1
|
Zhou L, Zhang J, Zhao K, Chen B, Sun Z. Natural products modulating MAPK for CRC treatment: a promising strategy. Front Pharmacol 2025; 16:1514486. [PMID: 40110122 PMCID: PMC11919913 DOI: 10.3389/fphar.2025.1514486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/03/2025] [Indexed: 03/22/2025] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumor of the digestive system, and the pathogenic mechanism is still unclear, mostly related to genetics, immunity, inflammation, and abnormal activation of tumor-related signaling pathways. MAPK belongs to the Ser/Thr kinase family, which plays an important role in complex cellular programs such as the regulation of cell proliferation, differentiation, apoptosis, angiogenesis, and tumor metastasis. Increasing evidence supports that MAPK activation is highly correlated with the risk of CRC. Targeting MAPK may be a therapeutic strategy, and natural products show great therapeutic potential in regulating MAPK-related proteins. In this paper, we searched PubMed, Web of Science and CNKI databases with keywords "colorectal cancer, natural products, MAPK pathway, ERK, P38, JNK" for relevant studies in the last 14 years from 2010 to 2024. This work retrieved 47 studies, aiming to provide new therapeutic strategies for CRC patients and lay the foundation for new drug development.
Collapse
Affiliation(s)
- Lin Zhou
- The First Clinical Medical College, Shandong University of traditional Chinese medicine, Jinan, China
| | - Jinlong Zhang
- The First Clinical Medical College, Shandong University of traditional Chinese medicine, Jinan, China
| | - Kangning Zhao
- The First Clinical Medical College, Shandong University of traditional Chinese medicine, Jinan, China
| | - Bo Chen
- Department of Gastroenterology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhen Sun
- The Second Gastroenterology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
2
|
Koochaki R, Amini E, Zarehossini S, Zareh D, Haftcheshmeh SM, Jha SK, Kesharwani P, Shakeri A, Sahebkar A. Alkaloids in Cancer therapy: Targeting the tumor microenvironment and metastasis signaling pathways. Fitoterapia 2024; 179:106222. [PMID: 39343104 DOI: 10.1016/j.fitote.2024.106222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/17/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
The use of phytomedicine in cancer therapy is a growing field of research that takes use of the medicinal properties of plant-derived compounds. Under the domain of cancer therapy and management, alkaloids, a prominent group of natural compounds, have showed significant potential. Alkaloids often affect a wide range of essential cellular mechanisms involved in cancer progression. These multi-targeting capabilities, can give significant advantages to alkaloids in overcoming resistance mechanisms. For example, berberine, an alkaloid found in Berberis species, is widely reported to induce apoptosis by activating caspases and regulating apoptotic pathways. Notably, alkaloids like as quinine have showed promise in inhibiting the formation of new blood vessels required for tumor growth. In addition, alkaloids have shown anti-proliferative and anticancer properties mostly via modulating key signaling pathways involved in metastasis, including those regulating epithelial-mesenchymal transition. This work provides a comprehensive overview of naturally occurring alkaloids that exhibit anticancer properties, with a specific emphasis on their underlying molecular mechanisms of action. Furthermore, many methods to modify previously reported difficult physicochemical properties using nanocarriers in order to enhance its systemic bioavailability have been discussed as well. This study also includes information on newly discovered alkaloids that are now being studied in clinical trials for their potential use in cancer treatment. Further, we have also briefly mentioned on the application of high-throughput screening and molecular dynamics simulation for acceleration on the identification of potent alkaloids based compounds to target and treat cancer.
Collapse
Affiliation(s)
- Raoufeh Koochaki
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Elaheh Amini
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Sara Zarehossini
- Department of Cell & Molecular Biology (genetic), Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Danial Zareh
- Department of Cell & Molecular Biology (genetic), Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Saurav Kumar Jha
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran..
| |
Collapse
|
3
|
Zhang YM, Li T, Xu CC, Qian JY, Guo H, Zhang X, Zhan ZJ, Lu JJ. Uncover the anticancer potential of lycorine. Chin Med 2024; 19:121. [PMID: 39245716 PMCID: PMC11382518 DOI: 10.1186/s13020-024-00989-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND Natural products have a long history in drug discovery. Lycorine is an alkaloid derived from Amaryllidaceae plants, demonstrating significant pharmacological potential. Lycorine and its hydrochloride salt, lycorine hydrochloride, have shown outstanding anticancer effects both in vitro and in vivo. PURPOSE This review aims to comprehensively summarize recent research advancements regarding the anticancer potential of lycorine and lycorine hydrochloride. It intends to elucidate current research limitations, optimization strategies, and future research directions to guide clinical translation. METHODS Various databases, e.g., Web of Science, PubMed, and Chinese National Knowledge Infrastructure, are systematically searched for relevant articles using keywords such as lycorine, cancer, pharmacokinetics, and toxicity. The retrieved literature is then categorized and summarized to provide an overview of the research advancements in the anticancer potential of lycorine and lycorine hydrochloride. RESULTS Lycorine and lycorine hydrochloride demonstrate significant anticancer activities against various types of cancer both in vitro and in vivo, employing diverse mechanisms such as inducing cell cycle arrest, triggering cellular senescence, regulating programmed cell death, inhibiting angiogenesis, suppressing metastasis, and modulating immune system. Furthermore, pharmacokinetic profiles and toxicity data are summarized. Additionally, this review discusses the druggability, limitations, optimization strategies, and target identification of lycorine, offering insights for future preclinical studies. CONCLUSION The anticancer effects and safety profile of lycorine and lycorine hydrochloride suggest promising potential for clinical applications. Further research on their in-depth mechanisms and optimization strategies targeting their limitations will enhance the understanding and druggability of lycorine and lycorine hydrochloride.
Collapse
Affiliation(s)
- Yan-Ming Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao SAR, 999078, China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao SAR, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macao SAR, 999078, China
| | - Chun-Cao Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao SAR, 999078, China
| | - Jia-Yu Qian
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hongwei Guo
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Xiaolei Zhang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zha-Jun Zhan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao SAR, 999078, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macao SAR, 999078, China.
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao SAR, 999078, China.
| |
Collapse
|
4
|
Zhuo FF, Li L, Liu TT, Liang XM, Yang Z, Zheng YZ, Luo QW, Lu JH, Liu D, Zeng KW, Tu PF. Lycorine promotes IDH1 acetylation to induce mitochondrial dynamics imbalance in colorectal cancer cells. Cancer Lett 2023; 573:216364. [PMID: 37648148 DOI: 10.1016/j.canlet.2023.216364] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
Isocitrate dehydrogenase (IDH) 1 and 2, as essential enzymes in energy metabolism, contribute to the survival and drug resistance of a variety of solid tumors, especially for colorectal cancer (CRC). However, the underlying molecular mechanism still remains unclear. In this study, IDH1 was identified as a crucial cellular target of a natural-derived anti-CRC small molecule lycorine, using the unbiased thermal proteome profiling (TPP) strategy. We found that lycorine directly targeted a unique C-terminal domain of IDH1, and disrupted IDH1 interaction with deacetylase sirtuin 1 (SIRT1), thereby significantly promoting IDH1 acetylation modification. Then, lycorine noticeably triggered oxidative stress in CRC cells to cause mitochondrial membranes injury, and subsequently facilitated mitochondrial fission. Specific knockdown of IDH1 or SIRT1 markedly aggrieved lycorine-mediated oxidative stress and mitochondrial fragmentation in CRC cells. Furthermore, the combination of lycorine and sirtuins blocker nicotinamide (NAM) exhibited a synergic therapeutic effect in CRC cells. Collectively, our results reveal that IDH1 may serve as a promising therapeutic target for CRC via pharmacologically driving oxidative stress-dependent mitochondrial dynamics imbalance.
Collapse
Affiliation(s)
- Fang-Fang Zhuo
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ling Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ting-Ting Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiao-Min Liang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhuo Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yong-Zhe Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qian-Wei Luo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
| | - Dan Liu
- Proteomics Laboratory, Medical and Healthy Analytical Center, Peking University Health Science Center, Beijing 100191, China
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Peng-Fei Tu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
5
|
Sun X, Li Y, Yu H, Jin X, Ma X, Cheng Y, Wei Y, Wang Y. Evaluation on the inclusion behavior of β-cyclodextrins with lycorine and its hydrochloride. J Mol Liq 2023; 379:121658. [PMID: 36969830 PMCID: PMC10023205 DOI: 10.1016/j.molliq.2023.121658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/06/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023]
Abstract
Lycorine (Lyc) and its hydrochloride (Lyc∙HCl) as effective drugs can fight against many diseases including novel coronavirus (COVID-19) based on their antiviral and antitumor mechanism. Beta-cyclodextrin (β-CD) is considered a promising carrier in improving its efficacy while minimizing cytotoxicity due to the good spatial compatibility with Lyc. However, the detailed mechanism of inclusion interaction still remains to be further evaluated. In this paper, six inclusion complexes based on β-CDs, Lyc and Lyc∙HCl were processed through ultrasound in the mixed solvent of ethanol and water, and their inclusion behavior was characterized after lyophilization. It was found that the inclusion complexes based on sulfobutyl-beta-cyclodextrin (SBE-β-CD) and Lyc∙HCl had the best encapsulation effect among prepared inclusion complexes, which may be attributed to the electrostatic interaction between sulfonic group of SBE-β-CD and quaternary amino group of Lyc∙HCl. Moreover, the complexes based on SBE-β-CD displayed pH-sensitive drug release property, good solubilization, stability and blood compatibility, indicating their potential as suitable drug carriers for Lyc and Lyc∙HCl.
Collapse
Affiliation(s)
- Xinyue Sun
- Department of Chemistry, School of Science, Tianjin University, 300354, China
| | - Yuan Li
- Department of Chemistry, School of Science, Tianjin University, 300354, China
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoning Jin
- Department of Chemistry, School of Science, Tianjin University, 300354, China
| | - Xiaofei Ma
- Department of Chemistry, School of Science, Tianjin University, 300354, China
| | - Yue Cheng
- Department of Chemistry, School of Science, Tianjin University, 300354, China
| | - Yuping Wei
- Department of Chemistry, School of Science, Tianjin University, 300354, China
| | - Yong Wang
- Department of Chemistry, School of Science, Tianjin University, 300354, China
| |
Collapse
|
6
|
Zou L, Bao W, Gao Y, Chen M, Wu Y, Wang S, Li C, Zhang J, Zhang D, Wang Q, Zhu A. Integrated Analysis of Transcriptome and microRNA Profile Reveals the Toxicity of Euphorbia Factors toward Human Colon Adenocarcinoma Cell Line Caco-2. Molecules 2022; 27:molecules27206931. [PMID: 36296525 PMCID: PMC9608949 DOI: 10.3390/molecules27206931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/22/2022] Open
Abstract
Euphorbia factors, lathyrane-type diterpenoids isolated from the medical herb Euphorbia lathyris L. (Euphorbiaceae), have been associated with intestinal irritation toxicity, but the mechanisms underlying this phenomenon are still unknown. The objective of this study was to evaluate the transcriptome and miRNA profiles of human colon adenocarcinoma Caco-2 cells in response to Euphorbia factors L1 (EFL1) and EFL2. Whole transcriptomes of mRNA and microRNA (miRNA) were obtained using second generation high-throughput sequencing technology in response to 200 μM EFL treatment for 72 h, and the differentially expressed genes and metabolism pathway were enriched. Gene structure changes were analyzed by comparing them with reference genome sequences. After 72 h of treatment, 16 miRNAs and 154 mRNAs were differently expressed between the EFL1 group and the control group, and 47 miRNAs and 1101 mRNAs were differentially expressed between the EFL2 group and the control. Using clusters of orthologous protein enrichment, the sequenced mRNAs were shown to be mainly involved in transcription, post-translational modification, protein turnover, chaperones, signal transduction mechanisms, intracellular trafficking, secretion, vesicular transport, and the cytoskeleton. The differentially expressed mRNA functions and pathways were enriched in transmembrane transport, T cell extravasation, the IL-17 signaling pathway, apoptosis, and the cell cycle. The differentially expressed miRNA EFLs caused changes in the structure of the gene, including alternative splicing, insertion and deletion, and single nucleotide polymorphisms. This study reveals the underlying mechanism responsible for the toxicity of EFLs in intestinal cells based on transcriptome and miRNA profiles of gene expression and structure.
Collapse
Affiliation(s)
- Lingyue Zou
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Wenqiang Bao
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Yadong Gao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China
- Fujian Provincial Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou 350001, China
| | - Mengting Chen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Yajiao Wu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Shuo Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China
| | - Chutao Li
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Jian Zhang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Dongcheng Zhang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China
- Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China
- Correspondence: (Q.W.); (A.Z.)
| | - An Zhu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
- Correspondence: (Q.W.); (A.Z.)
| |
Collapse
|
7
|
Amaryllidaceae Alkaloids Decrease the Proliferation, Invasion, and Secretion of Clinically Relevant Cytokines by Cultured Human Colon Cancer Cells. Biomolecules 2022; 12:biom12091267. [PMID: 36139106 PMCID: PMC9496155 DOI: 10.3390/biom12091267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 12/30/2022] Open
Abstract
Alkaloids isolated from members of the Amaryllidaceae plant family are promising anticancer agents. The purpose of the current study was to determine if the isocarbostyrils narciclasine, pancratistatin, lycorane, lycorine, crinane, and haemanthamine inhibit phenomena related to cancer progression in vitro. To achieve this, we examined the proliferation, adhesion, and invasion of cultured human colon cancer cells via MTT assay and Matrigel-coated Boyden chambers. In addition, Luminex assays were used to quantify the secretion of matrix metalloproteinases (MMP) and cytokines associated with poor clinical outcomes. We found that all alkaloids decreased cell proliferation regardless of TP53 status, with narciclasine exhibiting the greatest potency. The effects on cell proliferation also appear to be specific to cancer cells. Narciclasine, lycorine, and haemanthamine decrease both adhesion and invasion but with various potencies depending on the cell line. In addition, narciclasine, lycorine, and haemanthamine decreased the secretion of MMP-1, -2, and -7, as well as the secretion of the cytokines pentraxin 3 and vascular endothelial growth factor. In conclusion, the present study shows that Amaryllidaceae alkaloids decrease phenomena and cytokines associated with colorectal cancer progression, supporting future investigations regarding their potential as multifaceted drug candidates.
Collapse
|
8
|
Lv F, Li X, Wang Y. Lycorine inhibits angiogenesis by docking to PDGFRα. BMC Cancer 2022; 22:873. [PMID: 35948939 PMCID: PMC9364594 DOI: 10.1186/s12885-022-09929-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 07/22/2022] [Indexed: 11/29/2022] Open
Abstract
Lycorine (Lyc) is a natural alkaloid derived from medicinal plants of the Amaryllidaceae family. Lyc has been reported to inhibit the recurrence and metastasis of different kinds of tumors. However, Lyc’s effect on angiogenesis and its specific mechanism are still not clear. This study was designed to test the antiangiogenesis effect of Lyc and to explore the possible mechanisms. We performed cell experiments to confirm Lyc’s inhibitory effect on angiogenesis and employed sunitinib as a positive control. Moreover, the synergistic effect of Lyc and sunitinib was also explored. Next, we conducted bioinformatics analyses to predict the potential targets of Lyc and verified them by western blotting and immunofluorescence. Molecular docking, kinase activity assays, Biacore assays and cellular thermal shift assays (CETSAs) were applied to elucidate the mechanism by which Lyc inhibited target activity. Lyc inhibited angiogenesis in human umbilical vein endothelial cells (HUVECs). Employing bioinformatics, we found that Lyc’s target was PDGFRα and that Lyc attenuated PDGFRα phosphorylation. We also found that Lyc inhibited PDGFRα activation by docking to it to restrain its activity. Additionally, Lyc significantly inhibited PDGF-AA-induced angiogenesis. This study provides new insights into the molecular functions of Lyc and indicates its potential as a therapeutic agent for tumor angiogenesis.
Collapse
Affiliation(s)
- Fei Lv
- Department of Oncology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110000, Liaoning Province, China
| | - XiaoQi Li
- Department of Oncology III, People's Hospital of Liaoning Provinve, Shenyang, , Liaoning, China
| | - Ying Wang
- Department of Oncology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110000, Liaoning Province, China.
| |
Collapse
|
9
|
Dong Y, Lv D, Zhao Z, Xu Z, Hu Z, Tang B. Lycorine Inhibits Hypertrophic Scar Formation by Inducing ROS-Mediated Apoptosis. Front Bioeng Biotechnol 2022; 10:892015. [PMID: 35685086 PMCID: PMC9171077 DOI: 10.3389/fbioe.2022.892015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Hypertrophic scar (HS) is a fibrotic cutaneous disease with few effective therapies. Lycorine is a drug with pro-apoptotic ability and anti-fibrosis potential. This study aimed to test whether lycorine could trigger the apoptosis of hypertrophic scar fibroblasts (HSFs) to inhibit HS formation. Methods: The proapoptotic and anti-fibrosis effects of lycorine on the viability and apoptosis of human primary HSFs and their reactive oxygen species (ROS) production as well as a rabbit ear model of HS were determined by CCK-8, flow cytometry, Western blot, immunofluorescence, transwell migration, collagen gel contraction assays. Results: Lycorine treatment selectively decreased the viability of HSFs, and induced their apoptosis, but not normal fibroblasts (NFs). Lycorine treatment increased the relative levels of Bax and cleaved PARP expression, cytochrome C cytoplasm translocation, but decreased Bcl-2, caspase-3 and caspase-9 expression, the mitochondrial membrane potential (MMP) in HSFs. Lycorine inhibited the migration and contraction of HSFs, and reduced the expression of collagen I, collagen III and α-SMA. Mechanistically, lycorine treatment stimulated high levels of ROS production, leading to apoptosis of HSFs while treatment with NAC, a ROS inhibitor, significantly mitigated or abrogated the pro-apoptotic and antifibrotic activity of lycorine in HSFs. Moreover, lycorine treatment mitigated the severity of HS in rabbit ears by inducing fibroblast apoptosis. Conclusion: These results indicate that lycorine has a potent anti-fibrotic activity and is a potential drug for intervention of HS.
Collapse
Affiliation(s)
- Yunxian Dong
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dongming Lv
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zirui Zhao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhongye Xu
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhicheng Hu
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bing Tang
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Uher M, Hroch M, Peřinová R, Havelek R, Křoustková J, Řezáčová M, Muthná D, Koutová D, Kuneš J, Cahlíková L. Semisynthetic derivatives of haemanthamine and their in vitro antiproliferative activity evaluation against a panel of human cell lines. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
11
|
Zhang F, Zhou X, Zou H, Liu L, Li X, Ruan Y, Xie Y, Shi M, Xiao Y, Wang Y, Zhou Y, Wu Y, Guo B. SAA1 is transcriptionally activated by STAT3 and accelerates renal interstitial fibrosis by inducing endoplasmic reticulum stress. Exp Cell Res 2021; 408:112856. [PMID: 34597680 DOI: 10.1016/j.yexcr.2021.112856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 02/07/2023]
Abstract
Renal interstitial fibrosis (RIF) is the common irreversible pathway by which chronic kidney disease (CKD) progresses to the end stage. The transforming growth factor-β (TGF-β)/signal transducer and activator of transcription 3 (STAT3) signaling pathway is a common factor leading to inflammation-mediated RIF, but its downstream regulatory mechanism is still unclear. Bioinformatics analysis predicted that serum amyloid A protein 1 (SAA1) was one of the target genes for transcriptional activation of STAT3 signaling. As an acute phase reaction protein, SAA1 plays an important role in many inflammatory reactions, and research has suggested that SAA1 is significantly elevated in the serum of patients with CKD. In this research, multiple experiments were performed to investigate the role of SAA1 in the process of RIF. SAA1 was abnormally highly expressed in kidney tissue from individuals who underwent unilateral ureteral obstruction (UUO) and TGF-β-induced HK2 cells, and the abnormal expression was directly related to the transcriptional activation of STAT3. Additionally, SAA1 can directly target and bind valosin-containing protein (VCP)-interacting membrane selenoprotein (VIMP) to inhibit the function of the Derlin-1/VCP/VIMP complex, preventing the transportation and degradation of the misfolded protein, resulting in endoplasmic reticulum (ER) stress characterized by an increase in glucose-regulated protein 78 (GRP78) levels and ultimately promoting the occurrence and development of RIF.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
| | - Xingcheng Zhou
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
| | - Huimei Zou
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China; School of Nursing, Guizhou Medical University, Guiyang, 550025, China
| | - Lirong Liu
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550025, China; Department of Clinical Hematology, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550025, China
| | - Xiaoying Li
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China; Department of Nephrology, Guiyang First People's Hospital, Guiyang, 550025, China
| | - Yuanyuan Ruan
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
| | - Ying Xie
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
| | - Mingjun Shi
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
| | - Ying Xiao
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
| | - Yuanyuan Wang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
| | - Yuxia Zhou
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
| | - Yuansheng Wu
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
| | - Bing Guo
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
12
|
Du Y, Zhao HC, Zhu HC, Jin Y, Wang L. Ferroptosis is involved in the anti-tumor effect of lycorine in renal cell carcinoma cells. Oncol Lett 2021; 22:781. [PMID: 34594422 PMCID: PMC8456505 DOI: 10.3892/ol.2021.13042] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/14/2021] [Indexed: 12/13/2022] Open
Abstract
Renal cell carcinoma (RCC) is a most common malignant tumor in the genitourinary system. Studies have shown that Lycorine has promising anticancer activities with minor side effects. However, the effect of lycorine on the proliferation of RCC cells and its underlying anti-tumor mechanism have not yet been fully elucidated. The human renal cancer cell lines 786-O, A498 and Caki-1 were cultured and treated with different concentrations of lycorine or ferrostatin-1, a ferroptosis inhibitor. Cell viability and colony formation assays were used to measure cell proliferation. The 5-, 12- and 15-HETE hydroxyeicosatetraenoic acid (HETE) and MDA levels, as well as the reduced to oxidized glutathione (GHS/GSSG) ratio, were analyzed. Western blot analysis was used to detect the expression of glutathione peroxidase 4 (GPX4) and acyl-CoA synthetase long chain family member 4 (ACSL4), which are key markers of ferroptosis. Transmission electron microscopy was used to observe the morphological features associated with ferroptosis. Lycorine was found to inhibit the proliferation of RCC cells. After lycorine treatment, the expression levels of GPX4 in RCC cells decreased, whereas those of ACSL4 increased. Lycorine induced the expression of 5-HETE, 12-HETE, 15-HETE and MDA in RCC cells, and reduced the GSH/GSSG ratio. In addition, ferrostatin-1 could prevent lycorine-induced ferroptosis in RCC cells.
Collapse
Affiliation(s)
- Yang Du
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430000, P.R. China
| | - Hong-Chao Zhao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430000, P.R. China
| | - Heng-Cheng Zhu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430000, P.R. China
| | - Yao Jin
- Department of Surgery, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430000, P.R. China
| |
Collapse
|