1
|
Lu X, Sun Y, Zhang Z, Sun Z, Wang S, Xu E. Regulation of pyroptosis by natural products in ulcerative colitis: mechanisms and therapeutic potential. Front Pharmacol 2025; 16:1573684. [PMID: 40271055 PMCID: PMC12014637 DOI: 10.3389/fphar.2025.1573684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
Ulcerative colitis (UC), a chronic inflammatory bowel disease, is driven by dysregulated immune responses and persistent intestinal inflammation. Pyroptosis, a caspase/gasdermin-mediated inflammatory cell death that exacerbates mucosal damage through excessive cytokine release and epithelial barrier disruption. Although pyroptosis is considered to be a key mechanism in the pathogenesis of UC, the systematic assessment of the role of natural products in targeting the pyroptosis pathway remains a critical research gap. The purpose of this review is to investigate the regulatory effects of natural products on pyroptosis in UC and elucidate the mechanisms of action and potential therapeutic effects. Key findings highlight polyphenols (e.g., resveratrol), flavonoids (e.g., Quercetin), and terpenoids as promising agents that inhibit NLRP3 inflammasome activation, suppress gasdermin D cleavage, and restore barrier integrity, thereby reducing pro-inflammatory cytokine release in preclinical UC models. Current evidence shows enhanced efficacy and safety when these compounds are combined with standard therapies, but clinical translation requires overcoming three key barriers: limited human trial data, uncharacterized polypharmacology, and suboptimal pharmacokinetics needing formulation refinement. Future research should prioritize standardized animal-to-human translational models, mechanistic studies on synergistic pathways, and rigorous clinical validation to harness the full potential of natural products in pyroptosis-targeted UC therapies.
Collapse
Affiliation(s)
- Xiaobei Lu
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yapeng Sun
- Department of Proctology, Third Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Zhaoyi Zhang
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhigang Sun
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Shaohui Wang
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Erping Xu
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
2
|
Gong B, Zhang C, Hu S, Zhang X, Zou H, Li J, Wang J, Kao Y, Liu F. Network pharmacology and experimental verification in vivo reveal the mechanism of Zhushao Granules against ulcerative colitis. Biol Proced Online 2025; 27:7. [PMID: 39953430 PMCID: PMC11827476 DOI: 10.1186/s12575-025-00268-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/28/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Zhushao Granules (ZSG) had exhibited beneficial effects in the treatment of ulcerative colitis (UC) as an effective herbal prescription in Traditional Chinese Medicine. However, the underlying anti-inflammatory mechanism of ZSG remains unclear. This study aimed to decipher the mechanism of ZSG against UC combining network pharmacology and animal-based experiments. METHODS Network pharmacology was employed to identify active components and therapeutic targets of ZSG against UC. The protein-protein interaction (PPI) network was constructed among the therapeutic targets using the STRING database, and GO and pathway analyses were carried out using DAVID. Then, the "herb-component-target-pathway" network based on therapeutic targets was established and the topological parameters were subsequently calculated to identify hub active components, targets and pathways by Cytoscape. Finally, the therapeutic function and the special pathway of ZSG against UC were validated using a TNBS-induced UC model in BABL/c mice. RESULTS Ninety-four active components of ZSG and 460 potential targets were acquired from the Encyclopedia of Traditional Chinese Medicine and Tradition Chinese Medicine Systems Pharmacology Database and Analysis Platform. 884 potential targets of UC were obtained from OMIM and HINT. Sixty-two overlapping potential targets were identified as therapeutic targets of ZSG against UC. PPI network filtered out 61 therapeutic targets. GO and pathway analyses extracted 48, 25, and 98 terms corresponding to biological processes, molecular functions and Reactome pathways, respectively. Enrichment analysis suggested that the therapeutic targets were mainly involved in immune regulation, especially RIP-mediated NF-κB activation via ZBP1. Topological analysis of the "herb-component-target-pathway" network recognized 9 hub components, 20 hub targets and 18 hub pathways. The animal-based experiments revealed that ZSG ameliorated symptoms and histological changes in TNBS-induced colitis by significantly inhibiting the ZBP1/RIP/NF-κB pathway. CONCLUSIONS ZSG might alleviate the mucosal damage and ameliorate colitis via targeting ZBP1/RIP/NF-κB pathway, which laid the theoretical foundation for the clinical application and further study of ZSG and provided new insights into UC treatment.
Collapse
Affiliation(s)
- Benjiao Gong
- Central Laboratory, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Chenglin Zhang
- Central Laboratory, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Shaofei Hu
- Department of Pharmacy, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Xueying Zhang
- Life Science and Technology College, Shandong Second Medical University, Weifang, China
| | - Hui Zou
- Department of Spleen and Stomach Diseases, Yantai Hospital of Traditional Chinese Medicine, Yantai, China
| | - Jiayao Li
- Central Laboratory, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jiahui Wang
- Central Laboratory, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China.
| | - Yanlei Kao
- Department of Spleen and Stomach Diseases, Yantai Hospital of Traditional Chinese Medicine, Yantai, China.
| | - Fujun Liu
- Central Laboratory, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China.
| |
Collapse
|
3
|
Tang X, He M, Ren Y, Ji M, Yan X, Zeng W, Lv Y, Li Y, He Y. Traditional Chinese Medicine formulas-based interventions on colorectal carcinoma prevention: The efficacies, mechanisms and advantages. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:119008. [PMID: 39471879 DOI: 10.1016/j.jep.2024.119008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/08/2024] [Accepted: 10/26/2024] [Indexed: 11/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Traditional Chinese Medicine Formulas (TCMFs) represent a distinctive medical approach to disease treatment and have been utilized in clinical practice for treating intestinal diseases for thousands of years. Recently, TCMFs have received increasing attention due to their advantages of high efficiency, safety, as well as low toxicity, providing promising strategies for preventing colorectal carcinoma (CRC). Nonetheless, the potential mechanism of TCMFs in preventing CRC has not been fully elucidated. AIM OF THE STUDY The literature from the past three years was reviewed to highlight the therapeutic effects and underlying mechanisms of TCMFs in preventing CRC. MATERIALS AND METHODS The keywords have been searched, including "traditional Chinese medicine formulas," "herb pairs," "Herbal plant-derived nanoparticles," et al. in "PubMed" and "China National Knowledge Infrastructure (CNKI)," and screened published articles related to the treatment of intestinal precancerous lesions. This review primarily examined the effectiveness and mechanisms of TCMFs in treating intestinal precancerous lesions, highlighting their significant potential in preventing CRC. RESULTS Gegen Qinlian decoction, Shaoyao decoction, Wu Wei Wan, etc., exert substantial therapeutic effects on intestinal precancerous lesions. These therapeutic effects are demonstrated by a reduction in disease activity index scores, suppression of intestinal inflammation, and preservation of body weight and intestinal function, all of which contribute to the effective prevention of CRC. Besides, the classic Chinese herbal pairs and the extracellular vesicle-like nanoparticles of herbaceous plants have demonstrated superior efficacy in the treatment of intestinal precancerous lesions. Mechanistically, protecting the epithelial barrier, regulating gut microbiota as well as related metabolism, modulating macrophage polarization, and maintaining immune balance contribute to the role of TCMFs in CRC prevention. CONCLUSIONS This review demonstrates the great potential and mechanism of TCMFs in CRC prevention and provides a scientific basis for their utilization in CRC prevention.
Collapse
Affiliation(s)
- Xiaojuan Tang
- School of biomedical sciences, Hunan University, Changsha, 410012, Hunan, China; Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China; Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan, China.
| | - Min He
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Yuan Ren
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Meng Ji
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Xiaoqi Yan
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China
| | - Wen Zeng
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Yuan Lv
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China; Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan, China
| | - Yongmin Li
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China; Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan, China
| | - Yongheng He
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China; Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan, China; Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
4
|
Liu R, Luo Y, Ma J, Zhang Q, Sheng Y, Li J, Li H, Zhao T. Traditional Chinese medicine for functional gastrointestinal disorders and inflammatory bowel disease: narrative review of the evidence and potential mechanisms involving the brain-gut axis. Front Pharmacol 2024; 15:1444922. [PMID: 39355776 PMCID: PMC11443704 DOI: 10.3389/fphar.2024.1444922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/23/2024] [Indexed: 10/03/2024] Open
Abstract
Functional gastrointestinal disorders (FGIDs) and inflammatory bowel disease (IBD) are common clinical disorders characterized by recurrent diarrhea and abdominal pain. Although their pathogenesis has not been fully clarified, disruptions in intestinal motility and immune function are widely accepted as contributing factors to both conditions, and the brain-gut axis plays a key role in these processes. Traditional Chinese Medicine (TCM) employs a holistic approach to treatment, considers spleen and stomach impairments and liver abnormality the main pathogenesis of these two diseases, and offers a unique therapeutic strategy that targets these interconnected pathways. Clinical evidence shows the great potential of TCM in treating FGIDs and IBD. This study presents a systematic description of the pathological mechanisms of FGIDs and IBD in the context of the brain-gut axis, discusses clinical and preclinical studies on TCM and acupuncture for the treatment of these diseases, and summarizes TCM targets and pathways for the treatment of FGIDs and IBD, integrating ancient wisdom with contemporary biomedical insights. The alleviating effects of TCM on FGID and IBD symptoms are mainly mediated through the modulation of intestinal immunity and inflammation, sensory transmission, neuroendocrine-immune network, and microbiota and their metabolism through brain-gut axis mechanisms. TCM may be a promising treatment option in controlling FGIDs and IBD; however, further high-quality research is required. This review provides a reference for an in-depth exploration of the interventional effects and mechanisms of TCM in FGIDs and IBD, underscoring TCM's potential to recalibrate the dysregulated brain-gut axis in FGIDs and IBD.
Collapse
Affiliation(s)
- RuiXuan Liu
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - YunTian Luo
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - JinYing Ma
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qi Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yudong Sheng
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiashan Li
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongjiao Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - TianYi Zhao
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
5
|
Feng T, Zhou Y, Lv B, Cai L. Tongxieyaofang Decotion Alleviates IBS by Modulating CHRM3 and Gut Barrier. Drug Des Devel Ther 2024; 18:3191-3208. [PMID: 39081703 PMCID: PMC11288639 DOI: 10.2147/dddt.s455497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
Purpose Through network pharmacology combined with molecular docking and in vivo validation, the study examines the unexplored molecular mechanisms of Tongxieyaofang (TXYF) in the treatment of irritable bowel syndrome (IBS). In particular, the potential pharmacological mechanism of TXYF alleviating IBS by regulating CHRM3 and intestinal barrier has not been studied. Patients and Methods LC-MS technique and TCMSP database were used in combination to identify the potential effective components and target sites of TXYF. Potential targets for IBS were obtained from Genecards and OMIM databases. PPI and cytoHub analysis for targets. Molecular docking was used to validate the binding energy of effective components with related targets and for visualization. GO and KEGG analysis were employed to identify target functions and signaling pathways. In the in vivo validation, wrap restraint stress-induced IBS model was employed to verify the change for cytoHub genes and CHRM3 expression. Furthermore, inflammatory changes of colon were observed by HE staining. The changes of Ach were verified by ELISA. IHC and WB validated CHRM3 and GNAQ/PLC/MLCK channel variations. AB-PAS test and WB test confirmed the protection of TXYF on gut barrier. The NF-κB/MLCK pathway was also verified. Results In TXYF decoction, LC-MS identified 559 chemical components, with 23 remaining effective components after screening in TCMSP. KEGG analysis indicated that calcium plays a crucial role in TXYF treated for IBS. Molecular docking validated the binding capacity of the effective components Naringenin and Nobiletin with cytoHub-gene and CHRM3. In vivo validation demonstrated that TXYF inhibits the activation of Ach and CHRM3 in IBS, and inhibits for the GNAQ/PLC/MLCK axis. Additionally, TXYF downregulates TNF-α, MMP9, and NF-κB/MLCK, while modulating goblet cell secretion to protect gut barrier. Conclusion TXYF inhibits Ach and CHRM3 expression, regulating the relaxation of intestinal smooth muscle via GNAQ/PLC/MLCK. Additionally, TXYF inhibits NF-κB/MLCK activated and goblet cell secretion to protect gut barrier.
Collapse
Affiliation(s)
- Tongfei Feng
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310003, People’s Republic of China
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hubin Campus, Hangzhou, 310006, People’s Republic of China
| | - Yanlin Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310003, People’s Republic of China
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hubin Campus, Hangzhou, 310006, People’s Republic of China
| | - Bin Lv
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310003, People’s Republic of China
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hubin Campus, Hangzhou, 310006, People’s Republic of China
| | - Lijun Cai
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310003, People’s Republic of China
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hubin Campus, Hangzhou, 310006, People’s Republic of China
| |
Collapse
|
6
|
Wang J, Guo Z, Shen M, Xie Q, Xiang H. Potential application mechanism of traditional Chinese medicine in treating immune checkpoint inhibitor-induced colitis. Front Immunol 2024; 15:1366489. [PMID: 38660314 PMCID: PMC11039877 DOI: 10.3389/fimmu.2024.1366489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/08/2024] [Indexed: 04/26/2024] Open
Abstract
Cancer ranks among the foremost causes of mortality worldwide, posing a significant threat to human lives. The advent of tumor immunotherapy has substantially transformed the therapeutic landscape for numerous advanced malignancies, notably non-small cell lung cancer and melanoma. However, as immune checkpoint inhibitors (ICIs) are increasingly applied in clinical settings, a spectrum of undesired reactions, termed immune-related adverse events (irAEs), has emerged. These adverse reactions are associated with immunotherapy and can result in varying degrees of harm to the human body. Among these reactions, Immune checkpoint inhibitor-induced colitis (ICIIC) stands out as one of the most prevalent clinical adverse events. In contemporary times, traditional Chinese medicine (TCM) has demonstrated remarkable efficacy in addressing various maladies. Consequently, investigating the potential application and mechanisms of Chinese medicine in countering immune checkpoint inhibitor-induced colitis assumes significant importance in the treatment of this condition.
Collapse
Affiliation(s)
- Jing Wang
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Ziyue Guo
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Mengyi Shen
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shangdong First Medical University & Shangdong Academy of Medical Sciences, Jinan, China
| | - Qi Xie
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Hongjie Xiang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| |
Collapse
|
7
|
Li Q, Zheng S, Niu K, Qiao Y, Liu Y, Zhang Y, Li B, Zheng C, Yu B. Paeoniflorin improves ulcerative colitis via regulation of PI3K‑AKT based on network pharmacology analysis. Exp Ther Med 2024; 27:125. [PMID: 38414786 PMCID: PMC10895587 DOI: 10.3892/etm.2024.12414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/24/2023] [Indexed: 02/29/2024] Open
Abstract
Paeoniflorin (PF) is the primary component derived from Paeonia lactiflora and white peony root and has been used widely for the treatment of ulcerative colitis (UC) in China. UC primarily manifests as a chronic inflammatory response in the intestine. In the present study, a network pharmacology approach was used to explore the specific effects and underlying mechanisms of action of PF in the treatment of UC. A research strategy based on network pharmacology, combining target prediction, network construction, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and molecular docking simulation was used to predict the targets of PF. A total of 288 potential targets of PF and 599 UC-related targets were identified. A total of 60 therapeutic targets of PF against UC were identified. Of these, 20 core targets were obtained by protein-protein interaction network construction. GO and KEGG pathway analyses showed that PF alleviated UC through EGFR tyrosine kinase inhibitor resistance, the IL-17 signaling pathway, and the PI3K/AKT signaling pathway. Molecular docking simulation showed that AKT1 and EGFR had good binding energy with PF. Animal-based experiments revealed that the administration of PF ameliorated the colonic pathological damage in a dextran sulfate sodium-induced mouse model, resulting in lower levels of proinflammatory cytokines including IL-1β, IL-6, and TNF-α, and higher levels of IL-10 and TGF-β. PF decreased the mRNA and protein expression levels of AKT1, EGFR, mTOR, and PI3K. These findings suggested that PF plays a therapeutic protective role in the treatment of UC by regulating the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Qifang Li
- Department of Traditional Chinese Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong 272069, P.R. China
| | - Shuyue Zheng
- College of Integrated Chinese and Western Medicine, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Kai Niu
- College of Integrated Chinese and Western Medicine, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Yi Qiao
- School of Public Health, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Yuan Liu
- College of Integrated Chinese and Western Medicine, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Ying Zhang
- College of Integrated Chinese and Western Medicine, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Bingbing Li
- College of Integrated Chinese and Western Medicine, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Canlei Zheng
- College of Integrated Chinese and Western Medicine, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Bin Yu
- College of Integrated Chinese and Western Medicine, Jining Medical University, Jining, Shandong 272067, P.R. China
| |
Collapse
|
8
|
Liu X, Ye M, He Y, Lai Q, Liu B, Zhang L. Investigation of Tongxie-Yaofang formula in treating ulcerative colitis based on network pharmacology via regulating MAPK/AKT signaling pathway. Aging (Albany NY) 2024; 16:1911-1924. [PMID: 38271090 PMCID: PMC10866423 DOI: 10.18632/aging.205467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/04/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) is a subtype of inflammatory bowel disease, which often leads to bloody diarrhea and abdominal pain. In this study, the function mechanism of Tongxie-Yaofang formula (TXYF) on UC was investigated. METHODS Action targets of TXYF were obtained by Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) and Traditional Chinese Medicine Integrated Database (TCMID) databases. The targets of UC were screened in Gene Cards and Online Mendelian Inheritance in Man (OMIM) databases. The network pharmacology of active ingredient targets was established via Cytoscape. RESULTS A total of 42 chemical components and 5806 disease targets were obtained. The GO functional analysis showed that biological processes such as oxidative stress and molecular response to bacteria, molecular function such as protein and nucleic acid binding activity were significantly enriched. The top 20 KEGG enriched signal pathways indicated that the targets were mainly linked with IL-17, TNF, HIF-1. Molecular docking results showed that naringenin had good binding activity between naringin and MAPK, albiflorin and SRC. The activity of MPO, the concentration of HIF-1, IL-17 and TNF-α were significantly decreased after TXYF treatment. The characteristics of UC such as crypt distortion, crypt atrophy, and increased basal plasmacytosis were also less observed with the treatment of TXYF. What's more, TXYF suppresses the phosphorylation of SRC, MAPK and AKT1 in UC. CONCLUSIONS TXYF showed treatment effect on UC through multiple components and multiple targets, which lays a foundation for further study of UC treatment.
Collapse
Affiliation(s)
- Xinhong Liu
- Department of Proctology, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang 330000, China
| | - Mao Ye
- Department of Proctology, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang 330000, China
| | - Yinglin He
- Department of Proctology, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang 330000, China
| | - Qin Lai
- Department of Proctology, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang 330000, China
| | - Bo Liu
- Department of Proctology, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang 330000, China
| | - Leichang Zhang
- Formula-Pattern Research Center of Traditional Chinese Medicine, Nanchang 330000, China
| |
Collapse
|
9
|
Chen H, Kan Q, Zhao L, Ye G, He X, Tang H, Shi F, Zou Y, Liang X, Song X, Liu R, Luo J, Li Y. Prophylactic effect of Tongxieyaofang polysaccharide on depressive behavior in adolescent male mice with chronic unpredictable stress through the microbiome-gut-brain axis. Biomed Pharmacother 2023; 161:114525. [PMID: 36921537 DOI: 10.1016/j.biopha.2023.114525] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Major depression disorder is more common among adolescents and is a primary reason for suicide in adolescents. Some antidepressants are ineffective and may possess side effects. Therefore, developing an adolescent antidepressant is the need of the hour. We designed the stress model of adolescent male mice induced by chronic unpredictable stress (CUS). The mice were treated using Tongxieyaofang neutral polysaccharide (TXYF-NP), Tongxieyaofang acidic polysaccharide (TXYF-AP), TXYF-AP + TXYF-NP and fructooligosaccharide + galactooligosaccharides to determine their body weight, behavior, and serum hormone levels. RT-qPCR was used to detect the gene expression of Crhr1, Nr3c1, and Nr3c2 in the hypothalamus and hippocampus and the gene expression of glutamic acid and γ-aminobutyric acid-related receptors in the hippocampus. RT-qPCR, Western blot, and ELISA detected tryptophan metabolism in the colon, serum, and hippocampus. 16s rDNA helped sequence colon microflora, and non-targeted metabolomics enabled the collection of metabolic profiles of colon microflora. In adolescent male mice, CUS induced depression-like behavior, hypothalamic-pituitary-adrenal axis hyperactivity, hippocampal tissue damage, abnormal expression of its related receptors, and dysregulation of tryptophan metabolism. The 16s rDNA and non-targeted metabolomics revealed that CUS led to colon microflora disorder and bile acid metabolism abnormality. Tongxieyaofang polysaccharide could improve the bacterial community and bile acid metabolism disorder by upregulating the relative abundance of Lactobacillus gasseri, Lachnospiraceae bacterium 28-4, Bacteroides and Ruminococcaceae UCG-014 while preventing CUS-induced changes. TXYF-P can inhibit depression-like behavior due to CUS by regulating colonic microflora and restoring bile acid metabolism disorder. Thus, based on the different comparisons, TXYF-NP possessed the best effect.
Collapse
Affiliation(s)
- Helin Chen
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Qibin Kan
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Gang Ye
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Xiaoli He
- College of Science, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Huaqiao Tang
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Fei Shi
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Yuanfeng Zou
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Xiaoxia Liang
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Xu Song
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Rui Liu
- National Ethnic Affairs Commission Key Open Laboratory of Traditional Chinese Veterinary Medicine, Tongren Polytechnic College, Tongren 554300, China
| | - Jie Luo
- National Ethnic Affairs Commission Key Open Laboratory of Traditional Chinese Veterinary Medicine, Tongren Polytechnic College, Tongren 554300, China.
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China.
| |
Collapse
|