1
|
Shen L, Luo H, Fan L, Su Z, Yu S, Cao S, Wu X. Exploration of the immuno-adjuvant effect and mechanism of Anemoside B4 through network pharmacology and experiment verification. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155302. [PMID: 38176273 DOI: 10.1016/j.phymed.2023.155302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/12/2023] [Accepted: 12/17/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Extensive investigation has been undertaken about the utilization of saponin adjuvants in vaccines intended for veterinary and human applications. AB4 is the main constituent of the traditional Chinese medicine, Pulsatilla chinensis (Bunge) Regel, and has immunomodulatory activity. However, there is a paucity of reports on AB4 as a potential adjuvant. PURPOSE The objective of this work was to clarify the adjuvant role of AB4 and the molecular mechanisms that underlie its immunomodulatory actions. STUDY DESIGN AND METHODS The immunomodulatory effects of AB4 were investigated using network pharmacological analyses. These effects were validated by evaluating the developmental status of the immune organs and by using the following techniques: ELISA for the quantification of serum-specific antibodies to determine immune-related cytokine levels; the MTS method for the assessment of proliferative activity of splenic lymphocytes; flow cytometry to analyze lymphocyte and dendritic cell activation status; and western blotting for mechanistic analysis at the protein level. RESULTS The network pharmacological analysis predicted a total of 52 targets and 12 pathways for AB4 to exert immunomodulatory effects. In a mouse model with immunity to OVA, the introduction of AB4 resulted in the enhancement of immunological organ growth and maturation, elevation of blood antibodies targeting OVA, and amplification of the production of cytokines associated with Th1 and Th2 immune responses. Additionally, the administration of AB4 resulted in a notable augmentation of lymphocyte proliferation and an elevation in the CD4+/CD8+ T lymphocyte ratios. Furthermore, the administration of AB4 enhanced the maturation process of DCs in the draining LNs and increased the production of co-stimulatory factors and MHC II molecules. AB4 induces the upregulation of TLR4 and IKK proteins, as well as the phosphorylation of NF-κB p65 protein within the TLR4/NF-κB signaling cascade, while concurrently suppressing the expression of IκBα protein. CONCLUSION The specific immunoadjuvant effects of AB4 have been demonstrated to modulate the growth and maturation of immune organs and enhance the secretion and cellular activity of pertinent immune molecules. The utilization of network pharmacology, combined within and in vivo vitro assays, clarified the adjuvant function of AB4, which potentially involves the regulation of the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Liuhong Shen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Hao Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Fan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhetong Su
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Shumin Yu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Suizhong Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaofeng Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
2
|
White CS, Dilger RN. Immunomodulatory potential of dietary soybean-derived saponins. J Anim Sci 2024; 102:skae349. [PMID: 39529449 PMCID: PMC11630861 DOI: 10.1093/jas/skae349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Soybeans are widely recognized as a valuable crop, often included as a high-quality protein source in production animal diets. In addition to contributing to the macronutrient composition of the diet, soybeans also contain many minor bioactive components which can influence the health and growth of animals. This review examined the immunomodulatory potential of soy saponins and their specific effects on the inflammatory response, oxidative stress, and intestinal barrier function. Saponins are amphiphilic molecules, a property imparted by their polar carbohydrate chains that attach to a nonpolar aglycone backbone. This structure also complicates their isolation, thus most research investigating soy saponins has been performed in models that only require small amounts of isolated material. Many experiments conducted in vitro or in rodents reported that saponins can reduce damage, particularly in conditions where a challenge was first introduced to stimulate inflammation or oxidative stress. It appears that saponins can exert their anti-inflammatory effects through modulation of the NF-κB pathway, reducing its activation and the release of pro-inflammatory molecules later in the cascade. Furthermore, soy saponins can influence levels of important anti-oxidative enzymes and reduce the generation of reactive oxygen species, thus attenuating levels of oxidative stress in the model. As these results were obtained from experiments done in vitro or in rodents, they neglect to provide a good representation of how soy saponins may affect some of the greatest consumers of soy-based products, with those being production animals. The work that has been done seems to indicate that soy saponins may exert similar anti-inflammatory and anti-oxidative effects in production animals as those observed in other research models along with immunostimulatory activity that may help boost host defense systems. Overall, there is a dearth of research regarding the effects of soy saponins on species that commonly consume soy products, which begins by developing more effective methods of saponin extraction.
Collapse
Affiliation(s)
- Cameron S White
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Ryan N Dilger
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| |
Collapse
|
3
|
Morsi AA, Shawky LM, Shawky TM, Bahr MH, Alnasr MTA, El Bana E. Targeting NF-κB/COX-2 signaling by soyasaponin I alleviates diclofenac-induced gastric ulceration in male albino rats. Cell Biochem Funct 2024; 42:e3927. [PMID: 38269501 DOI: 10.1002/cbf.3927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024]
Abstract
Gastric ulceration is a prevalent worldwide clinical presentation due to altered gastric defense mechanisms. Nonsteroidal anti-inflammatory drugs are one of the common causes of gastric ulcers mediated by the release of inflammatory mediators. The study aimed to investigate the potential protective effect of soyasaponin I (soya) against diclofenac (DIC)-induced gastric ulcer in rats and to highlight the underlying mechanisms. The experiment was conducted on 40 male Wistar albino rats, equally distributed into five groups: control, DIC-induced ulcer (9 mg/kg/d, orally, twice daily for 3 days), ulcer/soya-, ulcer/ranitidine-, and ulcer/soya/selective nuclear factor kappa B inhibitor (JSH-23)-treated groups. The doses of soya, ranitidine, and JSH were 20, 25, and 5 mg/kg/d, respectively, given orally. Gastric specimens were prepared for gene and histological study and for biochemical analysis of gastric prostaglandin E2 (PGE2), oxidative markers, and inflammatory cytokines. The gastric samples were formalin-fixed, paraffin-embedded, and subjected to hematoxylin and eosin (H&E), PAS staining, and immunohistochemical assay for identification of nuclear factor kappa B (NF-κB), cyclooxygenase-2 (COX-2), and proliferation marker (Ki67) expressions. The findings revealed decreased gastric PGE2 and altered inflammatory and oxidative markers in the ulcer model group. The H&E staining showed mucosal injury characterized by mucosal surface defects and inflammatory cell infiltrations. The polymerase chain reaction (PCR) and immunohistochemistry demonstrated an upregulation of NF-κB and COX-2 expression at gene/protein levels; meanwhile, Ki67 downregulation. The soya-treated group showed maintained biochemical, histological, and PCR findings comparable to the ranitidine-treated group. The JSH-23-treated group still showed partial gastric protection with biochemical and immunohistochemical changes. Soyasaponin I ameliorated DIC-induced gastric ulcers by targeting the COX-2 activity through modulation of NF-κB signaling.
Collapse
Affiliation(s)
- Ahmed A Morsi
- Department of Histology and Cell Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Lamiaa M Shawky
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Tamer M Shawky
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Giza, Egypt
- Department of Basic Medical Sciences, Vision Colleges, Riyadh, Saudi Arabia
| | - Mohamed H Bahr
- Department of Basic Medical Sciences, Vision Colleges, Riyadh, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Eman El Bana
- Department of Anatomy, Faculty of Medicine, Benha University, Benha, Egypt
| |
Collapse
|
4
|
Shen L, Luo H, Fan L, Tian X, Tang A, Wu X, Dong K, Su Z. Potential Immunoregulatory Mechanism of Plant Saponins: A Review. Molecules 2023; 29:113. [PMID: 38202696 PMCID: PMC10780299 DOI: 10.3390/molecules29010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Saponins are extracted from different parts of plants such as seeds, roots, stems, and leaves and have a variety of biological activities including immunomodulatory, anti-inflammatory effects, and hypoglycemic properties. They demonstrate inherent low immunogenicity and possess the capacity to effectively regulate both the innate and adaptive immune responses. Plant saponins can promote the growth and development of the body's immune organs through a variety of signaling pathways, regulate the activity of a variety of immune cells, and increase the secretion of immune-related cytokines and antigen-specific antibodies, thereby exerting the role of immune activity. However, the chemical structure of plant saponins determines its certain hemolytic and cytotoxicity. With the development of science and technology, these disadvantages can be avoided or reduced by certain technical means. In recent years, there has been a significant surge in interest surrounding the investigation of plant saponins as immunomodulators. Consequently, the objective of this review is to thoroughly examine the immunomodulatory properties of plant saponins and elucidate their potential mechanisms, with the intention of offering a valuable point of reference for subsequent research and advancement within this domain.
Collapse
Affiliation(s)
- Liuhong Shen
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Hao Luo
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Fan
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinyu Tian
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Anguo Tang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaofeng Wu
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ke Dong
- Sichuan Yuqiang Herbal Biotechnology Co., Ltd., Chengdu 611130, China
| | - Zhetong Su
- Guangxi Innovates Medical Technology Co., Ltd., Lipu 546600, China
| |
Collapse
|
5
|
Chen K, Wang N, Zhang X, Wang M, Liu Y, Shi Y. Potentials of saponins-based adjuvants for nasal vaccines. Front Immunol 2023; 14:1153042. [PMID: 37020548 PMCID: PMC10067588 DOI: 10.3389/fimmu.2023.1153042] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/07/2023] [Indexed: 03/22/2023] Open
Abstract
Respiratory infections are a major public health concern caused by pathogens that colonize and invade the respiratory mucosal surface. Nasal vaccines have the advantage of providing protection at the primary site of pathogen infection, as they induce higher levels of mucosal secretory IgA antibodies and antigen-specific T and B cell responses. Adjuvants are crucial components of vaccine formulation that enhance the immunogenicity of the antigen to confer long-term and effective protection. Saponins, natural glycosides derived from plants, shown potential as vaccine adjuvants, as they can activate the mammalian immune system. Several licensed human vaccines containing saponins-based adjuvants administrated through intramuscular injection have demonstrated good efficacy and safety. Increasing evidence suggests that saponins can also be used as adjuvants for nasal vaccines, owing to their safety profile and potential to augment immune response. In this review, we will discuss the structure-activity-relationship of saponins, their important role in nasal vaccines, and future prospects for improving their efficacy and application in nasal vaccine for respiratory infection.
Collapse
Affiliation(s)
- Kai Chen
- Department of Radiology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ning Wang
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaomin Zhang
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Meng Wang
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanyu Liu
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yun Shi
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Yun Shi,
| |
Collapse
|
6
|
Cui X, Ma X, Li C, Meng H, Han C. A review: structure-activity relationship between saponins and cellular immunity. Mol Biol Rep 2023; 50:2779-2793. [PMID: 36583783 DOI: 10.1007/s11033-022-08233-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022]
Abstract
Saponins, which exhibit many different biological and pharmacological activities, are present in a wide range of plant species and in some marine organisms. Notably, the researchers have found that saponins can activate the immune system in mammals. The strength of this function is closely related to the chemical structure of saponins. The present study of the structure-activity relationship suggests that aglycones, glycochains on aglycones and special functional groups of saponins affect the immune activity of saponins. This paper reviews the effects of different saponins on cellular immunity. As well as the structure-activity relationship of saponins. It is hoped that the information integrated in this paper will provide readers with information on the effects of saponins on cellular immunity and promote the further study of these compounds.
Collapse
Affiliation(s)
- Xuetao Cui
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Xumin Ma
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Chunhai Li
- Department of Radiology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Hong Meng
- Department of Radiology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Chunchao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China.
| |
Collapse
|
7
|
Wainwright CL, Teixeira MM, Adelson DL, Buenz EJ, David B, Glaser KB, Harata-Lee Y, Howes MJR, Izzo AA, Maffia P, Mayer AM, Mazars C, Newman DJ, Nic Lughadha E, Pimenta AM, Parra JA, Qu Z, Shen H, Spedding M, Wolfender JL. Future Directions for the Discovery of Natural Product-Derived Immunomodulating Drugs. Pharmacol Res 2022; 177:106076. [PMID: 35074524 DOI: 10.1016/j.phrs.2022.106076] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/07/2022] [Indexed: 02/06/2023]
Abstract
Drug discovery from natural sources is going through a renaissance, having spent many decades in the shadow of synthetic molecule drug discovery, despite the fact that natural product-derived compounds occupy a much greater chemical space than those created through synthetic chemistry methods. With this new era comes new possibilities, not least the novel targets that have emerged in recent times and the development of state-of-the-art technologies that can be applied to drug discovery from natural sources. Although progress has been made with some immunomodulating drugs, there remains a pressing need for new agents that can be used to treat the wide variety of conditions that arise from disruption, or over-activation, of the immune system; natural products may therefore be key in filling this gap. Recognising that, at present, there is no authoritative article that details the current state-of-the-art of the immunomodulatory activity of natural products, this in-depth review has arisen from a joint effort between the International Union of Basic and Clinical Pharmacology (IUPHAR) Natural Products and Immunopharmacology, with contributions from a Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation number of world-leading researchers in the field of natural product drug discovery, to provide a "position statement" on what natural products has to offer in the search for new immunomodulatory argents. To this end, we provide a historical look at previous discoveries of naturally occurring immunomodulators, present a picture of the current status of the field and provide insight into the future opportunities and challenges for the discovery of new drugs to treat immune-related diseases.
Collapse
Affiliation(s)
- Cherry L Wainwright
- Centre for Natural Products in Health, Robert Gordon University, Aberdeen, UK.
| | - Mauro M Teixeira
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Brazil.
| | - David L Adelson
- Molecular & Biomedical Science, University of Adelaide, Australia.
| | - Eric J Buenz
- Nelson Marlborough Institute of Technology, New Zealand.
| | - Bruno David
- Green Mission Pierre Fabre, Pierre Fabre Laboratories, Toulouse, France.
| | - Keith B Glaser
- AbbVie Inc., Integrated Discovery Operations, North Chicago, USA.
| | - Yuka Harata-Lee
- Molecular & Biomedical Science, University of Adelaide, Australia
| | - Melanie-Jayne R Howes
- Royal Botanic Gardens Kew, Richmond, Surrey, UK; Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, UK.
| | - Angelo A Izzo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Italy.
| | - Pasquale Maffia
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Italy; Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| | - Alejandro Ms Mayer
- Department of Pharmacology, College of Graduate Studies, Midwestern University, IL, USA.
| | - Claire Mazars
- Green Mission Pierre Fabre, Pierre Fabre Laboratories, Toulouse, France.
| | | | | | - Adriano Mc Pimenta
- Laboratory of Animal Venoms and Toxins, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - John Aa Parra
- Laboratory of Animal Venoms and Toxins, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Zhipeng Qu
- Molecular & Biomedical Science, University of Adelaide, Australia
| | - Hanyuan Shen
- Molecular & Biomedical Science, University of Adelaide, Australia
| | | | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Switzerland.
| |
Collapse
|
8
|
Yates PS, Roberson J, Ramsue LK, Song BH. Bridging the Gaps between Plant and Human Health: A Systematic Review of Soyasaponins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14387-14401. [PMID: 34843230 DOI: 10.1021/acs.jafc.1c04819] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Saponins, prominent secondary plant metabolites, are recognized for their roles in plant defense and medicinal benefits. Soyasaponins, commonly derived from legumes, are a class of triterpenoid saponins that demonstrate significant potential for plant and human health applications. Previous research and reviews largely emphasize human health effects of soyasaponins. However, the biological effects of soyasaponins and their implications for plants in the context of human health have not been well-discussed. This review provides comprehensive discussions on the biological roles of soyasaponins in plant defense and rhizosphere microbial interactions; biosynthetic regulation and compound production; immunological effects and potential for therapeutics; and soyasaponin acquisition attributed to processing effects, bioavailability, and biotransformation processes based on recent soyasaponin research. Given the multifaceted biological effects elicited by soyasaponins, further research warrants an integrated approach to understand molecular mechanisms of regulations in their production as well as their applications in plant and human health.
Collapse
Affiliation(s)
- Ping S Yates
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina 28262, United States
| | - Julia Roberson
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina 28262, United States
| | - Lyric K Ramsue
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina 28262, United States
| | - Bao-Hua Song
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina 28262, United States
| |
Collapse
|
9
|
Gu M, Pan S, Deng W, Li Q, Qi Z, Chen C, Bai N. Effects of glutamine on the IKK/IκB/NF-кB system in the enterocytes of turbot Scophthalmus maximus L. stimulated with soya-saponins. FISH & SHELLFISH IMMUNOLOGY 2021; 119:373-378. [PMID: 34688862 DOI: 10.1016/j.fsi.2021.10.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Soya-saponins represent key anti-nutritional factors that contribute to soybean meal-induced enteritis, and glutamine is an effective fish intestine protectant that combats the negative effects of soya-saponins. Nuclear transcription factor-kappa B (NF-кB) systems are involved in the interactions between soya-saponins and glutamine, and the goal of the present work was to clarify the related molecular mechanisms used by the NF-кB kinase (IKK)/inhibitor of NF-κB (IκB)/NF-кB system. Primary cultured turbot (Scophthalmus maximus L.) intestinal epithelial cells were concurrently administrated with 1 mg/mL of soya-saponins and several levels of glutamine (0, 0.5, 1.0 and 2.0 mM) for 12 h and then subjected to real-time PCR and Western blot assays. Compared with cells treated with soya-saponins alone, glutamine significantly decreased the expression of interleukin-1 beta, interleukin 8 and tumor necrosis factor α genes, significantly reduced nuclear and cytosolic NF-κB p65 abundance levels in a dose-dependent manner, increased the IκBα protein level but decreased its phosphorylation, and down-regulated the IKKα/β and phosphorylated IKKα/β levels. In conclusion, this in vitro work confirmed that glutamine attenuated soya-saponin-induced inflammatory responses in turbot intestines. Moreover, it identified molecular pathways in which glutamine first decreased the p65 level and then prevented its nuclear translocation. In addition, glutamine reduced IκBα phosphorylation and maintained its level. Finally, glutamine decreased IKK expression and phosphorylation.
Collapse
Affiliation(s)
- Min Gu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Shihui Pan
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Wanzhen Deng
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Qing Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zezheng Qi
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Chuwen Chen
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Nan Bai
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
10
|
Ballegaard ASR, Larsen JM, Rasmussen PH, Untersmayr E, Pilegaard K, Bøgh KL. Quinoa (Chenopodium quinoa Willd.) Seeds Increase Intestinal Protein Uptake. Mol Nutr Food Res 2021; 65:e2100102. [PMID: 33939283 DOI: 10.1002/mnfr.202100102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/07/2021] [Indexed: 12/22/2022]
Abstract
SCOPE Within the last decade, quinoa seeds have gained much popularity as a new food and have recently been proposed as an appropriate food for early introduction in infants. Quinoa contains high levels of saponins, which are known for their adjuvant activity and effect on the intestinal barrier function. The aim of this study is to investigate the impact of quinoa on intestinal permeability and inflammation in comparison with the positive controls; cholera toxin (CT), and capsaicin. METHODS AND RESULTS The effect of quinoa on intestinal barrier function and inflammation is investigated in vitro using a Caco-2 cell line and in vivo using a Brown Norway rat model. Effects in vivo are analyzed by protein uptake, histology, gene expression, antibody levels, and flow cytometry. Quinoa and the positive controls all increased the intestinal permeability, but distinct patterns of absorbed protein are observed in the epithelium, Peyer's patches, lamina propria, and serum. The quinoa-mediated effect on intestinal barrier function is found to be distinct from the effect of the two positive controls. CONCLUSION The findings demonstrate the ability of quinoa to increase intestinal permeability and to promote compartment-specific protein uptake via mechanisms that may differ from CT and capsaicin.
Collapse
Affiliation(s)
| | - Jeppe Madura Larsen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Kirsten Pilegaard
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | |
Collapse
|
11
|
Bento JAC, Ribeiro PRV, Bassinello PZ, Brito ESD, Zocollo GJ, Caliari M, Soares Júnior MS. Phenolic and saponin profile in grains of carioca beans during storage. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
de Groot C, Müsken M, Bleckmann M, Ebensen T, Guzmán CA, Müller-Goymann CC. Novel colloidal associations of soyasaponins and lipid components (DPPC, cholesterol) as potential adjuvants for vaccines. Vaccine 2019; 37:4975-4986. [PMID: 31320217 DOI: 10.1016/j.vaccine.2019.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/04/2019] [Accepted: 07/06/2019] [Indexed: 11/16/2022]
Abstract
Soyasaponins from soybean (Glycine max) represent promising new potent adjuvants for vaccine research because of their immunostimulating properties and weak hemolytic activity. In the present study, saponin microstructures of soyasaponins (soyasaponin Bb, soyasaponin Ab) with lipid components (cholesterol, DPPC (dipalmitoylphosphatidylcholine)) were designed by the lipid film method. In interaction studies between soyasaponins (soyasaponin Ab/Bb) and Langmuir monolayers (model membranes), composed of cholesterol and DPPC, marked interactions between soyasaponins and a pure cholesterol monolayer were observed. No interaction was detected for soyasaponins with a pure DPPC monolayer. The intercalation of soyasaponins in a mixed DPPC/cholesterol (3:1, w/w) monolayer was only observed for the monodesmosidic soyasaponin Bb whereas the second sugar chain of the bidesmosidic soyasaponin Ab impaired the access to the monolayer. Transmission electron microscopy was used for visualizing particle formation of soyasaponins and lipid components. Pseudo-binary systems (soyasaponin Ab/Bb, cholesterol) formed colloidal associations built up from ring-like subunits in the nanometer size range. In pseudo-ternary systems (soyasaponin, cholesterol, DPPC) soyasaponin Bb attacked the liposomal membrane by forming colloidal associations. Colloidal associations in pseudo-ternary systems with soyasaponin Ab, cholesterol and a phospholipid were only observed in the presence of PE (phosphatidylethanolamine) instead of DPPC. In an MTT assay with a HaCaT cell line (keratinocyte cell line) the cell viability was neither affected by the soyasaponins nor by the corresponding formulations. Both the pure soyasaponin solution and the saponin formulations may be promising adjuvant systems for the intradermal vaccine application. Furthermore, interaction studies between the model antigen ovalbumin and colloidal associations of saponins and cholesterol using MST (Microscale Thermophoresis) gave first indications of an antigen binding to colloidal associations. Ex vivo T-cell proliferation in the presence of soyasaponin Ab was confirmed.
Collapse
Affiliation(s)
- Carolin de Groot
- Institut für Pharmazeutische Technologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Mathias Müsken
- Helmholtz-Centre for Infection Research, Central Facility for Microscopy, Braunschweig, Germany
| | - Maren Bleckmann
- Institut für Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Thomas Ebensen
- Helmholtz Centre for Infection Research, Department of Vaccinology and Applied Microbiology, 38124 Braunschweig, Germany
| | - Carlos A Guzmán
- Helmholtz Centre for Infection Research, Department of Vaccinology and Applied Microbiology, 38124 Braunschweig, Germany
| | - Christel C Müller-Goymann
- Institut für Pharmazeutische Technologie, Technische Universität Braunschweig, Braunschweig, Germany; Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
13
|
Sugiyama A. The soybean rhizosphere: Metabolites, microbes, and beyond-A review. J Adv Res 2019; 19:67-73. [PMID: 31341671 PMCID: PMC6630087 DOI: 10.1016/j.jare.2019.03.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/15/2019] [Accepted: 03/16/2019] [Indexed: 11/17/2022] Open
Abstract
Rhizosphere microbial communities are important for plant health. Specialized metabolites in the rhizosphere influence the microbial communities. Isoflavones and saponins are major specialized metabolites secreted by soybean. Secretion is regulated developmentally and nutritionally. Possible links between specialized metabolites and microbial communities are highlighted.
The rhizosphere is the region close to a plant’s roots, where various interactions occur. Recent evidence indicates that plants influence rhizosphere microbial communities by secreting various metabolites and, in turn, the microbes influence the growth and health of the plants. Despite the importance of plant-derived metabolites in the rhizosphere, relatively little is known about their spatiotemporal distribution and dynamics. In addition to being an important crop, soybean (Glycine max) is a good model plant with which to study these rhizosphere interactions, because soybean plants have symbiotic relationships with rhizobia and arbuscular mycorrhizal fungi and secrete various specialized metabolites, such as isoflavones and saponins, into the soil. This review summarizes the characteristics of the soybean rhizosphere from the viewpoint of specialized metabolites and microbes and discusses future research perspectives. In sum, secretion of these metabolites is developmentally and nutritionally regulated and potentially alters the rhizosphere microbial communities.
Collapse
Affiliation(s)
- Akifumi Sugiyama
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan
| |
Collapse
|
14
|
Juritsch AF, Moreau R. Role of soybean-derived bioactive compounds in inflammatory bowel disease. Nutr Rev 2018; 76:618-638. [PMID: 29800381 DOI: 10.1093/nutrit/nuy021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, inflammatory condition of the gastrointestinal tract. Patients with IBD present with debilitating symptoms that alter the quality of life and can develop into severe complications requiring surgery. Epidemiological evidence indicates Westernized societies have an elevated IBD burden when compared with Asian societies. Considering the stark contrast between the typical Western and Eastern dietary patterns, it is postulated that differences in food and lifestyle contribute to lower IBD incidence in Asian countries. Soybeans (Glycine max), which are consumed in high quantities and as various preparations in Eastern societies, contain a wealth of natural, biologically active compounds that include isoflavones, bioactive peptides, protease inhibitors, and phytosterols, among many others. These compounds have been shown to improve human health, and preclinical evidence suggests they have potential to improve the prognosis of IBD. This review summarizes the current state of evidence regarding the effects and the mechanisms of action of these soybean-derived bioactive compounds in experimental models of IBD.
Collapse
Affiliation(s)
- Anthony F Juritsch
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Régis Moreau
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
15
|
Liu X, Chen K, Zhu L, Liu H, Ma T, Xu Q, Xie T. Soyasaponin Ab protects against oxidative stress in HepG2 cells via Nrf2/HO-1/NQO1 signaling pathways. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.03.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
16
|
Bardi GT, Smith MA, Hood JL. Melanoma exosomes promote mixed M1 and M2 macrophage polarization. Cytokine 2018; 105:63-72. [PMID: 29459345 DOI: 10.1016/j.cyto.2018.02.002] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 12/18/2022]
Abstract
Macrophages are key participants in melanoma growth and survival. In general, macrophages can be classified as M1 or M2 activation phenotypes. Increasing evidence demonstrates that melanoma exosomes also facilitate tumor survival and metastasis. However, the role of melanoma exosomes in directly influencing macrophage function is poorly understood. Herein, we investigated the hypothesis that natural melanoma exosomes might directly influence macrophage polarization. To explore this hypothesis, ELISA, RT-qPCR, and macrophage functional studies were performed in vitro using an established source of melanoma exosomes (B16-F10). ELISA results for melanoma exosome induction of common M1 and M2 cytokines in RAW 264.7 macrophages, revealed that melanoma exosomes do not polarize macrophages exclusively in the M1 or M2 direction. Melanoma exosomes induced the M1 and M2 representative cytokines TNF-α and IL-10 respectively. Further assessment, using an RT-qPCR array with RAW 264.7 and primary macrophages, confirmed and extended the ELISA findings. Upregulation of markers common to both M1 and M2 polarization phenotypes included CCL22, IL-12B, IL-1β, IL-6, i-NOS, and TNF-α. The M2 cytokine TGF-β was upregulated in primary but not RAW 264.7 macrophages. Pro-tumor functions have been attributed to each of these markers. Macrophage functional assays demonstrated a trend toward increased i-NOS (M1) to arginase (M2) activity. Collectively, the results provide the first evidence that melanoma exosomes can induce a mixed M1 and M2 pro-tumor macrophage activation phenotype.
Collapse
Affiliation(s)
- Gina T Bardi
- University of Louisville, Department of Pharmacology and Toxicology, & James Graham Brown Cancer Center, Clinical and Translational Research Building, 505 South Hancock Street, Louisville, KY 40202, United States.
| | - Mary Ann Smith
- University of Louisville, Department of Pharmacology and Toxicology, & James Graham Brown Cancer Center, Clinical and Translational Research Building, 505 South Hancock Street, Louisville, KY 40202, United States.
| | - Joshua L Hood
- University of Louisville, Department of Pharmacology and Toxicology, & James Graham Brown Cancer Center, Clinical and Translational Research Building, 505 South Hancock Street, Louisville, KY 40202, United States.
| |
Collapse
|
17
|
Singh B, Singh JP, Singh N, Kaur A. Saponins in pulses and their health promoting activities: A review. Food Chem 2017; 233:540-549. [PMID: 28530610 DOI: 10.1016/j.foodchem.2017.04.161] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/04/2017] [Accepted: 04/25/2017] [Indexed: 01/17/2023]
Abstract
Saponins are a class of natural compounds present in pulses having surface active properties. These compounds show variation in type, structure and composition of their aglycone moiety and oligosaccharide chains. Saponins have plasma cholesterol lowering effect in humans and are important in reducing the risk of many chronic diseases. Moreover, they have shown strong cytotoxic effects against cancer cell lines. However, more epidemiological and clinical studies are required for the proper validation of these health promoting activities. Processing and cooking promotes the loss of saponins from foods. The effect of soaking, sprouting and cooking on the stability and bioavailability of saponins in pulses is an important area which should be thoroughly worked out for achieving desirable health benefits. In the present review, the structures, contents and health benefits of saponins present in pulses are discussed. Moreover, the effect of processing (of pulses) on the saponins is also highlighted.
Collapse
Affiliation(s)
- Balwinder Singh
- Department of Biotechnology, Khalsa College, Amritsar 143002, Punjab, India
| | - Jatinder Pal Singh
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Narpinder Singh
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Amritpal Kaur
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| |
Collapse
|
18
|
Batista-Duharte A, Jorge Murillo G, Pérez UM, Tur EN, Portuondo DF, Martínez BT, Téllez-Martínez D, Betancourt JE, Pérez O. The Hen's Egg Test on Chorioallantoic Membrane: An Alternative Assay for the Assessment of the Irritating Effect of Vaccine Adjuvants. Int J Toxicol 2016; 35:627-633. [PMID: 27733445 DOI: 10.1177/1091581816672187] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Local reactions are the most frequent adverse event associated with vaccines. Adjuvants are major constituents of many vaccines and they are frequently involved in these reactions, associated with their irritating effect and the stimulation of local inflammation. The hen's egg test on chorioallantoic membrane (HET-CAM) is an alternative toxicological method widely used to determine ocular irritation potential, but very few studies have demonstrated the utility of this method for assessing the irritant properties of vaccine adjuvants. In this work, known/experimental adjuvants were evaluated by both HET-CAM and an in vivo local toxicity study in mice to compare irritation scores to determine whether there was a correlation (Pearson test). Based on these data (r = 0.9034; P < 0.0001), the HET-CAM assay can be used as an alternate method for the prediction of the local toxicity potential of adjuvant candidates to be used in vaccines.
Collapse
Affiliation(s)
- Alexander Batista-Duharte
- Toxicology and Biomedicine Center (TOXIMED), Medical Science University of Santiago de Cuba, Santiago de Cuba, Cuba .,São Paulo Estate University (UNESP), Pharmaceutical Sciences Faculty, Araraquara, Brazil
| | - Gisela Jorge Murillo
- Toxicology and Biomedicine Center (TOXIMED), Medical Science University of Santiago de Cuba, Santiago de Cuba, Cuba
| | - Ulpiano Marqués Pérez
- Toxicology and Biomedicine Center (TOXIMED), Medical Science University of Santiago de Cuba, Santiago de Cuba, Cuba
| | - Enieyis Naranjo Tur
- Toxicology and Biomedicine Center (TOXIMED), Medical Science University of Santiago de Cuba, Santiago de Cuba, Cuba
| | | | - Bruno Téllez Martínez
- Department of Biology, Faculty of Natural Sciences, University of Oriente, Santiago de Cuba, Cuba
| | | | - Juan E Betancourt
- Toxicology and Biomedicine Center (TOXIMED), Medical Science University of Santiago de Cuba, Santiago de Cuba, Cuba
| | - Oliver Pérez
- Department of Immunology, University of Medical Science, Havana, Cuba
| |
Collapse
|
19
|
Lijie Z, Ranran F, Xiuying L, Yutang H, Bo W, Tao M. Soyasaponin Bb Protects Rat Hepatocytes from Alcohol-Induced Oxidative Stress by Inducing Heme Oxygenase-1. Pharmacogn Mag 2016; 12:302-306. [PMID: 27867273 PMCID: PMC5096277 DOI: 10.4103/0973-1296.192203] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND It has been known that oxidative stress induced by alcohol played a crucial role in the formation of alcoholic liver disease. Although the formation mechanisms underlying liver injury induced by alcohol still remained largely unknown, it has been considered that oxidative stress played a core role in the pathogenesis of hepatocyte damage. OBJECTIVE The aim of this study was to investigate the effects of soyasaponin Bb (Ss-Bb) on oxidative stress in alcohol-induced rat hepatocyte injury. RESULTS It has been shown that the administration of Ss-Bb could significantly restore antioxidant activity in BRL 3A cells. Moreover, the impaired liver function and morphology changes resulting from ethanol exposure were improved by Ss-Bb treatment. Treatment with a pharmacological inhibitor of haem oxygenase-1 (HO-1) indicated a critical role of HO-1 in mediating the protective role. Finally, we found that pretreatment with Ss-Bb to ethanol exposure cells increased the expression level of HO-1. CONCLUSION It was suggested that Ss-Bb may protect against alcohol-induced hepatocyte injury through ameliorating oxidative stress, and the induction of HO-1 was an important protective mechanism. SUMMARY Effects of soyasaponin Bb was investigated on oxidative stress in rat hepatocytesCell viability and antioxidant capacities were evaluated to determine the effectsThe expression level of HO-1 was measured to reveal the proptective mechanisms.
Collapse
Affiliation(s)
- Zhu Lijie
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, China
| | - Fu Ranran
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, China
| | - Liu Xiuying
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, China
| | - He Yutang
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, China
| | - Wang Bo
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, China
| | - Ma Tao
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, China
| |
Collapse
|