1
|
He D, Chen S, Wang X, Wen X, Gong C, Liu L, He G. Icaritin Represses Autophagy to Promote Colorectal Cancer Cell Apoptosis and Sensitized Low-Temperature Photothermal Therapy via Targeting HSP90-TXNDC9 Interactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2412953. [PMID: 40184625 DOI: 10.1002/advs.202412953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/10/2025] [Indexed: 04/06/2025]
Abstract
Colorectal cancer (CRC) ranks among the leading causes of cancer-related dea ths worldwide, and the rising incidence and mortality of CRC underscores the urgent need for better understanding and management strategies. Icaritin (ICA) is the metabolites of icariin, a natural flavonoid glycoside compound derived from the stems and leaves of Epimedium. It has broad spectrum antitumor activity and inhibits the proliferation, migration, and invasion of CRC cells, and causes S phase cell cycle arrest. It exerts its antitumor effects against CRC through repressing autophagy to promote CRC cell apoptosis via interfering the HSP90-TXNDC9 interactions. The safety and efficacy of ICA are also affirmed in a mouse xenograft model. Additionally, to test whether ICA exerts synergistic effects with low-temperature photothermal therapy (LTPTT), a novel nanodrug delivery system, employing SiO2 nanocarriers, is designed aiming to load ICA with photothermal materials polydopamine (PDA), and folic acid (FA). This SiO2/Ica-PDA-FA multifunctional nanocomposite actively targets tumor tissues through the high affinity of FA for cancer cells. Once internalized, the acidic intracellular environment triggers the controlled release of ICA, inhibiting HSP90-TXNDC9 interactions. By LTPTT and ICA drug therapy under near-infrared illumination, a dual synergistic antitumor effect is achieved, holding promise for enhancing therapeutic outcomes in CRC treatment.
Collapse
Affiliation(s)
- Dan He
- Division of Head & Neck Tumor Multimodality Treatment, Cancer Center and Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Oncology, The Second Affiliated Hospital of Chengdu Medical College, Nuclear Industry 416 Hospital, Chengdu, 610051, China
| | - Siliang Chen
- Division of Head & Neck Tumor Multimodality Treatment, Cancer Center and Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoyun Wang
- Division of Head & Neck Tumor Multimodality Treatment, Cancer Center and Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Wen
- Division of Head & Neck Tumor Multimodality Treatment, Cancer Center and Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Changyang Gong
- Division of Head & Neck Tumor Multimodality Treatment, Cancer Center and Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Liu
- Division of Head & Neck Tumor Multimodality Treatment, Cancer Center and Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gu He
- Division of Head & Neck Tumor Multimodality Treatment, Cancer Center and Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Precision Drug Innovation and Cancer Center, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| |
Collapse
|
2
|
Guo R, Yan Z, Wang R, Guo T, Li H, Kong M, Guo W. Advances in Pharmacological Research on Icaritin: A Comprehensive Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2025; 53:179-203. [PMID: 39880661 DOI: 10.1142/s0192415x25500089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Epimedium has been widely used in traditional Chinese medicine for several thousands of years. This plant is known for tonifying kidney Yang, strengthening muscles and bones, and dispelling wind and dampness. It is worth noting that icaritin, a prenylated flavonoid isolated from Epimedium, has received increasing attention in recent years due to its wide range of pharmacological activities. Icaritin exhibits significant therapeutic potential against various diseases, such as osteoporosis, tumors (hepatocellular carcinoma, stomach cancer, breast cancer, and glioblastoma), cerebral ischemia skin injury, thrombocytopenia, and systemic lupus erythematosus. We review the pharmacological activities of icaritin and its potential molecular mechanisms for the treatment of related diseases. The data suggest that icaritin can have the pharmacological effects of mediating Wnt/[Formula: see text]-catenin, IL-6/JAK2/STAT3, AMPK/mTOR, PTEN/AKT, MAPK, NF-[Formula: see text]B, and other signaling pathways. This paper also discusses the progress of clinical trials of icaritin. Icaritin was approved by the State Food and Drug Administration in January 2022 for the treatment of advanced HCC, and has various clinical drug prospects. Although it has some disadvantages, including poor solubility, and low bioavailability, icaritin is still a prospective candidate for the development of naturally derived drugs, especially in the treatment of tumors and inflammatory diseases. This review aims to update and deepen the understanding of icaritin, and provide a theoretical basis for its further study.
Collapse
Affiliation(s)
- Ran Guo
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Zhiping Yan
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Rui Wang
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Tongxuan Guo
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Hao Li
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Minyu Kong
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Wenzhi Guo
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| |
Collapse
|
3
|
Yang Y, Li W, Yang H, Zhang Y, Zhang S, Xu F, Hao Y, Cao W, Du G, Wang J. Research progress on the regulatory mechanisms of FOXC1 expression in cancers and its role in drug resistance. Gene 2024; 897:148079. [PMID: 38101711 DOI: 10.1016/j.gene.2023.148079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
The Forkhead box C1 (FOXC1) transcription factor is an important member of the FOX family. After initially being identified in triple-negative breast cancer (TNBC) with significant oncogenic function, FOXC1 was subsequently demonstrated to be involved in the development of more than 16 types of cancers. In recent years, increasing studies have focused on the deregulatory mechanisms of FOXC1 expression and revealed that FOXC1 expression was regulated at multiple levels including transcriptional regulation, post-transcription regulation and post-translational modification. Moreover, dysregulation of FOXC1 is also implicated in drug resistance in various types of cancer, especially in breast cancer, which further emphasizes the translational and clinical significance of FOXC1 as a therapeutic target in cancer treatment. This review summarizes recent findings on mechanisms of FOXC1 dysregulation in cancers and its role in chemoresistance, which will help to better understand the oncogenic role of FOXC1, overcome FOXC1-mediated drug resistance and develop targeted therapy for FOXC1 in cancers.
Collapse
Affiliation(s)
- Yihui Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Hong Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Yizhi Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Sen Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Fang Xu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Yue Hao
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Wanxin Cao
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|