1
|
Xiong Y, Bao L, Ma Y, Zhang L, Qin C, Huang L. Wen-Yi and Chinese medicine: Why we need to pay attention? Sci Bull (Beijing) 2024; 69:1617-1622. [PMID: 38704357 DOI: 10.1016/j.scib.2024.03.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 05/06/2024]
Affiliation(s)
- Yibai Xiong
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China; Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Linlin Bao
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| | - Yan Ma
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ling Zhang
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China; Changping National Laboratory (CPNL), Beijing 102206, China; National Center for Technology and Innovation of Animal Model, Beijing 100021, China.
| | - Luqi Huang
- China Academy of Chinese Medical Sciences, Beijing 100700, China; National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
2
|
Gao Q, Wu H, Chen M, Gu X, Wu Q, Xie T, Sui X. Active metabolites combination therapies: towards the next paradigm for more efficient and more scientific Chinese medicine. Front Pharmacol 2024; 15:1392196. [PMID: 38698817 PMCID: PMC11063311 DOI: 10.3389/fphar.2024.1392196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Traditional Chinese medicine (TCM) formulae have been studied extensively in various human diseases and have proven to be effective due to their multi-component, multi-target advantage. However, its active metabolites are not clear and the specific mechanisms are not well established, which limits its scientific application. Recently, combination therapies are attracting increasing attention from the scientific community in the past few years and are considered as the next paradigm in drug discovery. Here, we tried to define a new concept of "active metabolites combination therapies (AMCT)" rules to elucidate how the bioactive metabolites from TCMs to produce their synergistic effects in this review. The AMCT rules integrate multidisciplinary technologies like molecular biology, biochemistry, pharmacology, analytical chemistry and pharmacodynamics, etc. Meanwhile, emerging technologies such as multi-omics combined analysis, network analysis, artificial intelligence conduce to better elucidate the mechanisms of these combination therapies in disease treatment, which provides new insights for the development of novel active metabolites combination drugs. AMCT rules will hopefully further guide the development of novel combination drugs that will promote the modernization and international needs of TCM.
Collapse
Affiliation(s)
- Quan Gao
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, China
- College of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Hao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, China
- College of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Min Chen
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Xidong Gu
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Tian Xie
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, China
- College of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Xinbing Sui
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, China
- College of Pharmacy, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
3
|
Chen CY, Zhang W, Xu XR, Pu YT, Tu YD, Peng W, Yao X, Zhou S, Fang BJ. Efficacy and Safety of Huashi Baidu Granules in Treating Patients with SARS-CoV-2 Omicron Variant: A Single-Center Retrospective Cohort Study. Chin J Integr Med 2024; 30:107-114. [PMID: 37222827 PMCID: PMC10206345 DOI: 10.1007/s11655-023-3549-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2023] [Indexed: 05/25/2023]
Abstract
OBJECTIVE To evaluate the efficacy and safety of Huashi Baidu Granules (HSBD) in treating patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant. METHODS A single-center retrospective cohort study was conducted during COVID-19 Omicron epidemic in the Mobile Cabin Hospital of Shanghai New International Expo Center from April 1st to May 23rd, 2022. All COVID-19 patients with asymptomatic or mild infection were assigned to the treatment group (HSBD users) and the control group (non-HSBD users). After propensity score matching in a 1:1 ratio, 496 HSBD users of treatment group were matched by propensity score to 496 non-HSBD users. Patients in the treatment group were administrated HSBD (5 g/bag) orally for 1 bag twice a day for 7 consecutive days. Patients in the control group received standard care and routine treatment. The primary outcomes were the negative conversion time of nucleic acid and negative conversion rate at day 7. Secondary outcomes included the hospitalized days, the time of the first nucleic acid negative conversion, and new-onset symptoms in asymptomatic patients. Adverse events (AEs) that occurred during the study were recorded. Further subgroup analysis was conducted in vaccinated (378 HSBD users and 390 non-HSBD users) and unvaccinated patients (118 HSBD users and 106 non-HSBD users). RESULTS The median negative conversion time of nucleic acid in the treatment group was significantly shortened than the control group [3 days (IQR: 2-5 days) vs. 5 days (IQR: 4-6 days); P<0.01]. The negative conversion rate of nucleic acid in the treatment group were significantly higher than those in the control group at day 7 (91.73% vs. 86.90%, P=0.014). Compared with the control group, the hospitalized days in the treatment group were significantly reduced [10 days (IQR: 8-11 days) vs. 11 days (IQR: 10.25-12 days); P<0.01]. The time of the first nucleic acid negative conversion had significant differences between the treatment and control groups [3 days (IQR: 2-4 days) vs. 5 days (IQR: 4-6 days); P<0.01]. The incidence of new-onset symptoms including cough, pharyngalgia, expectoration and fever in the treatment group were lower than the control group (P<0.05 or P<0.01). In the vaccinated patients, the median negative conversion time and hospitalized days were significantly shorter than the control group after HSDB treatment [3 days (IQR: 2-5 days) vs. 5 days (IQR: 4-6 days), P<0.01; 10 days (IQR: 8-11 days) vs. 11 days (IQR: 10-12 days), P<0.01]. In the unvaccinated patients, HSBD treatment efficiently shorten the median negative conversion time and hospitalized days [4 days (IQR: 2-6 days) vs. 5 days (IQR: 4-7 days), P<0.01; 10.5 days (IQR: 8.75-11 days) vs. 11.0 days (IQR: 10.75-13 days); P<0.01]. No serious AEs were reported during the study. CONCLUSION HSBD treatment significantly shortened the negative conversion time of nuclear acid, the length of hospitalization, and the time of the first nucleic acid negative conversion in patients infected with SARS-COV-2 Omicron variant (Trial registry No. ChiCTR2200060472).
Collapse
Affiliation(s)
- Cai-Yu Chen
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Wen Zhang
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xiang-Ru Xu
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yu-Ting Pu
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Ya-Dan Tu
- Department of Classical Traditional Chinese Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Wei Peng
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xuan Yao
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Shuang Zhou
- Acupuncture and Massage College, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bang-Jiang Fang
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
- Institute of Emergency and Critical Care Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
4
|
Chen J, Zhou X, Fu L, Xu H. Natural Product-Based Screening for Lead Compounds Targeting SARS CoV-2 M pro. Pharmaceuticals (Basel) 2023; 16:767. [PMID: 37242550 PMCID: PMC10222270 DOI: 10.3390/ph16050767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Drugs that cure COVID-19 have been marketed; however, this disease continues to ravage the world without becoming extinct, and thus, drug discoveries are still relevant. Since Mpro has known advantages as a drug target, such as the conserved nature of the active site and the absence of homologous proteins in the body, it receives the attention of many researchers. Meanwhile, the role of traditional Chinese medicine (TCM) in the control of epidemics in China has also led to a focus on natural products, with the hope of finding some promising lead molecules through screening. In this study, we selected a commercial library of 2526 natural products from plants, animals and microorganisms with known biological activity for drug discovery, which had previously been reported for compound screening of the SARS CoV-2 S protein, but had not been tested on Mpro. This library contains compounds from a variety of Chinese herbs, including Lonicerae Japonicae Flos, Forsythiae Fructus and Scutellariae Radix, which are derived from traditional Chinese medicine prescriptions that have been shown to be effective against COVID-19. We used the conventional FRET method for the initial screening. After two rounds of selection, the remaining 86 compounds were divided into flavonoids, lipids, phenylpropanoids, phenols, quinones, alkaloids, terpenoids and steroids according to the skeleton structures, with inhibition rates greater than 70%. The top compounds in each group were selected to test the effective concentration ranges; the IC50 values were as follows: (-)-gallocatechin gallate (1.522 ± 0.126 μM), ginkgolic acid C15:1 (9.352 ± 0.531 μM), hematoxylin (1.025 ± 0.042 μM), fraxetin (2.486 ± 0.178 μM), wedelolactone (1.003 ± 0.238 μM), hydroxytyrosol acetate (3.850 ± 0.576 μM), vanitiolide (2.837 ± 0.225 μM), β,β-dimethylacrylalkannin (2.731 ± 0.308 μM), melanin (7.373 ± 0.368 μM) and cholesteryl sodium sulfate (2.741 ± 0.234μM). In the next step, we employed two biophysical techniques, SPR and nanoDSF, to obtain KD/Kobs values: hematoxylin (0.7 μM), (-)-gallocatechin gallate (126 μM), ginkgolic acid C15:1 (227 μM), wedelolactone (0.9770 μM), β,β-dimethylacrylalkannin (1.9004 μM,), cholesteryl sodium sulfate (7.5950 μM) and melanin (11.5667 μM), which allowed better assessments of the binding levels. Here, seven compounds were the winners. Then, molecular docking experiments were specially performed by AutoDock Vina to analyze the mode of interactions within Mpro and ligands. We finally formulated the present in silico study to predict pharmacokinetic parameters as well as drug-like properties, which is presumably the step that tells humans whether the compounds are drug-like or not. Moreover, hematoxylin, melanin, wedelolactone, β,β-dimethylacrylalkannin and cholesteryl sodium sulfate are in full compliance with the "Lipinski" principle and possess reasonable ADME/T properties, they have a greater potential of being lead compounds. The proposed five compounds are also the first to be found to have potential inhibitory effects on SARS CoV-2 Mpro. We hope that the results in this manuscript may serve as benchmarks for the above potentials.
Collapse
Affiliation(s)
- Jie Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- School of Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiang Zhou
- Key Laboratory for Research and Evaluation of Traditional Chinese Medicine, National Medical Products Administration, China Academy of Chinese Medical Sciences, Beijing 100700, China
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Lifeng Fu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Haiyu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key Laboratory for Research and Evaluation of Traditional Chinese Medicine, National Medical Products Administration, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
5
|
Xu H, Li S, Liu J, Cheng J, Kang L, Li W, Zhong Y, Wei C, Fu L, Qi J, Zhang Y, You M, Zhou Z, Zhang C, Su H, Yao S, Zhou Z, Shi Y, Deng R, Lv Q, Li F, Qi F, Chen J, Zhang S, Ma X, Xu Z, Li S, Xu Y, Peng K, Shi Y, Jiang H, Gao GF, Huang L. Bioactive compounds from Huashi Baidu decoction possess both antiviral and anti-inflammatory effects against COVID-19. Proc Natl Acad Sci U S A 2023; 120:e2301775120. [PMID: 37094153 PMCID: PMC10160982 DOI: 10.1073/pnas.2301775120] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/14/2023] [Indexed: 04/26/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is an ongoing global health concern, and effective antiviral reagents are urgently needed. Traditional Chinese medicine theory-driven natural drug research and development (TCMT-NDRD) is a feasible method to address this issue as the traditional Chinese medicine formulae have been shown effective in the treatment of COVID-19. Huashi Baidu decoction (Q-14) is a clinically approved formula for COVID-19 therapy with antiviral and anti-inflammatory effects. Here, an integrative pharmacological strategy was applied to identify the antiviral and anti-inflammatory bioactive compounds from Q-14. Overall, a total of 343 chemical compounds were initially characterized, and 60 prototype compounds in Q-14 were subsequently traced in plasma using ultrahigh-performance liquid chromatography with quadrupole time-of-flight mass spectrometry. Among the 60 compounds, six compounds (magnolol, glycyrrhisoflavone, licoisoflavone A, emodin, echinatin, and quercetin) were identified showing a dose-dependent inhibition effect on the SARS-CoV-2 infection, including two inhibitors (echinatin and quercetin) of the main protease (Mpro), as well as two inhibitors (glycyrrhisoflavone and licoisoflavone A) of the RNA-dependent RNA polymerase (RdRp). Meanwhile, three anti-inflammatory components, including licochalcone B, echinatin, and glycyrrhisoflavone, were identified in a SARS-CoV-2-infected inflammatory cell model. In addition, glycyrrhisoflavone and licoisoflavone A also displayed strong inhibitory activities against cAMP-specific 3',5'-cyclic phosphodiesterase 4 (PDE4). Crystal structures of PDE4 in complex with glycyrrhisoflavone or licoisoflavone A were determined at resolutions of 1.54 Å and 1.65 Å, respectively, and both compounds bind in the active site of PDE4 with similar interactions. These findings will greatly stimulate the study of TCMT-NDRD against COVID-19.
Collapse
Affiliation(s)
- Haiyu Xu
- Institute of Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing100700, China
| | - Shufen Li
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan430207, China
| | - Jiayuan Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
| | - Jinlong Cheng
- Chinese Academy of Sciences (CAS) Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing100101, China
| | - Liping Kang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, China
| | - Weijie Li
- Institute of Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing100700, China
| | - Yute Zhong
- Institute of Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing100700, China
| | - Chaofa Wei
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, China
| | - Lifeng Fu
- Chinese Academy of Sciences (CAS) Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing100101, China
| | - Jianxun Qi
- Chinese Academy of Sciences (CAS) Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing100101, China
- Beijing Life Science Academy, Beijing102209, China
| | - Yulan Zhang
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan430207, China
| | - Miaomiao You
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan430207, China
| | - Zhenxing Zhou
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan430207, China
| | - Chongtao Zhang
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan430207, China
| | - Haixia Su
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
| | - Sheng Yao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
| | - Zhaoyin Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
| | - Yulong Shi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
| | - Ran Deng
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Key Laboratory of Comparative Medicine for Human Diseases of the National Health Commission, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100021, China
| | - Qi Lv
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Key Laboratory of Comparative Medicine for Human Diseases of the National Health Commission, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100021, China
| | - Fengdi Li
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Key Laboratory of Comparative Medicine for Human Diseases of the National Health Commission, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100021, China
| | - Feifei Qi
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Key Laboratory of Comparative Medicine for Human Diseases of the National Health Commission, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100021, China
| | - Jie Chen
- Institute of Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing100700, China
| | - Siqin Zhang
- Institute for Traditional Chinese Medicine-X, Ministry of Education Key Laboratory of Bioinformatics/Bioinformatics Division, Beijing National Research Center for Information Science and Technology, Department of Automation, Tsinghua University, Beijing100084, China
| | - Xiaojing Ma
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, China
| | - Zhijian Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
| | - Shao Li
- Institute for Traditional Chinese Medicine-X, Ministry of Education Key Laboratory of Bioinformatics/Bioinformatics Division, Beijing National Research Center for Information Science and Technology, Department of Automation, Tsinghua University, Beijing100084, China
| | - Yechun Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
| | - Ke Peng
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan430207, China
| | - Yi Shi
- Chinese Academy of Sciences (CAS) Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing100101, China
- Beijing Life Science Academy, Beijing102209, China
| | - Hualiang Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
| | - George F. Gao
- Chinese Academy of Sciences (CAS) Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing100101, China
- Beijing Life Science Academy, Beijing102209, China
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, China
| |
Collapse
|
6
|
Pan B, Yin HW, Yu Y, Xiang X, Yu C, Yan XJ, Zhai XF, Bai Y, Hong J. Acceptance and attitude towards the traditional chinese medicine among asymptomatic COVID-19 patients in Shanghai Fangcang hospital. BMC Complement Med Ther 2023; 23:97. [PMID: 36997922 PMCID: PMC10061361 DOI: 10.1186/s12906-023-03922-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Abstract
Objective
The Coronavirus Disease 2019 (COVID-19) has brought severe damage to global health and socioeconomics. In China, traditional Chinese medicine (TCM) is the most important complementary and alternative medicine (CAM) and it has shown a beneficial role in the prevention and treatment of COVID-19. However, it is unknown whether patients are willing to accept TCM treatment. The objective of our study is to investigate the acceptance, attitude, and independent predictors of TCM among asymptomatic COVID-19 patients admitted to Shanghai fangcang hospital during the outbreak of the COVID-19 pandemic in Shanghai in 2022.
Methods
A cross-sectional study was conducted on asymptomatic COVID-19 patients in the largest fangcang hospital in Shanghai, China, from April 22, 2022, to May 25, 2022. Based on the literature review of previous similar studies, a self-report questionnaire was developed to assess the patients’ attitude and acceptance of TCM, and a multivariate logistic regression analysis was conducted to determine the independent predictors of TCM acceptance.
Results
A total of 1,121 patients completed the survey, of whom 91.35% were willing to accept CAM treatment whereas 8.65% of participants showed no willingness. Multivariate logistic regression analysis revealed that the patients who have received two doses of COVID-19 vaccine (OR = 2.069, 95%CI: 1.029–4.162, P = 0.041 vs. not received), understood the culture of TCM (OR = 2.293, 95%CI: 1.029–4.162, P = 0.014 vs. not understood), thought the TCM treatment is safe (OR = 2.856, 95%CI: 1.334–6.112, P = 0.007 vs. not thought), thought the TCM treatment is effective (OR = 2.724, 95%CI: 1.249–5.940, P = 0.012 vs. not thought), and those who informed their attending physician if using TCM for treatment (OR = 3.455, 95%CI:1.867–6.392, P < 0.001 vs. not informed) were more likely to accept TCM treatment. However, patients who thought TCM might delay your treatment (OR = 0.256, 95%CI: 0.142–0.462, P < 0.001 not thought) was an independent predictor for unwillingness to accept TCM treatment.
Conclusion
This study preliminarily investigated the acceptance, attitude, and predictors of intention to receive TCM among asymptomatic COVID-19 patients. It is recommended to increase the publicity of TCM, clarify the impact of TCM and communicate with attending doctors that meet the healthcare needs of asymptomatic COVID-19 patients.
Collapse
|
7
|
Li M, Zhu H, Liu Y, Lu Y, Sun M, Zhang Y, Shi J, Shi N, Li L, Yang K, Sun X, Liu J, Ge L, Huang L. Role of Traditional Chinese Medicine in Treating Severe or Critical COVID-19: A Systematic Review of Randomized Controlled Trials and Observational Studies. Front Pharmacol 2022; 13:926189. [PMID: 35910363 PMCID: PMC9336221 DOI: 10.3389/fphar.2022.926189] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/08/2022] [Indexed: 12/14/2022] Open
Abstract
Background: The coronavirus disease 2019 (COVID-19) continues to spread globally. Due to the higher risk of mortality, the treatment of severe or critical patients is a top priority. Traditional Chinese medicine (TCM) treatment has played an extremely important role in the fight against COVID-19 in China; a timely evidence summary on TCM in managing COVID-19 is crucial to update the knowledge of healthcare for better clinical management of COVID-19. This study aimed to assess the effects and safety of TCM treatments for severe/critical COVID-19 patients by systematically collecting and synthesizing evidence from randomized controlled trials (RCTs) and observational studies (e.g., cohort).Methods: We searched nine databases up to 19th March 2022 and the reference lists of relevant publications. Pairs of reviewers independently screened studies, extracted data of interest, and assessed risk of bias. We performed qualitative systematic analysis with visual presentation of results and compared the direction and distribution of effect estimates for each patient’s important outcome. We performed sensitivity analyses to observe the robustness of results by restricting analysis to studies with low risk of bias.Results: The search yielded 217,761 records, and 21 studies (6 RCTs and 15 observational studies) proved eligible. A total of 21 studies enrolled 12,981 severe/critical COVID-19 patients with a mean age of 57.21 years and a mean proportion of men of 47.91%. Compared with usual supportive treatments, the effect estimates of TCM treatments were consistent in direction, illustrating that TCM treatments could reduce the risk of mortality, rate of conversion to critical cases, and mechanical ventilation, and showed significant advantages in shortening the length of hospital stay, time to viral clearance, and symptom resolution. The results were similar when we restricted analyses to low-risk-bias studies. No serious adverse events were reported with TCM treatments, and no significant differences were observed between groups.Conclusion: Encouraging evidence suggests that TCM presents substantial advantages in treating severe/critical COVID-19 patients. TCM has a safety profile that is comparable to that of conventional treatment alone. TCMs have played an important role in China’s prevention and treatment of COVID-19, which sets an example of using traditional medicine in preventing and treating COVID-19 worldwide.
Collapse
Affiliation(s)
- Mengting Li
- Department of Social Medicine and Health Management, School of Public Health, Lanzhou University, Lanzhou, China
- Evidence Based Social Science Research Centre, School of Public Health, Lanzhou University, Lanzhou, China
| | - Hongfei Zhu
- Department of Social Medicine and Health Management, School of Public Health, Lanzhou University, Lanzhou, China
- Evidence Based Social Science Research Centre, School of Public Health, Lanzhou University, Lanzhou, China
| | - Yafei Liu
- Department of Social Medicine and Health Management, School of Public Health, Lanzhou University, Lanzhou, China
- Evidence Based Social Science Research Centre, School of Public Health, Lanzhou University, Lanzhou, China
| | - Yao Lu
- Department of Social Medicine and Health Management, School of Public Health, Lanzhou University, Lanzhou, China
- Evidence Based Social Science Research Centre, School of Public Health, Lanzhou University, Lanzhou, China
| | - Minyao Sun
- Evidence Based Nursing Centre, School of Nursing, Lanzhou University, Lanzhou, China
| | - Yuqing Zhang
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
- CEBIM (Center for Evidence Based Integrative Medicine)-Clarity Collaboration, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
- Nottingham Ningbo GRADE Center, The University of Nottingham Ningbo, Ningbo, China
| | - Jiaheng Shi
- China Center for Evidence Based Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Emergency, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Nannan Shi
- China Center for Evidence Based Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ling Li
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kehu Yang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- WHO Collaborating Center for Guideline Implementation and Knowledge Translation, Lanzhou, China
- Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| | - Xin Sun
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Xin Sun, ; Jie Liu, ; Long Ge, ; Luqi Huang,
| | - Jie Liu
- China Center for Evidence Based Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Oncology, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Xin Sun, ; Jie Liu, ; Long Ge, ; Luqi Huang,
| | - Long Ge
- Department of Social Medicine and Health Management, School of Public Health, Lanzhou University, Lanzhou, China
- Evidence Based Social Science Research Centre, School of Public Health, Lanzhou University, Lanzhou, China
- WHO Collaborating Center for Guideline Implementation and Knowledge Translation, Lanzhou, China
- Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
- *Correspondence: Xin Sun, ; Jie Liu, ; Long Ge, ; Luqi Huang,
| | - Luqi Huang
- China Center for Evidence Based Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Xin Sun, ; Jie Liu, ; Long Ge, ; Luqi Huang,
| |
Collapse
|