.2011.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Revised: 09/26/2011] [Accepted: 09/26/2011] [Indexed: 11/20/2022]
|
26
|
Qiang H, Zhang C, Shi ZB, Yang HQ, Wang KZ. Protective effects and mechanism of Panax Notoginseng saponins on oxidative stress-induced damage and apoptosis of rabbit bone marrow stromal cells. Chin J Integr Med 2010; 16:525-530. [PMID: 21110178 DOI: 10.1007/s11655-010-0566-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To investigate the effects and possible mechanism of Panax Notoginseng saponins (PNS) on oxidative stress-induced damage and apoptosis in bone marrow stromal cells (BMSCs). METHODS BMSCs were isolated and cultured from 2-month-old New Zealand rabbits by the density gradient centrifugation combined with adherent method. The third passage cells were used for subsequent experiments. Oxidative stress was induced in cultured BMSCs by H(2)O(2) (0.1 mmol/L). BMSCs were pretreated with 25-200 μg/mL PNS for 4 h before H(2)O(2) treatment. Proliferation of BMSCs was observed using MTT assay. Alkaline phosphatase (ALP) activity, as an index of early osteoblastic differentiation, was determined with an ALP assay kit. Flow cytometry was used to observe the apoptosis of BMSCs by staining with annexinV-FITC/propidium iodide. Oxidative stress level was examined by reactive oxygen species (ROS) assay. The protein expressions of Bax, Bcl-2 and Caspase-3 in BMSCs were analyzed by Western blotting. RESULTS PNS had different concentration-dependent effects on proliferation and osteoblast differentiation of BMSCs induced by H(2)O(2). A PNS concentration of 100 μg/mL was determined as the optimal effective concentration. PNS markedly attenuated H(2)O(2)-induced apoptosis rate from 41.91% to 14.67% (P<0.01). PNS significantly decreased ROS level induced by H(2)O(2) (P<0.01). Furthermore, pretreatment with PNS significantly reversed H(2)O(2)-induced inhibition of Bcl-2 expression and augmentation of Bax and Caspase-3 expression (P<0.01). CONCLUSION PNS had a protective effect on oxidative stress-induced damage and apoptosis in cultured rabbit BMSCs through scavenging ROS and regulating the Bcl-2/Bax pathway.
Collapse
Affiliation(s)
- Hui Qiang
- Department of Orthopaedics, Shaanxi Provincial People's Hospital, the Third Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710068, China
| | | | | | | | | |
Collapse
|
27
|
Qiang H, Wang KZ, Shi ZB, Fan LH. Panax notoginseng saponins protect rabbit bone marrow stromal cells from hydrogen peroxide-induced apoptosis. ZHONG XI YI JIE HE XUE BAO = JOURNAL OF CHINESE INTEGRATIVE MEDICINE 2010; 8:131-137. [PMID: 20141735 DOI: 10.3736/jcim20100207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
OBJECTIVE To investigate the effects of Panax notoginseng saponins (PNSs) on hydrogen peroxide-induced apoptosis in rabbit bone marrow stromal cells (BMSCs). METHODS BMSCs were isolated from 2-month-old New Zealand rabbits and cultured with different doses of PNSs to determine the most effective dose of PNSs by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay and alkaline phosphatase (ALP) assay. The most effective dose of PNSs was used in subsequent experiments. Apoptosis of BMSCs was induced by hydrogen peroxide (100 micromol/L). BMSCs in PNSs group were also pretreated with PNSs before hydrogen peroxide exposure. Reactive oxygen species (ROSs) levels were measured by using 2',7'-dichlorodihydrofluorescein diacetate. Apoptosis rate of BMSCs was observed by flow cytometry after staining with Annexin V-fluorescein isothiocyanate/propidium iodide. The protein expression of Bax in BMSCs was analyzed by Western blotting. Activity of caspase-3 was measured by spectrofluorometry. RESULTS The most effective dose of PNSs was 0.1g/L. PNSs at dose of 0.1g/L markedly reversed the augmentation of ROS level, decreased the apoptosis rate of, and the Bax expression and activity of caspase-3 in BMSCs treated with hydrogen peroxide (P<0.01). CONCLUSION PNSs can protect cultured rabbit BMSCs from hydrogen peroxide-induced apoptosis by decreasing oxidative stress, Bax expression and caspase-3 activity.
Collapse
Affiliation(s)
- Hui Qiang
- Department of Orthopedics, the Second Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710004, Shaanxi Province, China
| | | | | | | |
Collapse
|
28
|
Qiang H, Gao P, Zhang C, Shi Z, Wang T, Wang L, Wang K. Effects of Panax notoginseng saponins on apoptosis induced by hydrogen peroxide in cultured rabbit bone marrow stromal cells via altering the oxidative stress level and down-regulating caspase-3. JOURNAL OF NANJING MEDICAL UNIVERSITY 2009; 23:373-379. [DOI: 10.1016/s1007-4376(09)60085-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
29
|
Technique of Proteomics and its Application in theResearch of Traditional Chinese Medicine Complex System. Chin J Nat Med 2009. [DOI: 10.3724/sp.j.1009.2009.00260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|