1
|
Sharma D, Panchaksaram M, Muniyan R. Advancements in understanding the role and mechanism of sirtuin family (SIRT1-7) in breast cancer management. Biochem Pharmacol 2025; 232:116743. [PMID: 39761875 DOI: 10.1016/j.bcp.2025.116743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/06/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
Breast cancer (BC) is the most prevalent type of cancer in women worldwide and it is classified into a few distinct molecular subtypes based on the expression of growth factor and hormone receptors. Though significant progress has been achieved in the search for novel medications through traditional and advanced approaches, still we need more efficacious and reliable treatment options to treat different types and stages of BC. Sirtuins (SIRT1-7) a class III histone deacetylase play a major role in combating various cancers including BC. Studies reveal thateach sirtuin has a unique and well-balanced biology, indicating that it regulates a variety of biological processes that result in the initiation, progression,and metastasis of BC. SIRT also plays a major role in numerous vital biological functions, including apoptosis, axonal protection, transcriptional silencing, DNA recombination and repair, fat mobilization, and aging. As per the current demand, we wish to outline the structural insights into sirtuin's catalytic site, substantial variations among all SIRT types, and their mechanism in BC management. Additionally, this review will focus on the application of SIRT modulators along with their clinical significance, hurdles, and future perspective to develop successful SIRT-based drug candidates to conquer the BC problem.
Collapse
Affiliation(s)
- Deepak Sharma
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Muthukumaran Panchaksaram
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Rajiniraja Muniyan
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
2
|
Hatawsh A, Al-Haddad RH, Okafor UG, Diab LM, Dekanoidze N, Abdulwahab AA, Mohammed OA, Doghish AS, Moussa R, Elimam H. Mitoepigenetics pathways and natural compounds: a dual approach to combatting hepatocellular carcinoma. Med Oncol 2024; 41:302. [PMID: 39465473 DOI: 10.1007/s12032-024-02538-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024]
Abstract
Hepatocellular carcinoma (HCC) is a leading liver cancer that significantly impacts global life expectancy and remains challenging to treat due to often late diagnoses. Despite advances in treatment, the prognosis is still poor, especially in advanced stages. Studies have pointed out that investigations into the molecular mechanisms underlying HCC, including mitochondrial dysfunction and epigenetic regulators, are potentially important targets for diagnosis and therapy. Mitoepigenetics, or the epigenetic modifications of mitochondrial DNA, have drawn wide attention for their role in HCC progression. Besides, molecular biomarkers such as mitochondrial DNA alterations and non-coding RNAs showed early diagnosis and prognosis potential. Additionally, natural compounds like alkaloids, resveratrol, curcumin, and flavonoids show promise in HCC show promise in modulating mitochondrial and epigenetic pathways involved in cancer-related processes. This review discusses how mitochondrial dysfunction and epigenetic modifications, especially mitoepigenetics, influence HCC and delves into the potential of natural products as new adjuvant treatments against HCC.
Collapse
Affiliation(s)
- Abdulrahman Hatawsh
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City, Giza, 12588, Egypt
| | - Roya Hadi Al-Haddad
- Research and Technology Center of Environment, Water and Renewable Energy, Scientific Research Commission, Baghdad, Iraq
| | | | - Lamis M Diab
- Department of Medical Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | | | | | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| | - Rewan Moussa
- Faculty of Medicine, Helwan University, Helwan, Cairo, 11795, Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sādāt, 32897, Egypt.
| |
Collapse
|
3
|
Mondal P, Jayaprakash G, Meeran SM. The translational potential of epigenetic modulatory bioactive phytochemicals as adjuvant therapy against cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 390:140-185. [PMID: 39864894 DOI: 10.1016/bs.ircmb.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
In preclinical studies, bioactive phytochemicals have shown enormous potential therapeutic efficacy against various human malignancies. These natural compounds have been shown to possess an inherent potential to alter the molecular signaling pathways and epigenetic modulatory activity involved in multiple physiological functions. Recently, epigenetic therapy has emerged as an important therapeutic modality due to the reversible nature of epigenetic alterations. To date, epigenetic modulatory compounds, for example, DNA methyltransferase inhibitors 5-azacytidine and 5'-deoxyazacytidine, as well as histone deacetylase inhibitors Vorinostat, Romidepsin, and Belinostat (PXD101), have been clinically approved by the FDA for the treatment of patients of leukemia and myelodysplastic syndrome. However, these synthetic epigenetic inhibitors are not as effective against many of the solid tumors. Therefore, the epigenetic modulatory phytochemicals provide new hope for improving the treatment modality as neoadjuvant and adjuvant therapy. It has been established that targeting more than one protein in the transformed cells simultaneously, that is, the multi-targeted therapeutic approach, might invoke a better therapeutic response. Therefore, here, we are compiling diverse evidences of the translational potential of novel combinatorial approaches utilizing the epigenetic modulatory phytochemicals with available therapeutics in the course of cancer treatment.
Collapse
Affiliation(s)
- Priya Mondal
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Gowthami Jayaprakash
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Syed Musthapa Meeran
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
4
|
Zou Z, Luo T, Wang X, Wang B, Li Q. Exploring the interplay between triple-negative breast cancer stem cells and tumor microenvironment for effective therapeutic strategies. J Cell Physiol 2024; 239:e31278. [PMID: 38807378 DOI: 10.1002/jcp.31278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 05/30/2024]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive and metastatic malignancy with poor treatment outcomes. The interaction between the tumor microenvironment (TME) and breast cancer stem cells (BCSCs) plays an important role in the development of TNBC. Owing to their ability of self-renewal and multidirectional differentiation, BCSCs maintain tumor growth, drive metastatic colonization, and facilitate the development of drug resistance. TME is the main factor regulating the phenotype and metastasis of BCSCs. Immune cells, cancer-related fibroblasts (CAFs), cytokines, mesenchymal cells, endothelial cells, and extracellular matrix within the TME form a complex communication network, exert highly selective pressure on the tumor, and provide a conducive environment for the formation of BCSC niches. Tumor growth and metastasis can be controlled by targeting the TME to eliminate BCSC niches or targeting BCSCs to modify the TME. These approaches may improve the treatment outcomes and possess great application potential in clinical settings. In this review, we summarized the relationship between BCSCs and the progression and drug resistance of TNBC, especially focusing on the interaction between BCSCs and TME. In addition, we discussed therapeutic strategies that target the TME to inhibit or eliminate BCSCs, providing valuable insights into the clinical treatment of TNBC.
Collapse
Affiliation(s)
- Zhuoling Zou
- Queen Mary College, Nanchang University, Nanchang, Jiangxi, China
| | - Tinglan Luo
- Department of Oncology, The Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing, China
| | - Xinyuan Wang
- Department of Clinical Medicine, The Second Clinical College of Chongqing Medicine University, Chongqing, China
| | - Bin Wang
- Department of Oncology, The Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing, China
| | - Qing Li
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
5
|
Wang Q, Li D, Liu L, Shan Y, Bao Y. Dietary isothiocyanates and anticancer agents: exploring synergism for improved cancer management. Front Nutr 2024; 11:1386083. [PMID: 38919393 PMCID: PMC11196812 DOI: 10.3389/fnut.2024.1386083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024] Open
Abstract
Human studies have shown the anticancer effects of dietary isothiocyanates (ITCs), but there are some inconsistencies, and more evidence supports that such anticancer effect is from higher doses of ITCs. The inconsistencies found in epidemiological studies may be due to many factors, including the biphasic dose-response (so called hormetic effect) of ITCs, which was found to be more profound under hypoxia conditions. In this comprehensive review, we aim to shed light on the intriguing synergistic interactions between dietary ITCs, focusing on sulforaphane (SFN) and various anticancer drugs. Our exploration is motivated by the potential of these combinations to enhance cancer management strategies. While the anticancer properties of ITCs have been recognized, our review delves deeper into understanding the mechanisms and emphasizing the significance of the hormetic effect of ITCs, characterized by lower doses stimulating both normal cells and cancer cells, whereas higher doses are toxic to cancer cells and inhibit their growth. We have examined a spectrum of studies unraveling the multifaceted interaction and combinational effects of ITCs with anticancer agents. Our analysis reveals the potential of these synergies to augment therapeutic efficacy, mitigate chemoresistance, and minimize toxic effects, thereby opening avenues for therapeutic innovation. The review will provide insights into the underlying mechanisms of action, for example, by spotlighting the pivotal role of Nrf2 and antioxidant enzymes in prevention. Finally, we glimpse ongoing research endeavors and contemplate future directions in this dynamic field. We believe that our work contributes valuable perspectives on nutrition and cancer and holds promise for developing novel and optimized therapeutic strategies.
Collapse
Affiliation(s)
- Qi Wang
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Dan Li
- Department of Nutrition, School of Public Health, Sun Yat-Sen University (Northern Campus), Guangzhou, China
| | - Lihua Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Yujuan Shan
- Department of Nutrition and Food Hygiene, School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
6
|
Nimal S, Kumbhar N, Saruchi, Rathore S, Naik N, Paymal S, Gacche RN. Apigenin and its combination with Vorinostat induces apoptotic-mediated cell death in TNBC by modulating the epigenetic and apoptotic regulators and related miRNAs. Sci Rep 2024; 14:9540. [PMID: 38664447 PMCID: PMC11045774 DOI: 10.1038/s41598-024-60395-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a metastatic disease and a formidable treatment challenge as it does not respond to existing therapies. Epigenetic regulators play a crucial role in the progression and metastasis by modulating the expression of anti-apoptotic, pro-apoptotic markers and related miRNAs in TNBC cells. We have investigated the anti-TNBC potential of dietary flavonoid 'Apigenin' and its combination with Vorinostat on MDA-MB-231 cells. At Apigenin generated ROS, inhibited cell migration, arrested the cell cycle at subG0/G1 phases, and induced apoptotic-mediated cell death. Apigenin reduced the expression of the class-I HDACs at the transcriptomic and proteomic levels. In the immunoblotting study, Apigenin has upregulated pro-apoptotic markers and downregulated anti-apoptotic proteins. Apigenin inhibited the enzymatic activity of HDAC/DNMT and increased HAT activity. Apigenin has manifested its effect on miRNA expression by upregulating the tumor-suppressor miR-200b and downregulation oncomiR-21. Combination study reduced the growth of TNBC cells synergistically by modulating the expression of epigenetic and apoptotic regulators. Molecular docking and MD simulations explored the mechanism of catalytic inhibition of HDAC1 and HDAC3 and supported the in-vitro studies. The overall studies demonstrated an anti-TNBC potential of Apigenin and may help to design an effective strategy to treat metastatic phenotype of TNBC.
Collapse
Affiliation(s)
- Snehal Nimal
- Department of Biotechnology, Savitribai Phule Pune University (SPPU), Pune, 411007, Maharashtra (MS), India
| | - Navanath Kumbhar
- Department of Biotechnology, Savitribai Phule Pune University (SPPU), Pune, 411007, Maharashtra (MS), India
- Medical Information Management, Department of Biochemistry, Shivaji University, Kolhapur, 416004, Maharashtra (MS), India
| | - Saruchi
- Department of Biotechnology, Savitribai Phule Pune University (SPPU), Pune, 411007, Maharashtra (MS), India
| | - Shriya Rathore
- Department of Biotechnology, Savitribai Phule Pune University (SPPU), Pune, 411007, Maharashtra (MS), India
| | - Nitin Naik
- Department of Microbiology, Shivaji University, Kolhapur, 416004, Maharashtra (MS), India
| | - Sneha Paymal
- Department of Microbiology, Shivaji University, Kolhapur, 416004, Maharashtra (MS), India
| | - Rajesh N Gacche
- Department of Biotechnology, Savitribai Phule Pune University (SPPU), Pune, 411007, Maharashtra (MS), India.
| |
Collapse
|
7
|
Zhu T, Zhou P, Yang L, Fang X, Zhi X. Troponin T1 silencing inhibits paclitaxel resistance and the development of breast cancer via suppressing rat sarcoma virus/rapidly accelerated fibrosarcoma 1 pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:2064-2076. [PMID: 38095131 DOI: 10.1002/tox.24084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 03/09/2024]
Abstract
OBJECTIVE We aimed to determine the role of Troponin T1 (TNNT1) in paclitaxel (PTX) resistance and tumor progression in breast cancer (BC). METHODS Differentially expressed genes were obtained from the GSE4298 and GSE90564 datasets. Hub genes were isolated from protein-protein interaction networks and further validated by real-time quantitative polymerase chain reaction. The effect of TNNT1 on PTX resistance was determined using cell counting kit-8, 5-ethynyl-2'-deoxyuridine, wound healing, transwell, flow cytometry assays, and subcutaneous xenografted tumor model. Western blotting was used to detect proteins associated with PTX resistance, apoptosis, migration, invasion, and other key pathways. Hematoxylin-eosin and immunohistochemical staining were used to evaluate the role of TNNT1 in tumors. RESULTS After comprehensive bioinformatic analysis, we identified CCND1, IGF1, SFN, INHBA, TNNT1, and TNFSF11 as hub genes for PTX resistance in BC. TNNT1 plays a key role in BC and is upregulated in PTX-resistant BC cells. TNNT1 silencing inhibited PTX resistance, proliferation, migration, and invasion while promoting apoptosis of PTX-resistant BC cells. Tumor xenograft experiments revealed that TNNT1 silencing suppresses PTX resistance and tumor development in vivo. In addition, TNNT1 silencing inhibited the expression of proteins in the rat sarcoma virus (RAS)/rapidly accelerated fibrosarcoma1 (RAF1) pathway in vivo. Treatment with a RAS/RAF1 pathway activator reversed the inhibitory effect of TNNT1 silencing on proliferation, migration, and invasion while promoting apoptosis of PTX resistance BC cells. CONCLUSION Silencing of TNNT1 suppresses PTX resistance and BC progression by inhibiting the RAS/RAF1 pathway, which is a promising biomarker and therapeutic target for drug resistance in BC.
Collapse
Affiliation(s)
- Tong Zhu
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Peng Zhou
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Lu Yang
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Xuan Fang
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Xiangcheng Zhi
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| |
Collapse
|
8
|
Sailo BL, Liu L, Chauhan S, Girisa S, Hegde M, Liang L, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. Harnessing Sulforaphane Potential as a Chemosensitizing Agent: A Comprehensive Review. Cancers (Basel) 2024; 16:244. [PMID: 38254735 PMCID: PMC10814109 DOI: 10.3390/cancers16020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Recent advances in oncological research have highlighted the potential of naturally derived compounds in cancer prevention and treatment. Notably, sulforaphane (SFN), an isothiocyanate derived from cruciferous vegetables including broccoli and cabbage, has exhibited potent chemosensitizing capabilities across diverse cancer types of bone, brain, breast, lung, skin, etc. Chemosensitization refers to the enhancement of cancer cell sensitivity to chemotherapy agents, counteracting the chemoresistance often developed by tumor cells. Mechanistically, SFN orchestrates this sensitization by modulating an array of cellular signaling pathways (e.g., Akt/mTOR, NF-κB, Wnt/β-catenin), and regulating the expression and activity of pivotal genes, proteins, and enzymes (e.g., p53, p21, survivin, Bcl-2, caspases). When combined with conventional chemotherapeutic agents, SFN synergistically inhibits cancer cell proliferation, invasion, migration, and metastasis while potentiating drug-induced apoptosis. This positions SFN as a potential adjunct in cancer therapy to augment the efficacy of standard treatments. Ongoing preclinical and clinical investigations aim to further delineate the therapeutic potential of SFN in oncology. This review illuminates the multifaceted role of this phytochemical, emphasizing its potential to enhance the therapeutic efficacy of anti-cancer agents, suggesting its prospective contributions to cancer chemosensitization and management.
Collapse
Affiliation(s)
- Bethsebie Lalduhsaki Sailo
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India; (B.L.S.); (S.C.); (S.G.); (M.H.)
| | - Le Liu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen 518001, China;
| | - Suravi Chauhan
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India; (B.L.S.); (S.C.); (S.G.); (M.H.)
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India; (B.L.S.); (S.C.); (S.G.); (M.H.)
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India; (B.L.S.); (S.C.); (S.G.); (M.H.)
| | - Liping Liang
- Guangzhou Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China;
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia;
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia;
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India; (B.L.S.); (S.C.); (S.G.); (M.H.)
| |
Collapse
|
9
|
Yousefian Naeini Z, Esfandiari N, Hashemi M, Hushmandi K, Arbabian S, Entezari M. Introduced the ITGB1-DT as a novel biomarker associated with five potential drugs using bioinformatics analysis of breast cancer proteomics data and RT-PCR. Mol Cell Probes 2023; 71:101930. [PMID: 37690573 DOI: 10.1016/j.mcp.2023.101930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Breast cancer (BC) has been identified as a significant contributor to the rising number of female cancer deaths. As, it has become clear that breast cancer development depends on the interplay of several biological factors against a single molecule. This research aimed to use proteomics to gain a regulatory and metabolic understanding of BC pathophysiology. METHOD For the study, a breast cancer proteomics dataset was downloaded from ProteomeXchange and then analyzed by employing MaxQuant and Perseus. Functional enrichment analysis through Metascape and Cytoscape software showed DEPs related biomedical phenomena with potential abruption. The expression of selected lncRNA in terms of the highest connectivity parameters was then quantitatively assessed through RT-PCR in 30 tumor tissues of breast cancer patients, as compared to the adjacent healthy ones. RESULT The results indicated that among the 3048 identified proteins, 1149 were differentially expressed, which could be mainly enriched in several key terms. Furthermore, the obtained findings revealed that ITGB1-DT was significantly overexpressed in tumor tissues. Moreover, we found five potential compounds that could be attributed to ITGB1-DT targets (ATN-161, Firategrast, SB-683698, dabigatran-etexilate, and tranexamic-acid). CONCLUSION These analyses proposed that ITGB1-DT could be employed as a differentiated factor to identify breast tumor tissues in healthy samples. Besides this, Firategrast could be introduced as a potential remedial agent for breast cancer patients. Overall, from the analysis of a proteomics dataset, an integrative map was generated, and a novel biomarker that may have been implicated in the early detection of BC was introduced.
Collapse
Affiliation(s)
- Zahra Yousefian Naeini
- Department of Cellular and Molecular, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Negin Esfandiari
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sedighe Arbabian
- Department of Cellular and Molecular, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
10
|
Gasmi A, Gasmi Benahmed A, Shanaida M, Chirumbolo S, Menzel A, Anzar W, Arshad M, Cruz-Martins N, Lysiuk R, Beley N, Oliinyk P, Shanaida V, Denys A, Peana M, Bjørklund G. Anticancer activity of broccoli, its organosulfur and polyphenolic compounds. Crit Rev Food Sci Nutr 2023; 64:8054-8072. [PMID: 37129118 DOI: 10.1080/10408398.2023.2195493] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The use of natural bioactive constituents from various food sources for anticancer purposes has become increasingly popular worldwide. Broccoli (Brassica oleracea var. italica) is on the top of the consumed vegetables by the masses. Its raw matrix contains a plethora of phytochemicals, such as glucosinolates and phenolic compounds, along with rich amounts of vitamins, and minerals. Consumption of broccoli-derived phytochemicals provides strong antioxidant effects, particularly due to its sulforaphane content, while modulating numerous molecules involved in cell cycle regulation, control of apoptosis, and tuning enzyme activity. Thus, the inclusion of broccoli in the daily diet lowers the susceptibility to developing cancers. Numerous studies have underlined the undisputable role of broccoli in the diet as a chemopreventive raw food, owing to the content in sulforaphane, an isothiocyanate produced as a result of hydrolysis of precursor glucosinolates called glucoraphanin. This review will provide evidence supporting the specific role of fresh florets and sprouts of broccoli and its key bioactive constituents in the prevention and treatment of different cancers; a number of studies carried out in the in vitro and in vivo conditions as well as clinical trials were analyzed.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
- International Congress of Nutritional Sciences, Casablanca, Morocco
- Société Marocaine de Micronutrition et de Nutrigénétique Appliquée, Casablanca, Morocco
| | | | - Mariia Shanaida
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- CONEM Scientific Secretary, Verona, Italy
| | | | - Wajiha Anzar
- Dow University of Health Sciences, Karachi, Pakistan
| | - Mehreen Arshad
- National University of Sciences and Technology, Islamabad, Pakistan
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, Gandra PRD, Portugal
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| | - Roman Lysiuk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Nataliya Beley
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Petro Oliinyk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Volodymyr Shanaida
- Design of Machine Tools, Instruments and Machines Department, Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine
| | | | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, Italy
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
11
|
Shoaib S, Khan FB, Alsharif MA, Malik MS, Ahmed SA, Jamous YF, Uddin S, Tan CS, Ardianto C, Tufail S, Ming LC, Yusuf N, Islam N. Reviewing the Prospective Pharmacological Potential of Isothiocyanates in Fight against Female-Specific Cancers. Cancers (Basel) 2023; 15:2390. [PMID: 37190316 PMCID: PMC10137050 DOI: 10.3390/cancers15082390] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Gynecological cancers are the most commonly diagnosed malignancies in females worldwide. Despite the advancement of diagnostic tools as well as the availability of various therapeutic interventions, the incidence and mortality of female-specific cancers is still a life-threatening issue, prevailing as one of the major health problems worldwide. Lately, alternative medicines have garnered immense attention as a therapeutic intervention against various types of cancers, seemingly because of their safety profiles and enhanced effectiveness. Isothiocyanates (ITCs), specifically sulforaphane, benzyl isothiocyanate, and phenethyl isothiocyanate, have shown an intriguing potential to actively contribute to cancer cell growth inhibition, apoptosis induction, epigenetic alterations, and modulation of autophagy and cancer stem cells in female-specific cancers. Additionally, it has been shown that ITCs plausibly enhance the chemo-sensitization of many chemotherapeutic drugs. To this end, evidence has shown enhanced efficacy in combinatorial regimens with conventional chemotherapeutic drugs and/or other phytochemicals. Reckoning with these, herein, we discuss the advances in the knowledge regarding the aspects highlighting the molecular intricacies of ITCs in female-specific cancers. In addition, we have also argued regarding the potential of ITCs either as solitary treatment or in a combinatorial therapeutic regimen for the prevention and/or treatment of female-specific cancers. Hopefully, this review will open new horizons for consideration of ITCs in therapeutic interventions that would undoubtedly improve the prognosis of the female-specific cancer clientele. Considering all these, it is reasonable to state that a better understanding of these molecular intricacies will plausibly provide a facile opportunity for treating these female-specific cancers.
Collapse
Affiliation(s)
- Shoaib Shoaib
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India
| | - Farheen Badrealam Khan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Meshari A. Alsharif
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - M. Shaheer Malik
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Saleh A. Ahmed
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Department of Chemistry, Faculty of Applied Sciences, Assiut University, Assiut 71515, Egypt
| | - Yahya F. Jamous
- Vaccines and Bioprocessing Center, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
- Laboratory of Animal Center, Qatar University, Doha 2731, Qatar
| | - Ching Siang Tan
- School of Pharmacy, KPJ Healthcare University College, Nilai 71800, Malaysia;
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia; (C.A.); (L.C.M.)
| | - Saba Tufail
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia; (C.A.); (L.C.M.)
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
- School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia
| | - Nabiha Yusuf
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Najmul Islam
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
12
|
Li S, Chen Y, Ma R, Du Y, Han B. Cationic lipid-assisted nanoparticles for simultaneous delivery of CD47 siRNA and R848 to promote antitumor immune responses. Front Pharmacol 2023; 14:1142374. [PMID: 37063284 PMCID: PMC10102467 DOI: 10.3389/fphar.2023.1142374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/15/2023] [Indexed: 04/05/2023] Open
Abstract
Graphical AbstractThe PEG-PLGA nanoparticles effectively delivered R848 and CD47 siRNA into tumor cells, resulting in simultaneous activation of DCs and downregulation of CD47 expression on tumor cells, thereby enhancing antitumor immune responses by T cells.
Collapse
|
13
|
Mirzaei S, Saghari S, Bassiri F, Raesi R, Zarrabi A, Hushmandi K, Sethi G, Tergaonkar V. NF-κB as a regulator of cancer metastasis and therapy response: A focus on epithelial-mesenchymal transition. J Cell Physiol 2022; 237:2770-2795. [PMID: 35561232 DOI: 10.1002/jcp.30759] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 12/13/2022]
Abstract
Metastasis of tumor cells is a complex challenge and significantly diminishes the overall survival and prognosis of cancer patients. The epithelial-to-mesenchymal transition (EMT) is a well-known mechanism responsible for the invasiveness of tumor cells. A number of molecular pathways can regulate the EMT mechanism in cancer cells and nuclear factor-kappaB (NF-κB) is one of them. The nuclear translocation of NF-κB p65 can induce the transcription of several genes involved in EMT induction. The present review describes NF-κB and EMT interaction in cancer cells and their association in cancer progression. Due to the oncogenic role NF-κB signaling, its activation enhances metastasis of tumor cells via EMT induction. This has been confirmed in various cancers including brain, breast, lung and gastric cancers, among others. The ZEB1/2, transforming growth factor-β, and Slug as inducers of EMT undergo upregulation by NF-κB to promote metastasis of tumor cells. After EMT induction driven by NF-κB, a significant decrease occurs in E-cadherin levels, while N-cadherin and vimentin levels undergo an increase. The noncoding RNAs can potentially also function as upstream mediators and modulate NF-κB/EMT axis in cancers. Moreover, NF-κB/EMT axis is involved in mediating drug resistance in tumor cells. Thus, suppressing NF-κB/EMT axis can also promote the sensitivity of cancer cells to chemotherapeutic agents.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sam Saghari
- Department of Health Services Management, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farzaneh Bassiri
- Department of Biology, Fars Science and Research Branch, Islamic Azad University, Fars, Iran.,Department of Biology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Rasoul Raesi
- PhD in Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology and Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Yong Loo Lin School of Medicine, NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
14
|
Ruan Y, Chen L, Xie D, Luo T, Xu Y, Ye T, Chen X, Feng X, Wu X. Mechanisms of Cell Adhesion Molecules in Endocrine-Related Cancers: A Concise Outlook. Front Endocrinol (Lausanne) 2022; 13:865436. [PMID: 35464064 PMCID: PMC9021432 DOI: 10.3389/fendo.2022.865436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Chemotherapy is a critical treatment for endocrine-related cancers; however, chemoresistance and disease recurrence remain a challenge. The interplay between cancer cells and the tumor microenvironment via cell adhesion molecules (CAMs) promotes drug resistance, known as cell adhesion-mediated drug resistance (CAM-DR). CAMs are cell surface molecules that facilitate cell-to-cell or cell-to-extracellular matrix binding. CAMs exert an adhesion effect and trigger intracellular signaling that regulates cancer cell stemness maintenance, survival, proliferation, metastasis, epithelial-mesenchymal transition, and drug resistance. To understand these mechanisms, this review focuses on the role of CD44, cadherins, selectins, and integrins in CAM-DR in endocrine-related cancers.
Collapse
Affiliation(s)
- Yongsheng Ruan
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Yongsheng Ruan, ; Xuedong Wu,
| | - Libai Chen
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Danfeng Xie
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tingting Luo
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yiqi Xu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tao Ye
- Department of Endocrinology, Affiliated Baoan Hospital of Shenzhen, Southern Medical University, Shenzhen, China
| | - Xiaona Chen
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoqin Feng
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuedong Wu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Yongsheng Ruan, ; Xuedong Wu,
| |
Collapse
|