• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4804356)   Today's Articles (433)
For: Rana S, Bhattacharya S, Pal J, N'Guérékata GM, Chattopadhyay J. Paradox of enrichment: A fractional differential approach with memory. Physica A 2013;392:3610-3621. [PMID: 32288086 PMCID: PMC7127129 DOI: 10.1016/j.physa.2013.03.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 01/22/2013] [Indexed: 05/23/2023]
Number Cited by Other Article(s)
1
Chatterjee AN, Ahmad B. A fractional-order differential equation model of COVID-19 infection of epithelial cells. CHAOS, SOLITONS, AND FRACTALS 2021;147:110952. [PMID: 33967407 PMCID: PMC8086832 DOI: 10.1016/j.chaos.2021.110952] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 05/07/2023]
2
Umarov S, Ashurov R, Chen Y. On a Method of Solution of Systems of Fractional Pseudo-Differential Equations. FRACTIONAL CALCULUS & APPLIED ANALYSIS 2021;24:254-277. [PMID: 34849079 PMCID: PMC8616031 DOI: 10.1515/fca-2021-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/16/2020] [Indexed: 06/13/2023]
3
Bhowmick AR, Sardar T, Bhattacharya S. Estimation of growth regulation in natural populations by extended family of growth curve models with fractional order derivative: Case studies from the global population dynamics database. ECOL INFORM 2019. [DOI: 10.1016/j.ecoinf.2019.100980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
4
Wang J, Ma Q, Chen A, Liang Z. Pinning synchronization of fractional-order complex networks with Lipschitz-type nonlinear dynamics. ISA TRANSACTIONS 2015;57:111-116. [PMID: 25721408 DOI: 10.1016/j.isatra.2015.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/04/2015] [Indexed: 06/04/2023]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA