1
|
Laymon JL, Whitten CJ, Radford AF, Brewer AR, Deo YS, Hooker MK, Geddati AA, Cooper MA. Distinguishing neural ensembles in the infralimbic cortex that regulate stress vulnerability and coping behavior. Neurobiol Stress 2025; 36:100720. [PMID: 40230624 PMCID: PMC11994976 DOI: 10.1016/j.ynstr.2025.100720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/28/2025] [Accepted: 03/19/2025] [Indexed: 04/16/2025] Open
Abstract
Neural ensembles in the medial prefrontal cortex regulate several types of responses to stress. We used a Syrian hamster model to investigate the role of infralimbic (IL) neurons in coping with social defeat stress and vulnerability to subsequent anxiety-like behavior. We created social dominance relationships in male and female hamsters, used a robust activity marker (RAM) approach to label IL neural ensembles activated during social defeat stress, and employed light-dark (LD), social avoidance (SA), and conditioned defeat (CD) tests to assess anxiety-like behavior. We found that dominant animals were less anxious in LD tests compared to subordinate animals after achieving their higher status. Also, status-dependent differences in anxiety-like behavior were maintained following social defeat in males, but not females. Subordinate males showed greater RAM-mKate2 expression in IL parvalbumin (PV) cells during social defeat exposure compared to dominant males, and submissive behavior during CD testing was correlated with RAM/PV co-expression. In contrast, greater RAM-mKate2 expression in IL neurons was correlated with a longer latency to submit during social defeat in dominant females, although the correlation of RAM/PV co-expression and defeat-induced anxiety in females was mixed. Overall, these findings suggest that activation of IL PV cells during social defeat predicts the development stress vulnerability in males, whereas activation of IL neurons is associated with a proactive response to social defeat exposure in females. Understanding how social dominance generates plasticity in IL PV cells should improve our understanding of the mechanisms by which behavioral treatments prior to stress might promote stress resilience.
Collapse
Affiliation(s)
- Jenna L. Laymon
- Translational Neuroscience Program, Wayne State University School of Medicine, USA
| | | | - Anna F. Radford
- Department of Psychology, University of Tennessee Knoxville, USA
| | | | - Yash S. Deo
- Department of Psychology, University of Tennessee Knoxville, USA
| | | | - Akhil A. Geddati
- Department of Psychology, University of Tennessee Knoxville, USA
| | | |
Collapse
|
2
|
Megía-Palma R, Paranjpe D, Cooper RD, Blaimont P, Sinervo B. Natural parasites in conjunction with behavioral and color traits explain male agonistic behaviors in a lizard. Curr Zool 2024; 70:59-69. [PMID: 38476133 PMCID: PMC10926264 DOI: 10.1093/cz/zoac095] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/19/2022] [Indexed: 03/14/2024] Open
Abstract
Male competition conforms to a cost-benefit model, because while aggression may increase reproductive prospects, it can also increase the risk of injury. We hypothesize that an additional cost in aggressive males would be an increase in parasite load associated with a high energy investment into sexual competition. Some of these infections, in turn, may downmodulate the level of host aggression via energetic trade-offs. We staged dyadic male contests in the lab to investigate the relationships of multiple parasites with the agonistic behavior of lizard hosts, Sceloporus occidentalis. We also included both color and behavioral traits from opponents in the analyses because (1) color patches of lizards may serve as intraspecific signals used by conspecifics to assess the quality of opponents, and (2) contests between male lizards fit classical models of escalated aggression, where lizards increase aggression displays in response to an opponent's behavior. The results conform to our hypothesis because male lizards displayed more pushups when they had more ticks. Moreover, some parasites may modulate the levels of aggression because lizards infected by hematic coccidians performed fewer pushups. Interestingly, lizards also displayed fewer pushups when both the chroma and size of the opponent's blue patch were greater. The results thus also supported the role of the blue patch of S. occidentalis as a sexual armament, because it contributed to the deterrence of aggression from opponent lizards. We revealed that natural parasitic infections in lizard hosts can contribute to their agonistic behavior. We encourage future studies to account for parasites in behavioral tests with lizards.
Collapse
Affiliation(s)
- Rodrigo Megía-Palma
- Department of Biomedicine and Biotechnology, Parasitology Unit, Universidad de Alcalá (UAH), E-28805, Alcalá de Henares, Spain
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, P-4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, P-4485-661 Vairão, Portugal
| | - Dhanashree Paranjpe
- Rupa Rahul Bajaj Center for Environment and Art, Empress Botanical Gardens, Kavade Mala, Pune, India
| | - Robert D Cooper
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
| | - Pauline Blaimont
- Department of Biology, University of Houston Downtown, 1 Main St., Houston, TX 77002, USA
| | - Barry Sinervo
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
3
|
Whitten CJ, Hooker MK, Wells AN, Kearney JN, Jenkins MS, Cooper MA. Sex differences in dominance relationships in Syrian hamsters. Physiol Behav 2023; 270:114294. [PMID: 37453726 PMCID: PMC10529893 DOI: 10.1016/j.physbeh.2023.114294] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/27/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Dominance relationships are identified by changes in agonistic behavior toward specific individuals. While there are considerable individual and species differences in dominance relationships, sex differences are poorly understood in rodent models because aggression among female rodents is rare. The aim of this study was to characterize sex differences in the formation and maintenance of dominance relationships in same-sex pairs of male and female Syrian hamsters. We pooled data from multiple projects in our lab to evaluate dominance interactions in 68 male dyads and 88 female dyads. In each project, animals were matched with a partner similar in age, sex, and estrous cycle and we exposed animals to daily social encounters for two weeks in a resident-intruder format. We found that female hamsters were quicker to attack and attacked at higher rates compared to males regardless of dominance status. In addition, resident female hamsters were quicker to attack and attacked at higher rates than intruder females, but aggression in males did not depend on residency status. Female subordinates were quicker to submit and fled at higher rates from their dominant counterparts compared to male subordinates. Intruder subordinate females were quicker to submit and fled at higher rates than resident subordinate females. Females were also more resistant than males to becoming subordinate in that they fought back more consistently and were more likely to reverse their dominance status. These findings indicate that dominance relationships are less stable in females compared to males and that residency status has a larger impact on agonistic behavior in females than males. Overall, differences in how males and females display territorial aggression can lead to sex differences in the establishment and maintenance of dominance relationships.
Collapse
Affiliation(s)
- Conner J Whitten
- Department of Psychology, The University of Tennessee, Knoxville, USA
| | | | - Ashley N Wells
- Department of Psychology, The University of Tennessee, Knoxville, USA
| | - Jessica N Kearney
- Department of Psychology, The University of Tennessee, Knoxville, USA
| | - Matthew S Jenkins
- Department of Psychology, The University of Tennessee, Knoxville, USA
| | - Matthew A Cooper
- Department of Psychology, The University of Tennessee, Knoxville, USA.
| |
Collapse
|
4
|
Wuthrich KL, Nagel A, Swierk L. Rapid Body Color Change Provides Lizards with Facultative Crypsis in the Eyes of Their Avian Predators. Am Nat 2021; 199:277-290. [DOI: 10.1086/717678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Kelly Lin Wuthrich
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, New York 13902
| | - Amber Nagel
- Department of Chemical Engineering, University of Oklahoma, Norman, Oklahoma 73019
| | - Lindsey Swierk
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, New York 13902
- School of the Environment, Yale University, New Haven, Connecticut 06511; and Amazon Conservatory for Tropical Studies, Iquitos, Loreto 16001, Perú
| |
Collapse
|
5
|
Korzan WJ, Summers TR, Summers CH. Neural and endocrine responses to social stress differ during actual and virtual aggressive interactions or physiological sign stimuli. Behav Processes 2021; 182:104294. [PMID: 33290833 PMCID: PMC7872145 DOI: 10.1016/j.beproc.2020.104294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/05/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022]
Abstract
Neural and endocrine responses provide quantitative measures that can be used for discriminating behavioral output analyses. Experimental design differences often make it difficult to compare results with respect to the mechanisms producing behavioral actions. We hypothesize that comparisons of distinctive behavioral paradigms or modification of social signals can aid in teasing apart the subtle differences in animal responses to social stress. Eyespots are a unique sympathetically activated sign stimulus of the lizard Anolis carolinensis that influence aggression and social dominance. Eyespot formation along with measurements of central and plasma monoamines enable comparison of paired male aggressive interactions with those provoked by a mirror image. The results suggest that experiments employing artificial application of sign stimuli in dyadic interactions amplify behavioral, neural and endocrine responses, and foreshorten behavioral interactions compared to those that develop among pairs naturally. While the use of mirrors to induce aggressive behavior produces simulated interactions that appear normal, some behavioral, neural, and endocrine responses are amplified in these experiments as well. In contrast, mirror image interactions also limit the level of certain behavioral and neuroendocrine responses. As true social communication does not occur during interaction with mirror images, rank relationships can never be established. Multiple experimental approaches, such as combining naturalistic social interactions with virtual exchanges and/or manipulation of sign stimuli, can often provide added depth to understanding the motivation, context, and mechanisms that produce specific behaviors. The addition of endocrine and neural measurements helps identify the contributions of specific behavioral elements to the social processes proceeding.
Collapse
Affiliation(s)
| | - Tangi R Summers
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA
| | - Cliff H Summers
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA.
| |
Collapse
|
6
|
Dickerson AL, Rankin KJ, Cadena V, Endler JA, Stuart-Fox D. Rapid beard darkening predicts contest outcome, not copulation success, in bearded dragon lizards. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Boyer JF, Swierk L. Rapid body color brightening is associated with exposure to a stressor in an Anolis lizard. CAN J ZOOL 2017. [DOI: 10.1139/cjz-2016-0200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many species use color change to optimize body coloration to changing environmental conditions, and drivers of rapid color change in natural populations are numerous and poorly understood. We examined factors influencing body coloration in the Water Anole (Anolis aquaticus Taylor, 1956), a lizard possessing color-changing stripes along the length of its body. We quantified the color of three body regions (the eye stripe, lateral stripe, and dorsum) before and after exposure to a mild stressor (handling and restraint). Based on current understanding of the genus Anolis Daudin, 1802, we hypothesized that exposure to a stressor would generate genus-typical skin darkening (i.e., increased melanism). Contrary to expectations, stress consistently brightened body coloration: eye and lateral stripes transitioned from brown to pale blue and green and the dorsum became lighter brown. Sex, size, and body temperature did not correlate with any aspect of body coloration, and a laboratory experiment confirmed that light exposure did not drive brightening. We propose that color change may serve to reduce conspicuousness through disruptive camouflage; lizards tended to display brighter stripes on mottled green–brown substrates. Together, these results improve our understanding of Anolis color change diversity and emphasize the need for a broader interpretation of the mechanism and functions of color change across taxa.
Collapse
Affiliation(s)
- Jane F.F. Boyer
- Division of Natural Sciences, University of Guam, Mangilao, Guam 96923
| | - Lindsey Swierk
- Las Cruces Biological Station, Organization for Tropical Studies, Apartado 73-8257, San Vito de Coto Brus, Costa Rica
| |
Collapse
|
8
|
Wilczynski W, Quispe M, Muñoz MI, Penna M. Arginine Vasotocin, the Social Neuropeptide of Amphibians and Reptiles. Front Endocrinol (Lausanne) 2017; 8:186. [PMID: 28824546 PMCID: PMC5545607 DOI: 10.3389/fendo.2017.00186] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/18/2017] [Indexed: 12/04/2022] Open
Abstract
Arginine vasotocin (AVT) is the non-mammalian homolog of arginine vasopressin (AVP) and, like vasopressin, serves as an important modulator of social behavior in addition to its peripheral functions related to osmoregulation, reproductive physiology, and stress hormone release. In amphibians and reptiles, the neuroanatomical organization of brain AVT cells and fibers broadly resembles that seen in mammals and other taxa. Both parvocellular and magnocellular AVT-containing neurons are present in multiple populations located mainly in the basal forebrain from the accumbens-amygdala area to the preoptic area and hypothalamus, from which originate widespread fiber connections spanning the brain with a particularly heavy innervation of areas associated with social behavior and decision-making. As for mammalian AVP, AVT is present in greater amounts in males in many brain areas, and its presence varies seasonally, with hormonal state, and in males with differing social status. AVT's social influence is also conserved across herpetological taxa, with significant effects on social signaling and aggression, and, based on the very small number of studies investigating more complex social behaviors in amphibians and reptiles, AVT may also modulate parental care and social bonding when it is present in these vertebrates. Within this conserved pattern, however, both AVT anatomy and social behavior effects vary significantly across species. Accounting for this diversity represents a challenge to understanding the mechanisms by which AVT exerts its behavioral effects, as well are a potential tool for discerning the structure-function relationships underlying AVT's many effects on behavior.
Collapse
Affiliation(s)
- Walter Wilczynski
- Neuroscience Institute, Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, United States
- *Correspondence: Walter Wilczynski,
| | - Maricel Quispe
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Matías I. Muñoz
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mario Penna
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
9
|
Stephenson BP, Ihász N, Byrd DC, Swierk J, Swierk L. Temperature-dependent colour change is a function of sex and directionality of temperature shift in the eastern fence lizard ( Sceloporus undulatus). Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12870] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Nikolett Ihász
- Department of Psychology; Mercer University; Macon GA 31207 USA
| | - David C. Byrd
- Department of Biology; Mercer University; Macon GA 31027 USA
| | - John Swierk
- Department of Chemistry; The Pennsylvania State University; University Park; PA 16802 USA
| | - Lindsey Swierk
- Department of Biology; Intercollege Graduate Program in Ecology and Center for Brain; Behavior and Cognition; The Pennsylvania State University; University Park; PA 16802 USA
| |
Collapse
|
10
|
Hattori T, Wilczynski W. Differences in forebrain androgen receptor expression in winners and losers of male anole aggressive interactions. Brain Res 2014; 1582:45-54. [PMID: 25069090 DOI: 10.1016/j.brainres.2014.07.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 01/22/2023]
Abstract
Size matched male green anoles (Anolis carolinensis) were paired in a neutral setting and allowed to engage in aggressive displays. Winners and losers were apparent in each pair within 90min, resulting in stable dominant/subordinate dyads. Androgen receptor (AR) expression was assessed at three time points after the initial pairing, 2h, 3 days, and 10 days in dominants, subordinates, and two groups of control males housed alone or with a female for an equal period of time. Expression was quantified in three forebrain areas that have been implicated in aggression and reproductive social behavior in this species, the preoptic area (POA), the anterior hypothalamus (AH), septal area (SEP), and ventromedial nucleus of the posterior division of the dorsal ventricular ridge (PDVRVM ). There were significant overall group differences in AR mRNA expression in the POA and AH that appeared to result from higher POA AR expression in dominant males compared to other groups, and generally lower AR expression in subordinate males. Pairwise comparison revealed that dominants' AR mRNA expression in the POA was significantly higher in the 2h and 3 day groups compared to that of subordinates, with a similar, but nonsignificant, difference in the 10 day group. Dominants had significantly higher AR mRNA expression in the AH compared to that of subordinates in the 2h group, but differences were not significant at later times. The results suggest that POA and AH sensitivity to androgens is increased in dominants compared to subordinates, and that the difference can be seen soon after the agonistic interaction establishing winners and losers.
Collapse
Affiliation(s)
- Tomoko Hattori
- Department of Psychology and Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA.
| | - Walter Wilczynski
- Department of Psychology and Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA; Neuroscience Institute, Georgia State University, PO Box 5010, Atlanta, GA 30302-5010, USA.
| |
Collapse
|
11
|
|
12
|
YABUTA S, SUZUKI-WATANABE A. Function of Body Coloration in Green Anoles (Anolis carolinensis) at the Beginning of the Breeding Season: Advertisement Signaling and Thermoregulation. CURRENT HERPETOLOGY 2011. [DOI: 10.5358/hsj.30.155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
13
|
Ling TJ, Forster GL, Watt MJ, Korzan WJ, Renner KJ, Summers CH. Social status differentiates rapid neuroendocrine responses to restraint stress. Physiol Behav 2009; 96:218-32. [DOI: 10.1016/j.physbeh.2008.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 10/01/2008] [Accepted: 10/02/2008] [Indexed: 11/25/2022]
|
14
|
Hattori T, Wilczynski W. Comparison of arginine vasotocin immunoreactivity differences in dominant and subordinate green anole lizards. Physiol Behav 2009; 96:104-7. [DOI: 10.1016/j.physbeh.2008.09.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 09/01/2008] [Accepted: 09/03/2008] [Indexed: 11/16/2022]
|
15
|
Korzan WJ, Summers CH. Behavioral diversity and neurochemical plasticity: selection of stress coping strategies that define social status. BRAIN, BEHAVIOR AND EVOLUTION 2007; 70:257-66. [PMID: 17914257 DOI: 10.1159/000105489] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Social interactions include a variety of stimulating but challenging factors that are the basis for strategies that allow individuals to cope with novel or familiar stressful situations. Evolutionarily conserved strategies have been identified that reflect specific behavioral and physiological identities. In this review we discuss a unique model for social stress in the lizard Anolis carolinensis, which has characteristics amenable to an investigation of individual differences in behavioral responses via central and sympathetic neurochemical adaptation. Profiles of proactive and reactive phenotypes of male A. carolinensis are relatively stable, yet retain limited flexibility that allows for the development of the social system over time. For male A. carolinensis, the celerity of social signal expression and response translate into future social standing. In addition, proactive aggressive, courtship, and feeding behaviors also predict social rank, but are not as important as prior interactions and memories of previous opponents to modify behavioral output and affect social status. The central neurotransmitters dopamine and serotonin, and the endocrine stress axis (HPA) appear to be the fundamental link to adaptive stress coping strategies during social interactions. Only small adaptations to these neural and endocrine systems are necessary to produce the variability measured in behavioral responses to stressful social interactions. These neuroendocrine factors are also manifest in responses to other stimuli and form the basis of heritable strategies for coping with stress.
Collapse
Affiliation(s)
- Wayne J Korzan
- Department of Biological Sciences, Neuroscience Program, Stanford University, Stanford, CA 94305-5020, USA.
| | | |
Collapse
|
16
|
Korzan WJ, Höglund E, Watt MJ, Forster GL, Øverli Ø, Lukkes JL, Summers CH. Memory of opponents is more potent than visual sign stimuli after social hierarchy has been established. Behav Brain Res 2007; 183:31-42. [PMID: 17602761 PMCID: PMC3889489 DOI: 10.1016/j.bbr.2007.05.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 04/27/2007] [Accepted: 05/21/2007] [Indexed: 10/23/2022]
Abstract
During agonistic interactions between male Anolis carolinensis, perception of a visual sign stimulus (darkened eyespots) not only inhibits aggression and promotes initial attainment of dominant social status, but also evokes distinct neuroendocrine responses in each opponent. This study was designed to examine the effect of eyespot manipulation on behavior and social rank during a second interaction between opponents that had previously established a natural dyadic social hierarchy. Prior to a second interaction, eyespots of familiar size-matched combatants were manipulated to reverse information conveyed by this visual signal. Eyespots on the previously dominant male were masked with green paint to indicate low aggression and social status. Previously subordinate males had their eyespots permanently marked with black paint to convey high aggression and status. Opponents were then re-paired for a second 10 min interaction following either 1 or 3 days of separation. Aggression was generally decreased and social status between pairs remained reasonably consistent. Unlike rapidly activated monoaminergic activity that occurs following the initial pairing, most brain areas sampled were not affected when animals were re-introduced, regardless of visual signal reversal or length of separation between interactions. However in males with "normal" eyespot color, dominant males had reduced serotonergic activity in CA(3) and raphé, while subordinate males exhibited elevated CA(3) dopaminergic activity. Reversing eyespot color also reversed serotonergic activity in raphé and dopaminergic activity in CA(3) after 3 days of separation. The results suggest that males remember previous opponents, and respond appropriately to their previous social rank in spite of eyespot color.
Collapse
Affiliation(s)
- Wayne J. Korzan
- Biological Sciences, Stanford University, Stanford, CA 94305
| | - Erik Höglund
- Danish Institute for Fisheries Research, Department of Marine Ecology and Aquaculture, North Sea Center, Postbox 101, DK-9850 Hirtshals, Denmark
| | - Michael J. Watt
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069
| | - Gina L. Forster
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069
| | - Øyvind Øverli
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, PO Box 5003, N-1432 Ås, Norway
| | - Jodi L. Lukkes
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069
| | - Cliff H. Summers
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069
- Department of Biology, University of South Dakota, Vermillion, SD 57069
- Address correspondence to: Cliff H. Summers, Department of Biology, University of South Dakota, 414 East Clark Street, Vermillion, SD 57069-2390, , 605 677 6177, fax 605 677 6557, url: http://www.usd.edu/~cliff/
| |
Collapse
|
17
|
Øverli Ø, Sørensen C, Pulman KGT, Pottinger TG, Korzan W, Summers CH, Nilsson GE. Evolutionary background for stress-coping styles: relationships between physiological, behavioral, and cognitive traits in non-mammalian vertebrates. Neurosci Biobehav Rev 2006; 31:396-412. [PMID: 17182101 DOI: 10.1016/j.neubiorev.2006.10.006] [Citation(s) in RCA: 339] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 10/30/2006] [Indexed: 10/23/2022]
Abstract
Reactions to stress vary between individuals, and physiological and behavioral responses tend to be associated in distinct suites of correlated traits, often termed stress-coping styles. In mammals, individuals exhibiting divergent stress-coping styles also appear to exhibit intrinsic differences in cognitive processing. A connection between physiology, behavior, and cognition was also recently demonstrated in strains of rainbow trout (Oncorhynchus mykiss) selected for consistently high or low cortisol responses to stress. The low-responsive (LR) strain display longer retention of a conditioned response, and tend to show proactive behaviors such as enhanced aggression, social dominance, and rapid resumption of feed intake after stress. Differences in brain monoamine neurochemistry have also been reported in these lines. In comparative studies, experiments with the lizard Anolis carolinensis reveal connections between monoaminergic activity in limbic structures, proactive behavior in novel environments, and the establishment of social status via agonistic behavior. Together these observations suggest that within-species diversity of physiological, behavioral and cognitive correlates of stress responsiveness is maintained by natural selection throughout the vertebrate sub-phylum.
Collapse
Affiliation(s)
- Øyvind Øverli
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 As, Norway.
| | | | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Brown RP, Griffin S. Lower selected body temperatures after food deprivation in the lizard Anolis carolinensis. J Therm Biol 2005. [DOI: 10.1016/j.jtherbio.2004.07.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|