1
|
Yan R, Liu L, Huang X, Quan ZS, Shen QK, Guo HY. Bioactivities and Structure-Activity Relationships of Maslinic Acid Derivatives: A Review. Chem Biodivers 2024; 21:e202301327. [PMID: 38108648 DOI: 10.1002/cbdv.202301327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/04/2023] [Accepted: 12/15/2023] [Indexed: 12/19/2023]
Abstract
Maslinic acid has a variety of biological activities, such as anti-tumor, hypoglycemic, anti-inflammatory, and anti-parasitic. In order to enhance the biological activity of maslinic acid, scholars have carried out a lot of structural modifications, and found some more valuable maslinic acid derivatives. In this paper, the structural modification, biological activity, and structure-activity relationship of maslinic acid were reviewed, providing references for the development of maslinic acid.
Collapse
Affiliation(s)
- Rui Yan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Luguang Liu
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong, P. R. China
| | - Xing Huang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| |
Collapse
|
2
|
Lafi O, Essid R, Lachaud L, Jimenez C, Rodríguez J, Ageitos L, Mhamdi R, Abaza L. Synergistic antileishmanial activity of erythrodiol, uvaol, and oleanolic acid isolated from olive leaves of cv. Chemlali. 3 Biotech 2023; 13:395. [PMID: 37970450 PMCID: PMC10643720 DOI: 10.1007/s13205-023-03825-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/17/2023] [Indexed: 11/17/2023] Open
Abstract
This study aimed to assess the antileishmanial activity of biomolecules obtained from Olea europaea L. leaves and twigs recovered from eight Tunisian cultivars. The extraction was first carried out with 80% methanol, and then the obtained extract was fractionated using three solvents of increasing polarity: cyclohexane (CHX), dichloromethane (DCM) and ethyl acetate (EtOAc). The antileishmanial activity was determined against leishmanial strains responsible for cutaneous, visceral, and mucocutaneous leishmaniasis. The cyclohexane fraction of the leaves of cv. Chemlali from the region of Sidi-Bouzid exhibited the strongest leishmanicidal activity against all the tested leishmanial strains. The inhibition concentrations (IC50) were 16.5, 14.5, and 7.4 μg mL-1 for Leishmania mexicana (cutaneous), Leishmania braziliensis (mucocutaneous), and Leishmania donovani (visceral), respectively. Interestingly, low cytotoxicity was observed on THP-1 cells with selective indexes (SI) ranging from 22.8 to 50.5. HPLC-HRMS and full-house NMR analysis allowed the identification of three triterpenic compounds, oleanolic acid (IC50 = 64.1 μg mL-1), erythrodiol (IC50 = 52.0 µg mL-1), and uvaol (IC50 = 53.8 μg mL-1). Antileishmanial activity of uvaol and oleanolic acid has been previously reported. However, this work constitutes the first report of the antileishmanial activity of erythrodiol which showed combinatorial interaction with uvaol (IC50 = 26.1 μg mL-1) against Leishmania tropica. The mixture of the three compounds, as major ones, exhibited an enhanced activity against Leishmania tropica (IC50 = 16.3 µg mL-1) compared to erythrodiol alone or the combination of uvaol and erythrodiol. This finding is of great importance and needs further investigation. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03825-3.
Collapse
Affiliation(s)
- Oumayma Lafi
- Laboratory of Biotechnology of Olive, Centre of Biotechnology of Borj Cedria, BP 901, 2050 Hammam-Lif, Tunisia
- Faculty of Mathematical, Physical and Natural Sciences of Tunis, The University of Tunis El Manar, 20 Street of Tolede, 2092 Tunis, Tunisia
| | - Rym Essid
- Laboratory of Bioactive Substances, Centre of Biotechnology of Borj Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Laurence Lachaud
- UMR, Univ Montpellier (IRD-CNRS), MIVEGEC, Montpellier, France
- Department of Parasitology-Mycology, CHU Montpellier, 39 Av. Charles Flahault, 34295 Montpellier cedex 5, France
| | - Carlos Jimenez
- CICA-Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Jaime Rodríguez
- CICA-Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Lucía Ageitos
- CICA-Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Ridha Mhamdi
- Laboratory of Biotechnology of Olive, Centre of Biotechnology of Borj Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Leila Abaza
- Laboratory of Biotechnology of Olive, Centre of Biotechnology of Borj Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| |
Collapse
|
3
|
Abugri DA, Wijerathne SVT, Sharma HN, Ayariga JA, Napier A, Robertson BK. Quercetin inhibits Toxoplasma gondii tachyzoite proliferation and acts synergically with azithromycin. Parasit Vectors 2023; 16:261. [PMID: 37537675 PMCID: PMC10401810 DOI: 10.1186/s13071-023-05849-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/26/2023] [Indexed: 08/05/2023] Open
Abstract
Quercetin (QUE) is a natural polyphenol known to have numerous pharmacological properties against infectious and non-infectious diseases. Azithromycin (AZ) is an antibiotic that belongs to the azalide class of antimicrobials and an antiparasitic that is known to be effective in combination with clindamycin against pyrimethamine/sulfadiazine-resistant Toxoplasma gondii tachyzoites in clinical settings. Both compounds are known to target protein synthesis and have anti-inflammatory properties. However, little is known about QUE and AZ synergistic interaction against T. gondii growth. Here, we report for the first time the effects of the combination of QUE and AZ on T. gondii growth. The 50% inhibitory concentration (IC50) for QUE at 72 h of interaction was determined to be 0.50 µM, whereas AZ gave an IC50 value of 0.66 µM at 72 h of interaction with parasites. Combination testing of QUE and AZ in a ratio of 2:1 (QUE:AZ) showed an IC50 value of 0.081 µM. Interestingly, a fractional inhibitory index value of 0.28 was observed, indicating a strong synergy. QUE was also found to upregulate the generation of reactive oxygen species and cause dysfunction of the mitochondria membrane of both intracellular and extracellular T. gondii tachyzoites. Overall, the results indicate that QUE is a novel lead capable of synergizing with AZ for inhibiting T. gondii growth and may merit future investigation in vivo for possible combination drug development.
Collapse
Affiliation(s)
- Daniel A Abugri
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA.
- Microbiology PhD Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA.
- Laboratory of Ethnomedicine, Parasitology and Drug Discovery, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA.
| | - Sandani V T Wijerathne
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA
- Microbiology PhD Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA
| | - Homa Nath Sharma
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA
- Microbiology PhD Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA
- Laboratory of Ethnomedicine, Parasitology and Drug Discovery, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA
| | - Joseph A Ayariga
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA
| | - Audrey Napier
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA
| | - Boakai K Robertson
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA
- Microbiology PhD Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA
| |
Collapse
|
4
|
Karampetsou K, Koutsoni OS, Badounas F, Angelis A, Gogou G, Skaltsounis LA, Halabalaki M, Dotsika E. Exploring the Immunotherapeutic Potential of Oleocanthal against Murine Cutaneous Leishmaniasis. PLANTA MEDICA 2022; 88:783-793. [PMID: 35803258 PMCID: PMC9343937 DOI: 10.1055/a-1843-9788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Leishmaniasis is a major tropical disease with increasing global incidence. Due to limited therapeutic options with severe drawbacks, the discovery of alternative treatments based on natural bioactive compounds is important. In our previous studies we have pointed out the antileishmanial activities of olive tree-derived molecules. In this study, we aimed to investigate the in vitro and in vivo antileishmanial as well as the in vivo immunomodulatory effects of oleocanthal, a molecule that has recently gained increasing scientific attention. Pure oleocanthal was isolated from extra virgin olive oil through extraction and chromatography techniques. The in vitro antileishmanial effects of oleocanthal were examined with a resazurin-based assay, while its in vivo efficacy was evaluated in Leishmania major-infected BALB/c mice by determining footpad induration, parasite load in popliteal lymph nodes, histopathological outcome, antibody production, cytokine profile of stimulated splenocytes and immune gene expression, at three weeks after the termination of treatment. Oleocanthal demonstrated in vitro antileishmanial effect against both L. major promastigotes and intracellular amastigotes. This effect was further documented in vivo as demonstrated by the suppressed footpad thickness, the decreased parasite load and the inflammatory cell influx at the infection site. Oleocanthal treatment led to the dominance of a Th1-type immunity linked with resistance against the disease. This study establishes strong scientific evidence for olive tree-derived natural products as possible antileishmanial agents and provides an adding value to the scientific research of oleocanthal.
Collapse
Affiliation(s)
- Kalliopi Karampetsou
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
- Division of Pharmacognosy and Natural Product Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Olga S. Koutsoni
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | - Fotis Badounas
- Molecular Genetics Laboratory, Department of Immunology, Transgenic Technology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - Apostolis Angelis
- Division of Pharmacognosy and Natural Product Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgia Gogou
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
- Division of Pharmacognosy and Natural Product Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Leandros-Alexios Skaltsounis
- Division of Pharmacognosy and Natural Product Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Product Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
- Associate Professor Maria Halabalaki Department of PharmacyDivision of Pharmacognosy and Natural Product
ChemistryNational and Kapodistrian University of Athens15771 Athens,
PanepistimiopolisGreece+ 30 21 07 27 47 81+ 30 21 07 27 45 94
| | - Eleni Dotsika
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
- Correspondence Dr. Eleni Dotsika Department of MicrobiologyLaboratory of Cellular ImmunologyHellenic
Pasteur Institute127 Vass. Sofias Av.11521
AthensGreece+ 30 21 06 47 88 28+ 30 21 06 47 88 28
| |
Collapse
|
5
|
Catteau L, Schioppa L, Beaufay C, Girardi C, Hérent MF, Frédérich M, Quetin-Leclercq J. Antiprotozoal activities of Triterpenic Acids and Ester Derivatives Isolated from the Leaves of Vitellaria paradoxa. PLANTA MEDICA 2021; 87:860-867. [PMID: 33285591 DOI: 10.1055/a-1286-1879] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Leaves of Vitellaria paradoxa, also called "Shea butter tree", are used in traditional medicine to treat various symptoms including malaria fever, dysentery, or skin infections. Composition of the dichloromethane extract of V. paradoxa leaves possessing antiparasitic activities was investigated. Five pentacyclic triterpenic acids together with 6 ester derivatives were isolated and identified by standards comparison, MS and 1H-NMR analysis. Corosolic, maslinic, and tormentic coumaroyl esters and their corresponding triterpenic acids were isolated from this plant for the first time. The antiparasitic activities of the 11 isolated compounds were evaluated in vitro on Plasmodium falciparum, Trypanosoma brucei brucei, and Leishmania mexicana mexicana and their selectivity determined by cytotoxicity evaluation on WI38 cells. None of the isolated compounds showed good antiplasmodial activity. The antitrypanosomal activity of individual compounds was in general higher than their antileishmanial one. One isolated triterpenic ester mixture in equilibrium, 3-O-p-E/Z-coumaroyltormentic acids, showed an attractive promising antitrypanosomal activity (IC50 = 0.7 µM) with low cytotoxicity (IC50= 44.5 µM) compared to the corresponding acid. Acute toxicity test on this ester did not show any toxicity at the maximal cumulative dose of 100 mg/kg intraperitoneally on mice. In vivo efficacy evaluation of this compound, at 50 mg/kg by intraperitoneal route on a T. b. brucei-infected mice model, showed a significant parasitemia reduction on day 4 post-infection together with 33.3% survival improvement. Further bioavailability and PK studies are needed along with mode of action investigations to further assess the potential of this molecule.
Collapse
Affiliation(s)
- Lucy Catteau
- Louvain Drug Research Institute-Pharmacognosy (LDRI-GNOS), Université catholique de Louvain Brussels, Belgium
| | - Laura Schioppa
- Louvain Drug Research Institute-Pharmacognosy (LDRI-GNOS), Université catholique de Louvain Brussels, Belgium
| | - Claire Beaufay
- Louvain Drug Research Institute-Pharmacognosy (LDRI-GNOS), Université catholique de Louvain Brussels, Belgium
| | - Cynthia Girardi
- Louvain Drug Research Institute-Pharmacognosy (LDRI-GNOS), Université catholique de Louvain Brussels, Belgium
| | - Marie-France Hérent
- Louvain Drug Research Institute-Pharmacognosy (LDRI-GNOS), Université catholique de Louvain Brussels, Belgium
| | - Michel Frédérich
- Laboratory of Pharmacognosy, CIRM, Université de Liège, Liège, Belgium
| | - Joëlle Quetin-Leclercq
- Louvain Drug Research Institute-Pharmacognosy (LDRI-GNOS), Université catholique de Louvain Brussels, Belgium
| |
Collapse
|
6
|
Adriana Jesus J, Laurenti MD, Lopes Silva M, Ghilardi Lago JH, Domingues Passero LF. Leishmanicidal Activity and Ultrastructural Changes of Maslinic Acid Isolated from Hyptidendron canum. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:9970983. [PMID: 34194532 PMCID: PMC8184317 DOI: 10.1155/2021/9970983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/24/2021] [Indexed: 11/18/2022]
Abstract
The therapeutic arsenal for the treatment of leishmaniasis is limited and has serious obstacles, such as variable activity, high toxicity, and costs. To overcome such limitations, it becomes urgent to characterize new bioactive molecules. Plants produce and accumulate different classes of bioactive compounds, and these molecules can be studied as a strategy to combat leishmaniasis. The study presented herein evaluated the leishmanicidal effect of maslinic acid isolated from the leaves of Hyptidendron canum (Lamiaceae) and investigated the morphological that occurred on Leishmania (Leishmania) infantum upon treatment. Maslinic acid was active and selective against promastigote and amastigote forms in a dose-dependent manner. Additionally, it was not toxic to peritoneal macrophages isolated from golden hamsters, while miltefosine and amphotericin B showed mild toxicity for macrophages. Morphological changes in promastigotes of L. (L.) infantum treated with maslinic acid were related to cytoplasmic degeneration, intense exocytic activity, and blebbing in the kDNA; disruption of mitochondrial cristae was observed in some parasites. The nucleus of promastigote forms seems to be degraded and the chromatin fragmented, suggesting that maslinic acid triggers programmed cell death. These results indicate that maslinic acid may be an interesting molecule to develop new classes of drugs against leishmaniasis.
Collapse
Affiliation(s)
- Jéssica Adriana Jesus
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School of São Paulo University, Av. Dr. Arnaldo, 455. Cerqueira César, SP 01246-903, Brazil
| | - Márcia Dalastra Laurenti
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School of São Paulo University, Av. Dr. Arnaldo, 455. Cerqueira César, SP 01246-903, Brazil
| | - Matheus Lopes Silva
- Centre of Natural and Human Sciences, Federal University of ABC (UFABC), Santo André 09210-580, Brazil
| | | | - Luiz Felipe Domingues Passero
- São Paulo State University (UNESP), Institute of Biosciences, São Vicente. Praça Infante Dom Henrique, s/n, São Vicente, SP 11330-900, Brazil
- São Paulo State University (UNESP), Institute for Advanced Studies of Ocean, São Vicente. João Francisco Bensdorp, 1178, São Vicente, SP 11350-011, Brazil
| |
Collapse
|
7
|
Study the Mechanism of Antileishmanial Action of Xanthium strumarium Against Amastigotes Stages in Leishmania major: A Metabolomics Approach. Jundishapur J Nat Pharm Prod 2021. [DOI: 10.5812/jjnpp.106431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Leishmaniasis is among the most important neglected tropical infections, affecting millions of people worldwide. Since 1945, chemotherapy has been the primary treatment for leishmaniasis; however, lengthy and costly treatments associated with various side effects and strains resistant to the conventional therapy have dramatically reduced chemotherapy compounds’ efficacy. Objectives: The antileishmanial activity of the leaf extract of Xanthium strumarium (Asteraceae) was studied. New insights into its mechanism of action toward Leishmania major were provided through a metabolomics-based study. Methods: J774 macrophages were cultured, infected with stationary promastigotes, and treated with different leaf extract concentrations for three days. Antileishmanial activity was assayed by the MTT colorimetric method, and cell metabolites were extracted. 1HNMR spectroscopy was applied, and outliers were analyzed using multivariate statistical analysis. Results: Xanthium strumarium extract (0.15 µg/mL) showed the best activity against L. major amastigotes with the infection rate (IR) and multiplication index (MI) values of 51% and 57%, respectively. The action of X. strumarium extract on amastigotes was comparable with amphotericin B as the positive control (0.015 µg/mL). According to the obtained P-values, pentanoate and coenzyme A biosynthesis, pentose and glucuronate metabolism, valine, leucine and isoleucine biosynthesis, galactose metabolism, amino sugar and nucleotide sugar metabolism were the most important metabolic pathways affected by the plant extract in the amastigote stage of L. major. Conclusions: Our finding demonstrated that X. strumarium leaf extract could be used for discovering and producing novel leishmanicidal medicines. Moreover, the affected metabolic pathways observed in this study could be potential candidates for drug targeting against leishmaniasis.
Collapse
|
8
|
Sifaoui I, Rodríguez-Talavera I, Reyes-Batlle M, Rodríguez-Expósito RL, Rocha-Cabrera P, Piñero JE, Lorenzo-Morales J. In vitro evaluation of commercial foam Belcils® on Acanthamoeba spp. Int J Parasitol Drugs Drug Resist 2020; 14:136-143. [PMID: 33099237 PMCID: PMC7578530 DOI: 10.1016/j.ijpddr.2020.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/02/2022]
Abstract
Interest in periocular (eyelid and eyelashes margins) hygiene has attracted attention recently and a growing number of commercials eye cleanser and shampoos have been marketed. In the present study, a particular eye cleanser foam, Belcils® has been tested against trophozoites and cysts on the facultative pathogen Acanthamoeba. Viability was tested by the alamarBlue™ method and the foam was tested for the induction of programmed cell death in order to explore its mode of action. We found that a 1% solution of the foam eliminated both trophozoite and cyst stage of Acanthamoeba spp. After 90 min of incubation, Belcils® induced, DNA condensation, collapse in the mitochondrial membrane potential and reduction of the ATP level production in Acanthamoeba. We conclude that the foam destroys the cells by the induction of an apoptosis-like process. The current eye cleanser could be used as part of AK therapy protocol and as prevention from AK infections for contact lens users and post-ocular trauma patients.
Collapse
Affiliation(s)
- Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Tenerife, 38206, Spain; Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad De La Laguna, La Laguna, Tenerife, 38203, Islas Canarias, Spain; Red de Investigación Cooperativa en Enfermedades Tropicales (RICET), Spain.
| | - Iván Rodríguez-Talavera
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Tenerife, 38206, Spain; Área de Oftalmología, Hospital Universitario de Canarias, Tenerife, Spain
| | - María Reyes-Batlle
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Tenerife, 38206, Spain; Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad De La Laguna, La Laguna, Tenerife, 38203, Islas Canarias, Spain; Red de Investigación Cooperativa en Enfermedades Tropicales (RICET), Spain
| | - Rubén L Rodríguez-Expósito
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Tenerife, 38206, Spain; Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad De La Laguna, La Laguna, Tenerife, 38203, Islas Canarias, Spain; Red de Investigación Cooperativa en Enfermedades Tropicales (RICET), Spain
| | - Pedro Rocha-Cabrera
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Tenerife, 38206, Spain; Área de Oftalmología, Hospital Universitario de Canarias, Tenerife, Spain
| | - José E Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Tenerife, 38206, Spain; Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad De La Laguna, La Laguna, Tenerife, 38203, Islas Canarias, Spain; Red de Investigación Cooperativa en Enfermedades Tropicales (RICET), Spain
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Tenerife, 38206, Spain; Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad De La Laguna, La Laguna, Tenerife, 38203, Islas Canarias, Spain; Red de Investigación Cooperativa en Enfermedades Tropicales (RICET), Spain
| |
Collapse
|
9
|
Pereira KLG, Vasconcelos NBR, Braz JVC, InÁcio JDF, Estevam CS, Correa CB, Fernandes RPM, Almeida-Amaral EE, Scher R. Ethanolic extract of Croton blanchetianus Ball induces mitochondrial defects in Leishmania amazonensis promastigotes. AN ACAD BRAS CIENC 2020; 92:e20180968. [PMID: 33146273 DOI: 10.1590/0001-3765202020180968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/06/2019] [Indexed: 01/18/2023] Open
Abstract
Leishmaniasis is a neglected disease caused by Leishmania. Chemotherapy remains the mainstay for leishmaniasis control; however, available drugs fail to provide a parasitological cure, and are associated with high toxicity. Natural products are promising leads for the development of novel chemotherapeutics against leishmaniasis. This work investigated the leishmanicidal properties of ethanolic extract of Croton blanchetianus (EECb) on Leishmania infantum and Leishmania amazonensis, and found that EECb, rich in terpenic compounds, was active against promastigote and amastigote forms of both Leishmania species. Leishmania infantum promastigotes and amastigotes presented IC50 values of 208.6 and 8.8 μg/mL, respectively, whereas Leishmania amazonensis promastigotes and amastigotes presented IC50 values of 73.6 and 3.1 μg/mL, respectively. Promastigotes exposed to EECb (100 µg/mL) had their body cellular volume reduced and altered to a round shape, and the flagellum was duplicated, suggesting that EECb may interfere with the process of cytokinesis, which could be the cause of the decline in the parasite multiplication rate. Regarding possible EECb targets, a marked depolarization of the mitochondrial membrane potential was observed. No cytotoxic effects of EECb were observed in murine macrophages at concentrations below 60 µg/mL, and the CC50 obtained was 83.8 µg/mL. Thus, the present results indicated that EECb had effective and selective effects against Leishmania infantum and Leishmania amazonensis, and that these effects appeared to be mediated by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Katily L G Pereira
- Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Rosa Elze, 49000-000 São Cristóvão, SE, Brazil
| | - Nancy B R Vasconcelos
- Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Rosa Elze, 49000-000 São Cristóvão, SE, Brazil
| | - Juliana V C Braz
- Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Rosa Elze, 49000-000 São Cristóvão, SE, Brazil
| | - Job D F InÁcio
- Instituto Oswaldo Cruz/FIOCRUZ, Av. Brasil, 4365, Manguinhos, 21040-900 Rio de Janeiro, Brazil
| | - Charles S Estevam
- Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Rosa Elze, 49000-000 São Cristóvão, SE, Brazil
| | - Cristiane B Correa
- Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Rosa Elze, 49000-000 São Cristóvão, SE, Brazil
| | - Roberta P M Fernandes
- Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Rosa Elze, 49000-000 São Cristóvão, SE, Brazil
| | - Elmo E Almeida-Amaral
- Instituto Oswaldo Cruz/FIOCRUZ, Av. Brasil, 4365, Manguinhos, 21040-900 Rio de Janeiro, Brazil
| | - Ricardo Scher
- Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Rosa Elze, 49000-000 São Cristóvão, SE, Brazil
| |
Collapse
|
10
|
López-Arencibia A, Bethencourt-Estrella CJ, Freijo MB, Reyes-Batlle M, Sifaoui I, Nicolás-Hernández DS, McNaughton-Smith G, Lorenzo-Morales J, Abad-Grillo T, Piñero JE. New phenalenone analogues with improved activity against Leishmania species. Biomed Pharmacother 2020; 132:110814. [PMID: 33086179 DOI: 10.1016/j.biopha.2020.110814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 12/27/2022] Open
Abstract
The in vitro activity against Leishmania spp. of five novel designed compounds, phenalenone derivatives, is described in this study. Previous works have shown that some phenalenones present leishmanicidal activity, some of which could induce programmed cell death events in L. amazonensis parasites. In this research, we focused on the determination of the programmed cell death evidence by detecting the characteristic features of the apoptosis-like process, such as phosphatidylserine exposure and mitochondrial membrane potential, among others. The results showed that the new derivatives have comparable or better activity and selectivity than the commonly prescribed anti-leishmanial drug. This result was obtained by inducing stronger mitochondrial depolarization or more intense phosphatidylserine exposure than miltefosine, highlighting compound 8 with moreover 9-times better selectivity index. In addition, the new five molecules activated the apoptosis-like process in the parasite. All the signals observed were indicative of the death process that the parasites were undergoing.
Collapse
Affiliation(s)
- Atteneri López-Arencibia
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Tenerife, Islas Canarias, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Spain; Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Instituto de Salud Carlos III, Madrid, Spain.
| | - Carlos J Bethencourt-Estrella
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Tenerife, Islas Canarias, Spain.
| | - Mónica B Freijo
- Instituto Universitario de Bio-Orgánica 'Antonio González', Departamento de Química Orgánica, Universidad de La Laguna, Avda. Fco. Sánchez 2, 38206 La Laguna, Tenerife, Islas Canarias, Spain.
| | - María Reyes-Batlle
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Tenerife, Islas Canarias, Spain; Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Instituto de Salud Carlos III, Madrid, Spain.
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Tenerife, Islas Canarias, Spain; Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Instituto de Salud Carlos III, Madrid, Spain.
| | - Desirée San Nicolás-Hernández
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Tenerife, Islas Canarias, Spain.
| | - Grant McNaughton-Smith
- Centro Atlántico del Medicamento S.A (CEAMED S.A.), PCTT, La Laguna, Tenerife, Islas Canarias, Spain.
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Tenerife, Islas Canarias, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Spain; Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Instituto de Salud Carlos III, Madrid, Spain.
| | - Teresa Abad-Grillo
- Instituto Universitario de Bio-Orgánica 'Antonio González', Departamento de Química Orgánica, Universidad de La Laguna, Avda. Fco. Sánchez 2, 38206 La Laguna, Tenerife, Islas Canarias, Spain.
| | - José E Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Tenerife, Islas Canarias, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Spain; Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
11
|
Akentieva NP, Sanina NA, Gizatullin AR, Shkondina NI, Prikhodchenko TR, Shram SI, Zhelev N, Aldoshin SM. Cytoprotective Effects of Dinitrosyl Iron Complexes on Viability of Human Fibroblasts and Cardiomyocytes. Front Pharmacol 2019; 10:1277. [PMID: 31780929 PMCID: PMC6859909 DOI: 10.3389/fphar.2019.01277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/07/2019] [Indexed: 12/29/2022] Open
Abstract
Nitric oxide (NO) is an important signaling molecule that plays a key role in maintaining vascular homeostasis. Dinitrosyl iron complexes (DNICs) generating NO are widely used to treat cardiovascular diseases. However, the involvement of DNICs in the metabolic processes of the cell, their protective properties in doxorubicin-induced toxicity remain to be clarified. Here, we found that novel class of mononuclear DNICs with functional sulfur-containing ligands enhanced the cell viability of human lung fibroblasts and rat cardiomyocytes. Moreover, DNICs demonstrated remarkable protection against doxorubicin-induced toxicity in fibroblasts and in rat cardiomyocytes (H9c2 cells). Data revealed that the DNICs compounds modulate the mitochondria function by decreasing the mitochondrial membrane potential (ΔΨm). Results of flow cytometry showed that DNICs were not affected the proliferation, growth of fibroblasts. In addition, this study showed that DNICs did not affect glutathione levels and the formation of reactive oxygen species in cells. Moreover, results indicated that DNICs maintained the ATP equilibrium in cells. Taken together, these findings show that DNICs have protective properties in vitro. It was further suggested that DNICs may be uncouplers of oxidative phosphorylation in mitochondria and protective mechanism is mainly provided by the leakage of excess charge through the mitochondrial membrane. It is assumed that the DNICs have the therapeutic potential for treating cardiovascular diseases and for decreasing of chemotherapy-induced cardiotoxicity in cancer survivors.
Collapse
Affiliation(s)
- Natalia Pavlovna Akentieva
- Laboratory Biochemical and Cellular Studies, Department of Kinetics of Chemical and Biological Processes, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
- Laboratory of Toxicology and Experimental Chemotherapy, Moscow State Regional University, Moscow, Russia
- Faculty of Medicine, Karabük University, Karabük, Turkey
| | - Natalia Alekseevna Sanina
- Laboratory of Structural Chemistry, Department of Structure of Matter, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
- Faculty of fundamental physical and chemical engineering, Lomonosov Moscow State University, Moscow, Russia
| | - Artur Rasimovich Gizatullin
- Laboratory Biochemical and Cellular Studies, Department of Kinetics of Chemical and Biological Processes, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Natalia Ivanovna Shkondina
- Laboratory Biochemical and Cellular Studies, Department of Kinetics of Chemical and Biological Processes, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Tatyana Romanovna Prikhodchenko
- Laboratory Biochemical and Cellular Studies, Department of Kinetics of Chemical and Biological Processes, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Stanislav Ivanovich Shram
- Neuropharmacology Sector, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Nikolai Zhelev
- School of Medicine, University of Dundee, Dundee, United Kingdom
- Medical University Plovdiv, Plovdiv, Bulgaria
| | - Sergei Michailovich Aldoshin
- Laboratory of Structural Chemistry, Department of Structure of Matter, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
- Faculty of fundamental physical and chemical engineering, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
12
|
Rottini MM, Amaral ACF, Ferreira JLP, Oliveira ESC, Silva JRDA, Taniwaki NN, Dos Santos AR, Almeida-Souza F, de Souza CDSF, Calabrese KDS. Endlicheria bracteolata (Meisn.) Essential Oil as a Weapon Against Leishmania amazonensis: In Vitro Assay. Molecules 2019; 24:molecules24142525. [PMID: 31295880 PMCID: PMC6680765 DOI: 10.3390/molecules24142525] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/11/2022] Open
Abstract
The difficulties encountered and the numerous side effects present in the treatment of cutaneous leishmaniasis have encouraged the research for new compounds that can complement or replace existing treatment. The growing scientific interest in the study of plants, which are already used in folk remedies, has led our group to test Endlicheria bracteolata essential oil against Leishmania amazonensis. Several species of the Lauraceae family, or their compounds, have relevant antiprotozoal activities Therefore, the biological potential on L. amazonensis forms from the essential oil of Endlicheria bracteolata leaves was verified for the first time in that work. The antileishmanial activity was evaluated against promastigotes and intracellular amastigotes, and cytotoxicity were performed with J774.G8, which were incubated with different concentrations of E. bracteolata essential oil. Transmission electron microscopy and flow cytometry were performed with E. bracteolata essential oil IC50. Promastigote forms showed E. bracteolata essential oil IC50 of 7.945 ± 1.285 µg/mL (24 h) and 6.186 ± 1.226 µg/mL (48 h), while for intracellular amastigote forms it was 3.546 ± 1.184 µg/mL (24 h). The CC50 was 15.14 ± 0.090 µg/mL showing that E. bracteolata essential oil is less toxic to macrophages than to parasites. Transmission electron microscopy showed that E. bracteolata essential oil treatment is capable of inducing mitochondrial damage to promastigote and intracellular amastigote forms, while flow cytometry showed ΔѰm disruption in treated parasites. These results could bring about new possibilities to develop products based on E. bracteolata essential oil to treat cutaneous leishmaniasis, especially for people who cannot receive the conventional therapy.
Collapse
Affiliation(s)
- Mariana Margatto Rottini
- Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21045-900, Brazil
| | | | - José Luiz Pinto Ferreira
- Laboratório de Plantas Medicinais e Derivados (PN1), Farmanguinhos, FIOCRUZ, Rio de Janeiro 21041-250, Brazil
| | | | | | - Noemi Nosomi Taniwaki
- Núcleo de Microscopia Eletrônica, Instituto Adolfo Lutz, São Paulo 01246-000, Brazil
| | - Arith Ramos Dos Santos
- Laboratório de Plantas Medicinais e Derivados (PN1), Farmanguinhos, FIOCRUZ, Rio de Janeiro 21041-250, Brazil
| | - Fernando Almeida-Souza
- Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21045-900, Brazil
- Pós-graduação em Ciência Animal, Universidade Estadual do Maranhão, São Luís 65055-310, Maranhão, Brazil
| | | | - Kátia da Silva Calabrese
- Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21045-900, Brazil.
| |
Collapse
|
13
|
Moraes Neto RN, Setúbal RFB, Higino TMM, Brelaz-de-Castro MCA, da Silva LCN, Aliança ASDS. Asteraceae Plants as Sources of Compounds Against Leishmaniasis and Chagas Disease. Front Pharmacol 2019; 10:477. [PMID: 31156427 PMCID: PMC6530400 DOI: 10.3389/fphar.2019.00477] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 04/16/2019] [Indexed: 12/28/2022] Open
Abstract
Leishmaniasis and Chagas disease cause great impact on social and economic aspects of people living in developing countries. The treatments for these diseases are based on the same regimen for over 40 years, thus, there is an urgent need for the development of new drugs. In this scenario, Asteraceae plants (a family widely used in folk medicine worldwide) are emerging as an interesting source for new trypanocidal and leishmanicidal compounds. Herein, we provide a non-exhaustive review about the activity of plant-derived products from Asteraceae with inhibitory action toward Leishmania spp. and T. cruzi. Special attention was given to those studies aiming the isolation (or identification) of the bioactive compounds. Ferulic acid, rosmarinic acid, and ursolic acid (Baccharis uncinella DC.) were efficient to treat experimental leishmaniasis; while deoxymikanolide (Mikania micrantha) and (+)-15-hydroxy-labd-7-en-17-al (Aristeguietia glutinosa Lam.) showed in vivo anti-T. cruzi action. It is also important to highlight that several plant-derived products (compounds, essential oils) from Artemisia plants have shown high inhibitory potential against Leishmania spp., such as artemisinin and its derivatives. In summary, these compounds may help the development of new effective agents against these neglected diseases.
Collapse
|
14
|
Leishmanicidal activity of α-bisabolol from Tunisian chamomile essential oil. Parasitol Res 2018; 117:2855-2867. [PMID: 29955971 DOI: 10.1007/s00436-018-5975-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 06/15/2018] [Indexed: 02/07/2023]
Abstract
According to the World Health Organization, leishmaniasis is considered as a major neglected tropical disease causing an enormous impact on global public health. Available treatments were complicated due to the high resistance, toxicity, and high cost. Therefore, the search for novel sources of anti-leishmania agents is an urgent need. In the present study, an in vitro evaluation of the leishmanicidal activity of the essential oil of Tunisian chamomile (Matricaria recutita L.) was carried out. Chamomile essential oil exhibits a good activity on promastigotes forms of L. amazonensis and L. infantum with a low inhibitory concentration at 50% (IC50) (10.8 ± 1.4 and 10.4 ± 0.6 μg/mL, respectively). Bio-guided fractionation was developed and led to the identification of (-)-α-bisabolol as the most active molecule with low IC50 (16.0 ± 1.2 and 9.5 ± 0.1 μg/mL for L. amazonensis and L. infantum, respectively). This isolated sesquiterpene alcohol was studied for its activity on amastigotes forms (IC50 = 5.9 ± 1.2 and 4.8 ± 1.3 μg/mL, respectively) and its cytotoxicity (selectivity indexes (SI) were 5.4 and 6.6, respectively). The obtained results showed that (-)-α-bisabolol was able to activate a programmed cell death process in the promastigote stage of the parasite. It causes phosphatidylserine externalization and membrane damage. Moreover, it decreases the mitochondrial membrane potential and total ATP levels. These results highlight the potential use of (-)-α-bisabolol against both L. amazonensis and L. infantum, and further studies should be undertaken to establish it as novel leishmanicidal therapeutic agents.
Collapse
|
15
|
Reactive oxygen species-independent apoptotic pathway by gold nanoparticles in Candida albicans. Microbiol Res 2018; 207:33-40. [DOI: 10.1016/j.micres.2017.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 10/28/2017] [Accepted: 11/04/2017] [Indexed: 11/23/2022]
|
16
|
Freijo MB, López-Arencibia A, Piñero JE, McNaughton-Smith G, Abad-Grillo T. Design, synthesis and evaluation of amino-substituted 1H-phenalen-1-ones as anti-leishmanial agents. Eur J Med Chem 2017; 143:1312-1324. [PMID: 29126735 DOI: 10.1016/j.ejmech.2017.10.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/15/2017] [Accepted: 10/10/2017] [Indexed: 02/08/2023]
Abstract
Screening of a designed collection of mono-substituted amino-1H-phenalen-1-ones against promastigote forms of L. donovani and L. amazonensis, identified seven compounds with anti-leishmanial activities comparable or better than the commonly prescribed anti-leishmanial drug, miltefosine. Structure-activity analysis revealed that appendages containing a basic tertiary nitrogen were favored, and that the position of the appendage also affected their potency. Like miltefosine, several of these active compounds significantly reduced the mitochondrial membrane potential in promastigotes. Further studies in amastigotes of L. amazonensis revealed that compounds 14, 15 and 33 were more active and more selective than miltefosine, with sub-micromolar potencies and selectivity indices >100.
Collapse
Affiliation(s)
- Mónica Blanco Freijo
- Instituto Universitario de Bio-Orgánica 'Antonio González', Departamento de Química Orgánica, Universidad de La Laguna, Avda. Fco. Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | - Atteneri López-Arencibia
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Las Islas Canarias, Laboratorio de Quimioterapias de Protozoos, Universidad de La Laguna, Tenerife, Spain
| | - José E Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Las Islas Canarias, Laboratorio de Quimioterapias de Protozoos, Universidad de La Laguna, Tenerife, Spain.
| | | | - Teresa Abad-Grillo
- Instituto Universitario de Bio-Orgánica 'Antonio González', Departamento de Química Orgánica, Universidad de La Laguna, Avda. Fco. Sánchez 2, 38206 La Laguna, Tenerife, Spain.
| |
Collapse
|
17
|
Sifaoui I, López-Arencibia A, Martín-Navarro CM, Reyes-Batlle M, Wagner C, Chiboub O, Mejri M, Valladares B, Abderrabba M, Piñero JE, Lorenzo-Morales J. Programmed cell death in Acanthamoeba castellanii Neff induced by several molecules present in olive leaf extracts. PLoS One 2017; 12:e0183795. [PMID: 28859105 PMCID: PMC5578599 DOI: 10.1371/journal.pone.0183795] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 08/12/2017] [Indexed: 01/22/2023] Open
Abstract
Therapy against Acanthamoeba infections such as Granulomatous Amoebic Encephalitis (GAE) and Acanthamoeba Keratitis (AK), remains as an issue to be solved due to the existence of a cyst stage which is highly resistant to most chemical and physical agents. Recently, the activity of Olive Leaf Extracts (OLE) was demonstrated against Acanthamoeba species. However, the molecules involved in this activity were not identified and/or evaluated. Therefore, the aim of this study was to evaluate the activity of the main molecules which are present in OLE and secondly to study their mechanism of action in Acanthamoeba. Among the tested molecules, the observed activities ranged from an IC50 of 6.59 in the case of apigenine to an IC50 > 100 μg/ml for other molecules. After that, elucidation of the mechanism of action of these molecules was evaluated by the detection of changes in the phosphatidylserine (PS) exposure, the permeability of the plasma membrane, the mitochondrial membrane potential and the ATP levels in the treated cells. Vanillic, syringic and ursolic acids induced the higher permeabilization of the plasma membrane. Nevertheless, the mitochondrial membrane was altered by all tested molecules which were also able to decrease the ATP levels to less than 50% in IC90 treated cells after 24 h. Therefore, all the molecules tested in this study could be considered as a future therapeutic alternative against Acanthamoeba spp. Further studies are needed in order to establish the true potential of these molecules against these emerging opportunistic pathogenic protozoa.
Collapse
Affiliation(s)
- Ines Sifaoui
- Laboratoire Matériaux-Molécules et Applications, IPEST, Institut Préparatoire aux Etudes Scientifiques et Techniques, La Marsa, University of Carthage, Tunis, Tunisia
- University Institute of Tropical Diseases and Public Health, University of La Laguna, Avda Francisco Sanchez s/n, Campus de Anchieta, la Laguna Tenerife, Canary Islands, Spain
| | - Atteneri López-Arencibia
- University Institute of Tropical Diseases and Public Health, University of La Laguna, Avda Francisco Sanchez s/n, Campus de Anchieta, la Laguna Tenerife, Canary Islands, Spain
| | - Carmen Mª. Martín-Navarro
- University Institute of Tropical Diseases and Public Health, University of La Laguna, Avda Francisco Sanchez s/n, Campus de Anchieta, la Laguna Tenerife, Canary Islands, Spain
| | - María Reyes-Batlle
- University Institute of Tropical Diseases and Public Health, University of La Laguna, Avda Francisco Sanchez s/n, Campus de Anchieta, la Laguna Tenerife, Canary Islands, Spain
| | - Carolina Wagner
- University Institute of Tropical Diseases and Public Health, University of La Laguna, Avda Francisco Sanchez s/n, Campus de Anchieta, la Laguna Tenerife, Canary Islands, Spain
- Cátedra de Parasitología, Escuela de Bioanálisis, Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela
| | - Olfa Chiboub
- Laboratoire Matériaux-Molécules et Applications, IPEST, Institut Préparatoire aux Etudes Scientifiques et Techniques, La Marsa, University of Carthage, Tunis, Tunisia
- University Institute of Tropical Diseases and Public Health, University of La Laguna, Avda Francisco Sanchez s/n, Campus de Anchieta, la Laguna Tenerife, Canary Islands, Spain
| | - Mondher Mejri
- Laboratoire Matériaux-Molécules et Applications, IPEST, Institut Préparatoire aux Etudes Scientifiques et Techniques, La Marsa, University of Carthage, Tunis, Tunisia
| | - Basilio Valladares
- University Institute of Tropical Diseases and Public Health, University of La Laguna, Avda Francisco Sanchez s/n, Campus de Anchieta, la Laguna Tenerife, Canary Islands, Spain
| | - Manef Abderrabba
- Laboratoire Matériaux-Molécules et Applications, IPEST, Institut Préparatoire aux Etudes Scientifiques et Techniques, La Marsa, University of Carthage, Tunis, Tunisia
| | - José E. Piñero
- University Institute of Tropical Diseases and Public Health, University of La Laguna, Avda Francisco Sanchez s/n, Campus de Anchieta, la Laguna Tenerife, Canary Islands, Spain
| | - Jacob Lorenzo-Morales
- University Institute of Tropical Diseases and Public Health, University of La Laguna, Avda Francisco Sanchez s/n, Campus de Anchieta, la Laguna Tenerife, Canary Islands, Spain
| |
Collapse
|
18
|
Sifaoui I, Reyes-Batlle M, López-Arencibia A, Wagner C, Chiboub O, De Agustino Rodríguez J, Rocha-Cabrera P, Valladares B, Piñero JE, Lorenzo-Morales J. Evaluation of the anti-Acanthamoeba activity of two commercial eye drops commonly used to lower eye pressure. Exp Parasitol 2017; 183:117-123. [PMID: 28778743 DOI: 10.1016/j.exppara.2017.07.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 06/28/2017] [Accepted: 07/30/2017] [Indexed: 11/25/2022]
Abstract
Efficient treatments against Acanthamoeba Keratitis (AK), remains until the moment, as an issue to be solved due to the existence of a cyst stage which is highly resistant to most chemical and physical agents. In this study, two antiglaucoma eye drops were tested for their activity against Acanthamoeba. Moreover, this study was based on previous data which gave us evidence of a possible link between the absences of Acanthamoeba at the ocular surface in patients treated with beta blockers for high eye pressure both containing timolol as active principle. The amoebicidal activity of the tested eye drops was evaluated against four strains of Acanthamoeba using Alamar blue method. For the most active drug the cysticidal activity against A. castellanii Neff cysts and further experiments studying changes in chromatin condensation levels, in the permeability of the plasmatic membrane, the mitochondrial membrane potential and the ATP levels in the treated amoebic strains were done. Even though both eye drops were active against the different tested strains of Acanthamoeba, statistical analysis revealed that one of them (Timolol Sandoz) was the most effective one against all the tested strains presenting IC50s ranging from 0.529% ± 0.206 for the CLC 16 strain to 3.962% ± 0.150 for the type strain Acanthamoeba castellanii Neff. Timolol Sandoz 0.50% seems to induce amoebic cell death by damaging the amoebae at the mitochondrial level. Considering its effect, Timolol Sandoz 0.50% could be used in the case of contact lens wearers and patients with glaucoma.
Collapse
Affiliation(s)
- Ines Sifaoui
- University Institute of Tropical Diseases and Public Health, University of La Laguna, Avda Francisco Sanchez s/n, Campus de Anchieta, 38271 la Laguna Tenerife, Canary Islands, Spain; Laboratoire Matériaux-Molécules et Applications, IPEST, B.P 51 2070, LA Marsa, University of Carthage, Tunisia.
| | - María Reyes-Batlle
- University Institute of Tropical Diseases and Public Health, University of La Laguna, Avda Francisco Sanchez s/n, Campus de Anchieta, 38271 la Laguna Tenerife, Canary Islands, Spain
| | - Atteneri López-Arencibia
- University Institute of Tropical Diseases and Public Health, University of La Laguna, Avda Francisco Sanchez s/n, Campus de Anchieta, 38271 la Laguna Tenerife, Canary Islands, Spain
| | - Carolina Wagner
- University Institute of Tropical Diseases and Public Health, University of La Laguna, Avda Francisco Sanchez s/n, Campus de Anchieta, 38271 la Laguna Tenerife, Canary Islands, Spain; Catédra de Parasitologia, Facultad de Medicina, Escuela de Bioanalisis, Universidad Central de Venezuela, Caracas, Venezuela
| | - Olfa Chiboub
- University Institute of Tropical Diseases and Public Health, University of La Laguna, Avda Francisco Sanchez s/n, Campus de Anchieta, 38271 la Laguna Tenerife, Canary Islands, Spain; Catédra de Parasitologia, Facultad de Medicina, Escuela de Bioanalisis, Universidad Central de Venezuela, Caracas, Venezuela
| | - Jacqueline De Agustino Rodríguez
- University Institute of Tropical Diseases and Public Health, University of La Laguna, Avda Francisco Sanchez s/n, Campus de Anchieta, 38271 la Laguna Tenerife, Canary Islands, Spain; Department of Ophthalmology, Hospital Universitario de Canarias, Tenerife, Canary Islands, Spain
| | - Pedro Rocha-Cabrera
- University Institute of Tropical Diseases and Public Health, University of La Laguna, Avda Francisco Sanchez s/n, Campus de Anchieta, 38271 la Laguna Tenerife, Canary Islands, Spain; Department of Ophthalmology, Hospital Universitario de Canarias, Tenerife, Canary Islands, Spain
| | - Basilio Valladares
- University Institute of Tropical Diseases and Public Health, University of La Laguna, Avda Francisco Sanchez s/n, Campus de Anchieta, 38271 la Laguna Tenerife, Canary Islands, Spain
| | - José E Piñero
- University Institute of Tropical Diseases and Public Health, University of La Laguna, Avda Francisco Sanchez s/n, Campus de Anchieta, 38271 la Laguna Tenerife, Canary Islands, Spain
| | - Jacob Lorenzo-Morales
- University Institute of Tropical Diseases and Public Health, University of La Laguna, Avda Francisco Sanchez s/n, Campus de Anchieta, 38271 la Laguna Tenerife, Canary Islands, Spain
| |
Collapse
|
19
|
Amoebicidal Activity of Caffeine and Maslinic Acid by the Induction of Programmed Cell Death in Acanthamoeba. Antimicrob Agents Chemother 2017; 61:AAC.02660-16. [PMID: 28320723 DOI: 10.1128/aac.02660-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/12/2017] [Indexed: 01/07/2023] Open
Abstract
Free-living amoebae of the genus Acanthamoeba are the causal agents of a sight-threatening ulceration of the cornea called Acanthamoeba keratitis, as well as the rare but usually fatal disease granulomatous amoebic encephalitis. Although there are many therapeutic options for the treatment of Acanthamoeba infections, they are generally lengthy and/or have limited efficacy. For the best clinical outcome, treatments should target both the trophozoite and the cyst stages, as cysts are known to confer resistance to treatment. In this study, we document the activities of caffeine and maslinic acid against both the trophozoite and the cyst stages of three clinical strains of Acanthamoeba These drugs were chosen because they are reported to inhibit glycogen phosphorylase, which is required for encystation. Maslinic acid is also reported to be an inhibitor of extracellular proteases, which may be relevant since the protease activities of Acanthamoeba species are correlated with their pathogenicity. We also provide evidence for the first time that both drugs exert their anti-amoebal effects through programmed cell death.
Collapse
|
20
|
Perifosine Mechanisms of Action in Leishmania Species. Antimicrob Agents Chemother 2017; 61:AAC.02127-16. [PMID: 28096161 DOI: 10.1128/aac.02127-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/08/2017] [Indexed: 12/22/2022] Open
Abstract
Here the mechanism by which perifosine induced cell death in Leishmania donovani and Leishmania amazonensis is described. The drug reduced Leishmania mitochondrial membrane potential and decreased cellular ATP levels while increasing phosphatidylserine externalization. Perifosine did not increase membrane permeabilization. We also found that the drug inhibited the phosphorylation of Akt in the parasites. These results highlight the potential use of perifosine as an alternative to miltefosine against Leishmania.
Collapse
|
21
|
Melo TS, Gattass CR, Soares DC, Cunha MR, Ferreira C, Tavares MT, Saraiva E, Parise-Filho R, Braden H, Delorenzi JC. Oleanolic acid (OA) as an antileishmanial agent: Biological evaluation and in silico mechanistic insights. Parasitol Int 2016; 65:227-37. [PMID: 26772973 DOI: 10.1016/j.parint.2016.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 12/23/2015] [Accepted: 01/03/2016] [Indexed: 12/12/2022]
Abstract
Although a worldwide health problem, leishmaniasis is considered a highly neglected disease, lacking efficient and low toxic treatment. The efforts for new drug development are based on alternatives such as new uses for well-known drugs, in silico and synthetic studies and naturally derived compounds. Oleanolic acid (OA) is a pentacyclic triterpenoid widely distributed throughout the Plantae kingdom that displays several pharmacological activities. OA showed potent leishmancidal effects in different Leishmania species, both against promastigotes (IC(50 L. braziliensis) 30.47 ± 6.35 μM; IC(50 L. amazonensis) 40.46 ± 14.21 μM; IC(50 L. infantum) 65.93 ± 15.12 μM) and amastigotes (IC(50 L. braziliensis) 68.75 ± 16.55 μM; IC(50 L. amazonensis) 38.45 ± 12.05 μM; IC(50 L. infantum) 64.08 ± 23.52 μM), with low cytotoxicity against mouse peritoneal macrophages (CC(50) 235.80 ± 36.95 μM). Moreover, in silico studies performed to evaluate OA molecular properties and to elucidate the possible mechanism of action over the Leishmania enzyme sterol 14α-demethylase (CYP51) suggested that OA interacts efficiently with CYP51 and could inhibit the ergosterol synthesis pathway. Collectively, these data indicate that OA is a good candidate as leading compound for the development of a new leishmaniasis treatment.
Collapse
Affiliation(s)
- Tahira Souza Melo
- Centro de Ciências Biológicas e da Saúde, Universidade Presbiteriana Mackenzie, São Paulo, Brazil
| | - Cerli Rocha Gattass
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Deivid Costa Soares
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Micael Rodrigues Cunha
- Centro de Ciências Biológicas e da Saúde, Universidade Presbiteriana Mackenzie, São Paulo, Brazil; Laboratório de Planejamento e Síntese de Substâncias Bioativas (LAPESSB), Universidade de São Paulo, São Paulo, Brazil
| | - Christian Ferreira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maurício Temotheo Tavares
- Laboratório de Planejamento e Síntese de Substâncias Bioativas (LAPESSB), Universidade de São Paulo, São Paulo, Brazil
| | - Elvira Saraiva
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberto Parise-Filho
- Laboratório de Planejamento e Síntese de Substâncias Bioativas (LAPESSB), Universidade de São Paulo, São Paulo, Brazil
| | - Hannah Braden
- Centro de Ciências Biológicas e da Saúde, Universidade Presbiteriana Mackenzie, São Paulo, Brazil; Wright State University, Dayton, OH, United States of America
| | - Jan Carlo Delorenzi
- Centro de Ciências Biológicas e da Saúde, Universidade Presbiteriana Mackenzie, São Paulo, Brazil.
| |
Collapse
|
22
|
Chouhan G, Islamuddin M, Want MY, Ozbak HA, Hemeg HA, Sahal D, Afrin F. Leishmanicidal Activity of Piper nigrum Bioactive Fractions is Interceded via Apoptosis In Vitro and Substantiated by Th1 Immunostimulatory Potential In Vivo. Front Microbiol 2015; 6:1368. [PMID: 26696979 PMCID: PMC4672717 DOI: 10.3389/fmicb.2015.01368] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/17/2015] [Indexed: 12/28/2022] Open
Abstract
Visceral leishmaniasis (VL) is a life-threatening protozoal infection chiefly impinging the rural and poor population in the tropical and sub-tropical countries. The deadly affliction is rapidly expanding after its association with AIDS, swiftly defying its status of a neglected disease. Despite successful formulation of vaccine against canine leishmaniasis, no licensed vaccine is yet available for human VL, chemotherapy is in appalling state, and the development of new candidate drugs has been painfully slow. In face of lack of proper incentives, immunostimulatory plant preparations owing antileishmanial efficacy bear potential to rejuvenate awful antileishmanial chemotherapy. We have earlier reported profound leishmanicidal activity of Piper nigrum hexane (PNH) seeds and P. nigrum ethanolic (PNE) fractions derived from P. nigrum seeds against Leishmania donovani promastigotes and amastigotes. In the present study, we illustrate that the remarkable anti-promastigote activity exhibited by PNH and PNE is mediated via apoptosis as evidenced by phosphatidylserine externalization, DNA fragmentation, arrest in sub G0/G1 phase, loss of mitochondrial membrane potential and generation of reactive oxygen species. Further, P. nigrum bioactive fractions rendered significant protection to L. donovani infected BALB/c mice in comparison to piperine, a known compound present in Piper species. The substantial therapeutic potential of PNH and PNE was accompanied by elicitation of cell-mediated immune response. The bioactive fractions elevated the secretion of Th1 (INF-γ, TNF-α, and IL-2) cytokines and declined IL-4 and IL-10. PNH and PNE enhanced the production of IgG2a, upregulated the expression of co-stimulatory molecules CD80 and CD86, augmented splenic CD4+ and CD8+ T cell population, induced strong lymphoproliferative and DTH responses and partially stimulated NO production. PNH and PNE were devoid of any hepatic or renal toxicity. These encouraging findings merit further exploration of P. nigrum bioactive fractions as a source of potent and non-toxic antileishmanials.
Collapse
Affiliation(s)
- Garima Chouhan
- Parasite Immunology Laboratory, Department of Biotechnology, Faculty of Science, Jamia Hamdard (Hamdard University) New Delhi, India
| | - Mohammad Islamuddin
- Parasite Immunology Laboratory, Department of Biotechnology, Faculty of Science, Jamia Hamdard (Hamdard University) New Delhi, India
| | - Muzamil Y Want
- Parasite Immunology Laboratory, Department of Biotechnology, Faculty of Science, Jamia Hamdard (Hamdard University) New Delhi, India
| | - Hani A Ozbak
- Department of Medical Laboratories Technology, Faculty of Applied Medical Sciences, Taibah University Medina, Saudi Arabia
| | - Hassan A Hemeg
- Department of Medical Laboratories Technology, Faculty of Applied Medical Sciences, Taibah University Medina, Saudi Arabia
| | - Dinkar Sahal
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology New Delhi, India
| | - Farhat Afrin
- Parasite Immunology Laboratory, Department of Biotechnology, Faculty of Science, Jamia Hamdard (Hamdard University) New Delhi, India ; Department of Medical Laboratories Technology, Faculty of Applied Medical Sciences, Taibah University Medina, Saudi Arabia
| |
Collapse
|
23
|
Mabandla MV, Nyoka M, Daniels WMU. Early use of oleanolic acid provides protection against 6-hydroxydopamine induced dopamine neurodegeneration. Brain Res 2015; 1622:64-71. [PMID: 26111646 DOI: 10.1016/j.brainres.2015.06.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/11/2015] [Accepted: 06/13/2015] [Indexed: 12/13/2022]
Abstract
Oleanolic acid is a triterpenoid that has been shown to possess antioxidant properties. In this study we investigated the effects of oleanolic acid in a parkinsonian rat model. Unilateral 6-hydroxydopamine (6-OHDA) lesions were carried out on postnatal day (PND) 60 in 4 groups viz. (1) Rats that started oleanolic acid treatment 7 days prior to lesion. (2) Rats not treated with oleanolic acid. (3) Rats that started oleanolic acid treatment 1 day post-lesion. (4) Rats treated with oleanolic acid 7 days post-lesion. The degree of forelimb impairment was assessed using limb use asymmetry and forelimb akinesia tests. Neurochemical changes were assessed using a Dopamine ELISA kit and mitochondrial apoptosis was measured using a mitochondrial apoptosis detection kit. In this study, animals injected with 6-OHDA displayed forelimb use asymmetry that was ameliorated by treatment with oleanolic acid 7 days pre- and 1 day post-lesion. In the cylinder test, rats injected with 6-OHDA favored using the forelimb ipsilateral (unimpaired) to the lesioned hemisphere while rats treated with oleanolic acid used the forelimb contralateral (impaired) to the lesioned hemisphere significantly more. Rats treated with oleanolic acid 7 days pre- and 1 day post-lesion had more dopamine in the striatum than the non-treated or the 7 days after lesion rats. Similarly, 6-OHDA-induced membrane depolarization was decreased in rats that received oleanolic acid treatment pre- or immediately post-lesion. This suggests that early treatment with oleanolic acid protects dopamine neurons from the toxic effects of 6-OHDA.
Collapse
Affiliation(s)
- Musa V Mabandla
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa.
| | - Mpumelelo Nyoka
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Willie M U Daniels
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| |
Collapse
|
24
|
In vitro activities of hexaazatrinaphthylenes against Leishmania spp. Antimicrob Agents Chemother 2015; 59:2867-74. [PMID: 25753635 DOI: 10.1128/aac.00226-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/01/2015] [Indexed: 11/20/2022] Open
Abstract
The in vitro activity of a novel group of compounds, hexaazatrinaphthylene derivatives, against two species of Leishmania is described in this study. These compounds showed a significant dose-dependent inhibition effect on the proliferation of the parasites, with 50% inhibitory concentrations (IC(50)s) ranging from 1.23 to 25.05 μM against the promastigote stage and 0.5 to 0.7 μM against intracellular amastigotes. Also, a cytotoxicity assay was carried out to in order to evaluate the possible toxic effects of these compounds. Moreover, different assays were performed to determine the type of cell death induced after incubation with these compounds. The obtained results highlight the potential use of hexaazatrinaphthylene derivatives against Leishmania species, and further studies should be undertaken to establish them as novel leishmanicidal therapeutic agents.
Collapse
|