1
|
Kaushal K, Kapoor DU, Kumar S, Sony A, Viswanath A, Chaitanya MVNL, Singh M, Singh SK, Mazumder A. Natural sesquiterpene lactones in prostate cancer therapy: mechanisms and sources. Med Oncol 2025; 42:212. [PMID: 40372575 DOI: 10.1007/s12032-025-02740-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/18/2025] [Indexed: 05/16/2025]
Abstract
Prostate cancer is a condition characterized by the uncontrolled proliferation of abnormal cells inside the prostate gland, part of the male reproductive system. Prostate cancer is the most common cancer among men and the second largest cause of cancer-related mortality in the United States. A novel approach to treating advanced Prostate cancer has emerged, attributable to the enhanced effectiveness of new pharmacological agents sourced from natural origins and this has led to increased rates of global existence and progression-free survival. Sesquiterpene lactones and their derivatives are now used worldwide to create and manufacture innovative cancer therapeutics. A thorough search was performed according to PRISMA guidelines in SciMed, PubMed, and Google Scholar, focusing on publications published from 1999 to 2024. The safety, efficacy, and bioactivity of sesquiterpene lactones must be evaluated via clinical trials, in vitro studies, and in vivo research and data was rigorously gathered and validated to verify its accuracy and usefulness. Prostate cancer may be treated far more effectively using naturally occurring sesquiterpene lactone molecules. The most prominent sesquiterpene lactones identified were artemisinin, alantolactone, costunolide, helenalin, cynaropicrin, parthenolide, and inuviscolide, which are originated from botanical sources like Ferula penninervis, Tanacetum argenteum, Artemisia kopetdaghensis, Cichorium intybus, Carpesium divaricatum, and Leptocarpha rivularis. Numerous studies indicated that sesquiterpene lactones may treat cancer by modifying many cellular signaling pathways, including PI3K/AKT, MAPK, JNK, NF-κB, TNF-α, and STAT3. Sesquiterpene lactones were shown to be significant in suppressing the proliferation of prostate cancer cell lines (DU-145, PC-3, LNCaP, MR49F, and BPH-1) in both laboratory and clinical settings.
Collapse
Affiliation(s)
- Keshav Kaushal
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi, Grand Trunk Rd, Phagwara, Punjab, 144411, India
| | | | - Sanjesh Kumar
- Rakshpal Bahadur College of Pharmacy, Bareilly, U.P, India
| | - Anakha Sony
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682041, India
| | - Aswin Viswanath
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi, Grand Trunk Rd, Phagwara, Punjab, 144411, India.
| | - M V N L Chaitanya
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi, Grand Trunk Rd, Phagwara, Punjab, 144411, India.
| | - Mansi Singh
- Rakshpal Bahadur College of Pharmacy, Bareilly, U.P, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi, Grand Trunk Rd, Phagwara, Punjab, 144411, India
| | - Avijit Mazumder
- Noida Institute of Engineering and Technology(Pharmacy Institute), 19 Knowledge Park II, Institutional Area, Greater Noida, 201306, India
| |
Collapse
|
2
|
Lee E, Yang D, Hong JH. Prominent Naturally Derived Oxidative-Stress-Targeting Drugs and Their Applications in Cancer Treatment. Antioxidants (Basel) 2025; 14:49. [PMID: 39857383 PMCID: PMC11760868 DOI: 10.3390/antiox14010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
The relationship between oxidative stress and cancer has been extensively studied and highlighted, along with its role in various aspects of angiogenesis. The modulation of oxidative levels and the adaptive mechanisms of oxidative stress in cancer systems are attractive research themes for developing anti-cancer strategies. Reactive oxygen species (ROS) are involved in various pathophysiological processes and play crucial roles in DNA damage and angiogenesis. Although cancer cells have developed various adaptive defense mechanisms against oxidative stress, excessive ROS production has been proposed as an anti-cancer strategy to induce cellular apoptosis. In particular, natural-source-based antioxidants have been identified as effective against cancers, and various delivery platforms have been developed to enhance their efficacy. In this review, we highlighted the anti-cancer components (plumbagin, quercetin, resveratrol, curcumin, xanthatin, carvacrol, telmisartan, and sulforaphane) that modulate ROS levels and the recent targeting platforms used to increase the application of anti-cancer drugs and the developed delivery platforms with diverse mechanisms of action. Further, we summarized the actual doses used and the effects of these drug candidates in various cancer systems. Overall, this review provides beneficial research themes for expanding cancer-targeting fields and addressing limited applications in diverse cancer types.
Collapse
Affiliation(s)
| | - Dongki Yang
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Republic of Korea;
| | - Jeong Hee Hong
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Republic of Korea;
| |
Collapse
|
3
|
Li C, Li Y, Wang J, Lu F, Zheng L, Yang L, Sun W, Ro DK, Qu X, Wu Y, Zhang Y. An independent biosynthetic route to frame a xanthanolide-type sesquiterpene lactone in Asteraceae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17199. [PMID: 39642193 DOI: 10.1111/tpj.17199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/08/2024]
Abstract
Xanthanolides, also described as seco-guaianolides, are unique sesquiterpene lactones (STLs) with diverse bioactivities. Most of xanthanolides are 12,8-olides based on the position of their lactone ring. The biosynthetic pathway leading to xanthanolides has hitherto been elusive, especially how nature creates the xanthane skeleton is a long-standing question. This study reports the elucidation of a complete biosynthetic pathway to the important 12,8-xanthanolide 8-epi-xanthatin. The xanthane-type backbone is directly derived from the central precursor germacrene-type sesquiterpene, germacrene A acid, via oxidative rearrangement, catalyzed by an unusual cytochrome P450. Subsequently, a 12,8-lactone ring is formed within this xanthane-type backbone resulting in xanthanolides. The biosynthetic pathway for xanthanolides contrasts with the previously unified biosynthetic route for diverse 12,6-guaianolides, in which a 12,6-lactone ring formation precedes the transformation of a germacrene-type skeleton into a guaiane-type structure. The discovery of the full biosynthetic pathway of 8-epi-xanthantin opens new opportunities for producing xanthanolides in microbial organisms using synthetic biology strategies.
Collapse
Affiliation(s)
- Changfu Li
- Shanghai Key Laboratory of Bio-Energy Crops, Synthetic Biology Research Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yuanjun Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Jinxu Wang
- Shanghai Key Laboratory of Bio-Energy Crops, Synthetic Biology Research Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Fengliu Lu
- Shanghai Key Laboratory of Bio-Energy Crops, Synthetic Biology Research Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Lifen Zheng
- Shanghai Key Laboratory of Bio-Energy Crops, Synthetic Biology Research Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Lu Yang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenwen Sun
- Shanghai Key Laboratory of Bio-Energy Crops, Synthetic Biology Research Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Dae-Kyun Ro
- Department of Biological Sciences, University of Calgary, Calgary, T2N 1N4, Alberta, Canada
| | - Xudong Qu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yihan Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yansheng Zhang
- Shanghai Key Laboratory of Bio-Energy Crops, Synthetic Biology Research Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
4
|
Zhang Z, He Y, Liu H, Liu Y, Wu T, Li R, Wang Y, Ma W. NLRP3 regulates ferroptosis via the JAK2/STAT3 pathway in asthma inflammation: Insights from in vivo and in vitro studies. Int Immunopharmacol 2024; 143:113416. [PMID: 39426227 DOI: 10.1016/j.intimp.2024.113416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/15/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Ferroptosis, an iron-dependent form of cell death, plays a pivotal role in the pathologic progression of asthma. Electroacupuncture (EA) has demonstrated considerable efficacy in mitigating asthma airway inflammation, although its underlying mechanisms remain partially elucidated. METHODS We investigated the regulatory effect of NLRP3 on ferroptosis using a lipopolysaccharide (LPS)-induced inflammation model in BEAS-2B cells, where NLRP3 expression was modulated with si-RNA and overexpression plasmids. The levels of inflammatory cytokines TNF-α, IL-1β, and IL-6 were quantified. We also assessed NLRP3 and JAK2/STAT3 pathway-related proteins, and evaluated lipid peroxidation, mitochondrial membrane potential (ΔΨm), and antioxidant system functionality. In vivo, we examined the impact of EA on ferroptosis and airway inflammation by modulating NLRP3 activation. Asthma inflammation severity was evaluated using H&E, Masson, and PAS staining, alongside ELISA. NLRP3 and JAK2/STAT3 pathway-related proteins, as well as ferroptosis indicators, were also analyzed. The mechanism by which NLRP3 activates ferroptosis was investigated through in vitro assays. RESULTS LPS exposure resulted in increased intracellular inflammatory cytokines, and activation of the NLRP3 and JAK2/STAT3 pathways, leading to enhanced lipid peroxidation, decreased ΔΨm, and disruption of antioxidant system balance, ultimately inducing ferroptosis. Si-NLRP3 countered the effects of LPS, whereas oe-NLRP3 exacerbated symptoms. In vivo studies revealed that EA reduced airway inflammation, inhibited NLRP3 activation, and decreased phosphorylation of JAK2/STAT3, effectively lowering ferroptosis-related indicators. Utilizing JAK2/STAT3 activators and inhibitors, we confirmed that NLRP3 mediates ferroptosis via the JAK2/STAT3 pathway. CONCLUSIONS EA alleviates HDM-induced asthma, primarily through the inhibition of NLRP3 activation, which modulates the JAK2/STAT3 pathway and mediates ferroptosis.
Collapse
Affiliation(s)
- Zhengze Zhang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Yuewen He
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Hao Liu
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Yurui Liu
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Tong Wu
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Ruogen Li
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Yong Wang
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China.
| | - Wuhua Ma
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China.
| |
Collapse
|
5
|
Li J, Guo X, Luo Z, Wu D, Shi X, Xu L, Zhang Q, Xie C, Yang C. Chemical constituents from the flowers of Inula japonica and their anti-inflammatory activity. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117052. [PMID: 37597674 DOI: 10.1016/j.jep.2023.117052] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The flowers of Inula japonica (Inulae Flos) can be used to treat cough and asthma and remove phlegm in traditional Chinese medicine (TCM). AIM OF THE STUDY Our research aimed to obtain active components with the inhibition of inflammation and MUC5AC production to alleviate asthma symptoms from I. japonica. MATERIALS AND METHODS These compounds were separated from the MeOH extract of Inulae Flos by column chromatography over silica gel, AB-8 macroporous resin column, MPLC, and semipreparative HPLC. Their structures were elucidated by detailed spectroscopic data analysis, ECD calculations, and chemical methods. NO production was determined to evaluate anti-inflammatory activity in RAW 264.7 cells. The expression of MUC5AC, IL-1β, and IL-4 were measured in NCI-H292 cells by qRT-PCR. The anti-asthma activity assessments in vivo were performed through H & E and PAS staining, pulmonary function analysis, and cytokines determination by qRT-PCR or ELISA. The expression levels of PI3K, p-PI3K, AKT, p-AKT, MEK, p-MKE, ERK, p-MEK, and IL-1β were analyzed through western blotting. RESULTS One undescribed 1,10-seco-eudesmanolide derivative (1), two previously unreported 1,10-seco-eudesmanolide glycosides (2 and 3), and thirty-two known compounds (4-35) were obtained from Inulae Flos. Compound 11 had the most inhibitory effect against LPS-induced NO production in RAW 264.7 murine macrophages. Meanwhile, compound 11 also attenuated the increase in MUC5AC, IL-1β, and IL-4 mRNA expression in NCI-H292 cells. The results of the animal experiment confirmed that compound 11 significantly ameliorated OVA-induced asthma in a murine model of allergic asthma demonstrated by elevated pulmonary function, reduced inflammatory cell infiltration and mucus production. In addition, compound 11 significantly inhibited the levels of OVA-specific IgE in serum, of IL-4 and IL-6 in BALF, and of MUC5AC, IL-1β , IL-4, IL-5, IL-6 and IL-13 in lung tissue. Finally, compound 11 suppressed PI3K/AKT/MEK/ERK signaling pathway in lung tissue of mice. CONCLUSION This study indicated that compound 11 might be a potential therapeutic candidate ameliorating airway inflammation and mucus hypersecretion via PI3K/AKT/MEK/ERK signaling pathway in allergic asthma.
Collapse
Affiliation(s)
- Jiahang Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Xiaowei Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Zhilin Luo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Dan Wu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Xue Shi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Lixin Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Qiang Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Chunfeng Xie
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China.
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China.
| |
Collapse
|
6
|
Guo X, Jiang C, Chen Z, Wang X, Hong F, Hao D. Regulation of the JAK/STAT signaling pathway in spinal cord injury: an updated review. Front Immunol 2023; 14:1276445. [PMID: 38022526 PMCID: PMC10663250 DOI: 10.3389/fimmu.2023.1276445] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Cytokines are involved in neural homeostasis and pathological processes associated with neuroinflammation after spinal cord injury (SCI). The biological effect of cytokines, including those associated with acute or chronic SCI pathologies, are the result of receptor-mediated signaling through the Janus kinases (JAKs) as well as the signal transducers and activators of transcription (STAT) DNA-binding protein families. Although therapies targeting at cytokines have led to significant changes in the treatment of SCI, they present difficulties in various aspects for the direct use by patients themselves. Several small-molecule inhibitors of JAKs, which may affect multiple pro-inflammatory cytokine-dependent pathways, as well as STATs, are in clinical development for the treatment of SCI. This review describes the current understanding of the JAK-STAT signaling in neuroendocrine homeostasis and diseases, together with the rationale for targeting at this pathway for the treatment of SCI.
Collapse
Affiliation(s)
- Xinyu Guo
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi’an, China
| | - Chao Jiang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi’an, China
| | - Zhe Chen
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi’an, China
| | - Xiaohui Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi’an, China
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Fan Hong
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi’an, China
| | - Dingjun Hao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi’an, China
| |
Collapse
|
7
|
Abdelmawgood IA, Mahana NA, Badr AM, Mohamed AS, Al Shawoush AM, Atia T, Abdelrazak AE, Sakr HI. Echinochrome Ameliorates Physiological, Immunological, and Histopathological Alterations Induced by Ovalbumin in Asthmatic Mice by Modulating the Keap1/Nrf2 Signaling Pathway. Mar Drugs 2023; 21:455. [PMID: 37623736 PMCID: PMC10455754 DOI: 10.3390/md21080455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
Asthma is a persistent inflammatory disease of the bronchi characterized by oxidative stress, airway remodeling, and inflammation. Echinochrome (Ech) is a dark-red pigment with antioxidant and anti-inflammatory activities. In this research, we aimed to investigate the effects of Ech against asthma-induced inflammation, oxidative stress, and histopathological alterations in the spleen, liver, and kidney in mice. Mice were divided into four groups (n = 8 for each): control, asthmatic, and asthmatic mice treated intraperitoneally with 0.1 and 1 mg/kg of Ech. In vitro, findings confirmed the antioxidant and anti-inflammatory activities of Ech. Ech showed antiasthmatic effects by lowering the serum levels of immunoglobulin E (IgE), interleukin 4 (IL-4), and interleukin 1β (IL-1β). It attenuated oxidative stress by lowering malondialdehyde (MDA) and nitric oxide (NO) contents and increasing reduced glutathione (GSH), superoxide dismutase (SOD), glutathione-s-transferase (GST), and catalase (CAT) in the liver, spleen, and kidney. Moreover, it protected asthma-induced kidney and liver functions by increasing total protein and albumin and decreasing aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine, urea, and uric acid levels. Additionally, it ameliorated histopathological abnormalities in the lung, liver, spleen, and kidney. Additionally, molecular docking studies were used to examine the interactions between Ech and Kelch-like ECH-associated protein 1 (Keap1). PCR and Western blot analyses confirmed the association of Ech with Keap1 and, consequently, the regulatory role of Ech in the Keap1-(nuclear factor erythroid 2-related factor 2) Nrf2 signaling pathway in the liver, spleen, and kidney. According to our findings, Ech prevented asthma and its complications in the spleen, liver, and kidney. Inhibition of inflammation and oxidative stress are two of echinochrome's therapeutic actions in managing asthma by modulating the Keap1/Nrf2 signaling pathway.
Collapse
Affiliation(s)
| | - Noha Ahmed Mahana
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Abeer Mahmoud Badr
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | | | | | - Tarek Atia
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Amir Elhadi Abdelrazak
- Department of Medical Physiology, Medicine Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia; (A.E.A.); (H.I.S.)
| | - Hader I. Sakr
- Department of Medical Physiology, Medicine Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia; (A.E.A.); (H.I.S.)
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
8
|
Wang Y, Zhang Y, Cong H, Li C, Wu J, Li L, Jiang J, Cao X. Cultivable Endophyte Resources in Medicinal Plants and Effects on Hosts. Life (Basel) 2023; 13:1695. [PMID: 37629552 PMCID: PMC10455732 DOI: 10.3390/life13081695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/29/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
With the increasing demand for medicinal plants and the increasing shortage of resources, improving the quality and yield of medicinal plants and making more effective use of medicinal plants has become an urgent problem to be solved. During the growth of medicinal plants, various adversities can lead to nutrient loss and yield decline. Using traditional chemical pesticides to control the stress resistance of plants will cause serious pollution to the environment and even endanger human health. Therefore, it is necessary to find suitable pesticide substitutes from natural ingredients. As an important part of the microecology of medicinal plants, endophytes can promote the growth of medicinal plants, improve the stress tolerance of hosts, and promote the accumulation of active components of hosts. Endophytes have a more positive and direct impact on the host and can metabolize rich medicinal ingredients, so researchers pay attention to them. This paper reviews the research in the past five years, aiming to provide ideas for improving the quality of medicinal plants, developing more microbial resources, exploring more medicinal natural products, and providing help for the development of research on medicinal plants and endophytes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaoying Cao
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China; (Y.W.); (Y.Z.); (H.C.); (C.L.); (J.W.); (L.L.); (J.J.)
| |
Collapse
|
9
|
Wang J, Wang D, Feng L, Li X, Gong Y, Wang Z, Tan N, Han J. Eremophilane-type and xanthanolide-type sesquiterpenes from the aerial parts of Xanthium sibiricum and their anti-inflammatory activities. PHYTOCHEMISTRY 2023; 208:113603. [PMID: 36720451 DOI: 10.1016/j.phytochem.2023.113603] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
The traditional Chinese medicine Xanthium sibiricum Patrin ex Widder is used to treat wind-cold headache, nasal congestion, nasal discharge, allergic rhinitis, sinusitis, urticaria, and arthritis. Our previous studies found that sesquiterpene lactones, the main bioactive constituents of X. sibiricum, relieved airway inflammation in an asthma mouse model. To obtain active sesquiterpenes, five undescribed ones, including a pair of eremophilanes and three xanthanolides, together with eight known xanthanolides were isolated from X. sibiricum. Their structures were identified by IR, UV, HR-ESI-MS and NMR spectroscopic data, and their absolute configurations were determined by X-ray crystallographic diffraction analysis and the comparison between their experimental and calculated electronic circular dichroism. All isolated compounds were evaluated for their inhibitory effects on nitric oxide production, and Tnf-α, Il-1β, and Il-6 mRNA expression induced by lipopolysaccharide in the macrophage cell line RAW264.7. Further investigation showed that xanthsibiriolide and 11β-hydroxyl-13-chloro-8-epi-xanthatin exerted their anti-inflammatory effects by inhibiting the PI3K/AKT/mTOR signaling pathway. Analysis of the structure-activity relationships indicated that the α,β-unsaturated lactone ring and the 1,5-epoxide group might be the bioactive groups of xanthanolides, and these results provide a basis for further exploration of sesquiterpene-type lead compounds with anti-inflammatory activity.
Collapse
Affiliation(s)
- Jingwen Wang
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Dongsheng Wang
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, PR China
| | - Li Feng
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Xin Li
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yuanxiang Gong
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Zhe Wang
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Ninghua Tan
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Jing Han
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| |
Collapse
|
10
|
Di YX, Bao YJ, Zhu ZQ, Sun SL, Tian FX, Wang FR, Yu G, Zhang MF, Han J, Zhou LL. Tomentosin suppressed M1 polarization via increasing MERTK activation mediated by regulation of GAS6. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116429. [PMID: 37011736 DOI: 10.1016/j.jep.2023.116429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/03/2023] [Accepted: 03/21/2023] [Indexed: 05/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xanthium sibiricum Patrin ex Widder (X. sibiricum) are widely used traditional herbal medicines for arthritis treatment in China. Rheumatoid arthritis (RA) is characterized by progressive destructions of joints, which is accompanied by chronic, progressive inflammatory disorder. According to our previous research, tomentosin was isolated from X. sibiricum and revealed anti-inflammatory activity. However, the potential therapeutic effect of tomentosin on RA and the anti-inflammatory mechanism of tomentosin remain to be clarified. The present study lays theoretical support for X. sibiricum in RA treatment, also provides reference for further development of X. sibiricum in clinic. AIM OF THE STUDY To investigate the effect of tomentosin in collagen-induced arthritis (CIA) mice and reveal its underlying mechanism. MATERIALS AND METHODS In vivo, tomentosin (10, 20 and 40 mg/kg) was given to CIA mice for seven consecutive days, to evaluate its therapeutic effect and anti-inflammatory activity. In vitro, THP-1-derived macrophages were used to verify the effect of tomentosin on inflammation. Then, molecular docking and experiments in vitro was conducted to predict and explore the mechanism of tomentosin inhibiting inflammation. RESULTS Tomentosin attenuated the severity of arthritis in CIA mice, which was evidenced by the swelling of the hind paws, arthritis scores, and pathological changes. Particularly, tomentosin effectively reduced the ratio of M1 macrophage and TNF-α levels in vitro and vivo. Then, molecular docking and experiments in vitro was carried out, indicating that tomentosin inhibited M1 polarization and TNF-α levels accompanied by the increase of MERTK and up-regulated GAS6 levels. Moreover, it has been proved that GAS6 was necessary for MERTK activation and tomentosin could up-regulate GAS6 levels effectively in transwell system. Further mechanistic studies revealed that tomentosin suppressed M1 polarization via increasing MERTK activation mediated by regulation of GAS6 in transwell system. CONCLUSION Tomentosin relieved the severity of CIA mice by inhibiting M1 polarization. Furthermore, tomentosin suppressed M1 polarization via increasing MERTK activation mediated by regulation of GAS6.
Collapse
Affiliation(s)
- Yu-Xi Di
- School of Pharmacy, Nanjing University of Chinese Medicine, NO.138 Xianlin Road, 210023, Nanjing, Jiangsu Province, PR China.
| | - Yu-Jie Bao
- School of Pharmacy, Nanjing University of Chinese Medicine, NO.138 Xianlin Road, 210023, Nanjing, Jiangsu Province, PR China.
| | - Zhi-Qi Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, NO.138 Xianlin Road, 210023, Nanjing, Jiangsu Province, PR China.
| | - Shan-Liang Sun
- School of Pharmacy, Nanjing University of Chinese Medicine, NO.138 Xianlin Road, 210023, Nanjing, Jiangsu Province, PR China.
| | - Feng-Xiang Tian
- School of Pharmacy, Nanjing University of Chinese Medicine, NO.138 Xianlin Road, 210023, Nanjing, Jiangsu Province, PR China.
| | - Fu-Rong Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, NO.138 Xianlin Road, 210023, Nanjing, Jiangsu Province, PR China.
| | - Ge Yu
- School of Pharmacy, Nanjing University of Chinese Medicine, NO.138 Xianlin Road, 210023, Nanjing, Jiangsu Province, PR China.
| | - Ming-Fei Zhang
- Department of Pharmacy, Affiliated Hospital of Yangzhou University, Yangzhou University, 45 Taizhou Road, 225003, Yangzhou, PR China.
| | - Jing Han
- School of Pharmacy, Nanjing University of Chinese Medicine, NO.138 Xianlin Road, 210023, Nanjing, Jiangsu Province, PR China.
| | - Ling-Ling Zhou
- School of Pharmacy, Nanjing University of Chinese Medicine, NO.138 Xianlin Road, 210023, Nanjing, Jiangsu Province, PR China.
| |
Collapse
|
11
|
Zhou K, Yuan L, Liu H, Du X, Yao Y, Qin L, Yang M, Xu K, Wu X, Wang L, Xiang Y, Qu X, Qin X, Liu C. ITGB4 deficiency in airway epithelia enhances HDM-induced airway inflammation through hyperactivation of TLR4 signaling pathway. J Leukoc Biol 2023; 113:216-227. [PMID: 36822178 DOI: 10.1093/jleuko/qiac013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Indexed: 01/18/2023] Open
Abstract
Airway epithelial cells (AECs) are the first cell barrier of the respiratory system against external stimuli that play a critical role in the development of asthma. It is known that AECs play a key role in asthma susceptibility and severity. ITGB4 is a downregulated adhesion molecule in the airway epithelia of asthma patients, which was involved in the exaggerated lung inflammation after allergy stimulation. Toll-like receptor 4 (TLR4) in AECs has also been shown to play a crucial role in the development of lung inflammation in asthma patients. However, the specific intrinsic regulatory mechanism of TLR4 in AECs are still obscure. In this article, we demonstrated that ITGB4 deficiency in AECs enhances HDM-induced airway inflammation through hyperactivation of the TLR4 signaling pathway, which is mediated by inhibition of FYN phosphorylation. Moreover, TLR4-antagonist treatment or blockade of FYN can inhibit or exaggerate lung inflammation in HDM-stressed ITGB4-deficient mice, separately. Together, these results demonstrated that ITGB4 deficiency in AECs enhances HDM-induced lung inflammatory response through the ITGB4-FYN-TLR4 axis, which may provide new therapeutic approaches for the management of lung inflammation in asthma.
Collapse
Affiliation(s)
- Kai Zhou
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Xiangya Road Street, Changsha, Hunan 410078, China
- Department of Physiology, School of Basic Medicine Science, Central South University, Xiangya Road Street, Changsha, Hunan 410078, China
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Xiangya Road Street, Changsha, Hunan 410078, China
| | - Lin Yuan
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Xiangya Road Street, Changsha, Hunan 410078, China
- Department of Physiology, School of Basic Medicine Science, Central South University, Xiangya Road Street, Changsha, Hunan 410078, China
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Xiangya Road Street, Changsha, Hunan 410078, China
| | - Huijun Liu
- Department of Physiology, School of Basic Medicine Science, Central South University, Xiangya Road Street, Changsha, Hunan 410078, China
| | - Xizi Du
- Department of Physiology, School of Basic Medicine Science, Central South University, Xiangya Road Street, Changsha, Hunan 410078, China
| | - Ye Yao
- Department of Physiology, School of Basic Medicine Science, Central South University, Xiangya Road Street, Changsha, Hunan 410078, China
| | - Ling Qin
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Xiangya Road Street, Changsha, Hunan 410078, China
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Xiangya Road Street, Changsha, Hunan 410078, China
| | - Ming Yang
- Centre for Asthma and Respiratory Disease, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle and Hunter Medical Research Institute, Elizabeth Street, Callaghan, New South Wales 2892921, Australia
| | - Kun Xu
- School of Public Health, Jilin University, Xinmin Dajie Street, Changchun 130000, China
| | - Xinyu Wu
- Department of Physiology, School of Basic Medicine Science, Central South University, Xiangya Road Street, Changsha, Hunan 410078, China
| | - Leyuan Wang
- Department of Physiology, School of Basic Medicine Science, Central South University, Xiangya Road Street, Changsha, Hunan 410078, China
| | - Yang Xiang
- Department of Physiology, School of Basic Medicine Science, Central South University, Xiangya Road Street, Changsha, Hunan 410078, China
| | - Xiangping Qu
- Department of Physiology, School of Basic Medicine Science, Central South University, Xiangya Road Street, Changsha, Hunan 410078, China
| | - Xiaoqun Qin
- Department of Physiology, School of Basic Medicine Science, Central South University, Xiangya Road Street, Changsha, Hunan 410078, China
| | - Chi Liu
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Xiangya Road Street, Changsha, Hunan 410078, China
- Department of Physiology, School of Basic Medicine Science, Central South University, Xiangya Road Street, Changsha, Hunan 410078, China
| |
Collapse
|