1
|
Hozer C, Pifferi F, Aujard F, Perret M. The Biological Clock in Gray Mouse Lemur: Adaptive, Evolutionary and Aging Considerations in an Emerging Non-human Primate Model. Front Physiol 2019; 10:1033. [PMID: 31447706 PMCID: PMC6696974 DOI: 10.3389/fphys.2019.01033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/26/2019] [Indexed: 01/04/2023] Open
Abstract
Circadian rhythms, which measure time on a scale of 24 h, are genetically generated by the circadian clock, which plays a crucial role in the regulation of almost every physiological and metabolic process in most organisms. This review gathers all the available information about the circadian clock in a small Malagasy primate, the gray mouse lemur (Microcebus murinus), and reports 30 years data from the historical colony at Brunoy (France). Although the mouse lemur has long been seen as a "primitive" species, its clock displays high phenotypic plasticity, allowing perfect adaptation of its biological rhythms to environmental challenges (seasonality, food availability). The alterations of the circadian timing system in M. murinus during aging show many similarities with those in human aging. Comparisons are drawn with other mammalian species (more specifically, with rodents, other non-human primates and humans) to demonstrate that the gray mouse lemur is a good complementary and alternative model for studying the circadian clock and, more broadly, brain aging and pathologies.
Collapse
|
2
|
Muñoz-Delgado J, Pérez-Galicia S, Sánchez-Ferrer JC, Canales Espinosa D, Erkert HG. Diel and infradian (7-day) activity rhythms in Mexican spider monkeys (Ateles geoffroyi) kept with and without visitor contact. Am J Primatol 2018; 80:e22933. [PMID: 30537387 DOI: 10.1002/ajp.22933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 10/08/2018] [Accepted: 10/14/2018] [Indexed: 01/06/2023]
Abstract
Diel activity rhythms in mammals are regulated by an endogenous (circadian) timing system which is synchronized by environmental 24-hr periodicities called zeitgebers. Additional direct responses to stochastic environmental factors ensure the fine-tuning to the actual situation and may mask the circadian time course. Following an observational study on behavioral effects of visitor activities in a group of spider monkeys (Ateles geoffroyi) kept free-ranging on a small island of Lake Catemaco, Veracruz, Mexico, we analyzed the effect of weekly varying numbers of visiting tourist boats on the monkeys' diel activity rhythm. With small accelerometer-data logger devices we recorded the monkeys' locomotor activity continuously for several months each. Then we compared the data with those from spider monkeys living without tourist contact. Neither the duration of the monkeys' activity time (α) nor its phase relationship to the 24-hr solar day did change on different weekdays in either site. However, their activity level showed a clear 7-day rhythm. The monkeys of the tourist site showed highest activity on Saturday and Sunday, when the frequency of visiting tourist boats was highest, whereas those of the non-tourist site were least active on Sunday and Monday, when human activities were lowest there. While the monkeys of the non-tourist site usually displayed a distinct bimodal activity pattern peaking in the morning and late afternoon, the pattern in those of the tourist site mostly lacked a morning peak and varied more over time. Based on our results, we suggest that circadian entrainment is not involved in the differences between the diel activity rhythms of the spider monkeys from the two keeping sites and the differing 7-day variation in their activity level. Rather, these differences seemingly reflect direct responses to the differing human activities and thus may correspond to circadian masking effects.
Collapse
Affiliation(s)
- Jairo Muñoz-Delgado
- Dirección de Neurociencias, Laboratorio de Cronoecología y Etología Humana, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de Mexico, Mexico
| | - Sergio Pérez-Galicia
- Programa de Posgrado en Ciencias biológicas, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | | | - Domingo Canales Espinosa
- Dirección del Área Académica de Ciencias Biológicas y Agropecuarias, Universidad Veracruzana, Veracruz, Mexico
| | - Hans G Erkert
- Department of Animal Physiology, Institute for Zoology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
3
|
Muñoz-Delgado J, Sánchez-Ferrer JC, Pérez-Galicia S, Canales-Espinosa D, Erkert HG. Effects of housing conditions and season on the activity rhythm of spider monkeys (Ateles geoffroyi) kept under natural conditions within their distributional range in Central Mexico. Chronobiol Int 2014; 31:983-95. [PMID: 25051429 DOI: 10.3109/07420528.2014.938813] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The timing and pattern of mammalian behavioral activities are regulated by an evolutionary optimized interplay of the genetically based biological (circadian) clock located in the brain's suprachiasmatic nuclei and direct responses to environmental factors that superimpose and thus mask the clock-mediated effects, the most important of which is the photically induced phase-setting (synchronization) of the circadian rhythmicity to the 24-hour solar day. In wild and captive animals living under the natural conditions prevailing in their habitat, to date, only a few attempts have been made to analyze the role of these two regulatory mechanisms in the species' adaptation to the time structure prevailing in their habitat. We studied the impact of housing conditions and season on the daily timing and pattern of activity in Mexican spider monkeys (Ateles geoffroyi). To this end, we carried out long-term activity recordings with Actiwatch® AW4 accelerometer/data-logger devices in 11 adult Ateles living under identical natural lighting and climatic conditions in either a large wire netting cage or a 0.25 ha forest enclosure in the primatological field station of Veracruz State University near Catemaco, Mexico. In a gravid female in the forest enclosure, we obtained first-hand information on the effect of late pregnancy and parturition on the monkey's activity rhythm. The Ateles behaved strictly diurnal and undertook about 90% of daily total activity during this activity time. Due to a higher second activity peak in late afternoon, the bimodal activity pattern was more pronounced in monkeys living in the forest enclosure. Although the spider monkeys kept there had an earlier activity onset and morning activity peak than their conspecifics in the cage, no consistent differences were found in the parameters characterizing the phase-setting of the circadian system to the environmental 24-h periodicity, either by comparison or correlation with the external time markers of sunrise (SR) and sunset (SS). The most obvious effect of late pregnancy, parturition and lactation was a distinct reduction of the activity level during the week of parturition and the next. Seasonal variations in the form of significant differences between the long-day summer half year and the short-day winter half year were established in the phase-angle differences of the morning activity peak to SR, in the evening activity peak and activity offset to SS, as well as in the activity time and the peak-to-peak interval, but not in the phase position of activity onset to SR or in the height of the morning and evening activity peak. These findings in combination with a high variability of the phase angle differences indicate that in A. geoffroyi, a relatively weak circadian component and strong masking direct effects of environmental factors are involved in the regulation of the daily activity rhythm.
Collapse
Affiliation(s)
- Jairo Muñoz-Delgado
- Dirección de Neurociencias, Laboratorio de Cronoecología y Etología Humana, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz , Mexico City , Mexico
| | | | | | | | | |
Collapse
|
4
|
Abstract
Investigators typically study one function of the circadian visual system at a time, be it photoreception, transmission of photic information to the suprachiasmatic nucleus (SCN), light control of rhythm phase, locomotor activity, or gene expression. There are good reasons for such a focused approach, but sometimes it is advantageous to look at the broader picture, asking how all the parts and functions complete the whole. Here, several seemingly disparate functions of the circadian visual system are examined. They share common characteristics with respect to regulation by light and, to the extent known, share a common input neuroanatomy. The argument presented is that the 3 hypothalamically mediated effects of light for which there are the most data, circadian clock phase shifts, suppression of nocturnal locomotion (“negative masking”), and suppression of nocturnal pineal function, are regulated by a common photic input pathway terminating in the SCN. For each, light triggers a relatively fixed interval response that is irradiance-dependent, the effective stimulus can be very brief light exposure, and the response continues to completion in the absence of additional light. The presence of a triggered, fixed-length response interval is of particular importance to the understanding of the circuitry and mechanisms regulating circadian rhythm phase shifts because it implies that the SCN clock response to light is not instantaneous. It also may explain why certain stimuli (neuropeptide Y or novel wheel running) administered many minutes after light exposure are able to block light-induced phase shifts. The understanding of negative masking is complicated by the fact that it can be represented as a positive change, that is, light-induced sleep, not just as a reduction in locomotion. Acute nocturnal light exposure also induces adrenal hormone secretion and a rapid drop in body temperature, physiological responses that appear to be regulated similarly to the other light effects. The likelihood of a common regulatory basis for the several responses suggests that additional light-induced responses will be forthcoming and raises questions about the relationships between light, SCN cellular anatomy, the molecular clockworks of SCN neurons, and SCN throughput mechanisms for regulating disparate downstream activities.
Collapse
Affiliation(s)
- Lawrence P. Morin
- Department of Psychiatry, Stony Brook Medical Center, Stony Brook University, Stony Brook, NY
| |
Collapse
|
5
|
Rotics S, Dayan T, Levy O, Kronfeld-Schor N. Light Masking in the Field: An Experiment with Nocturnal and Diurnal Spiny Mice Under Semi-natural Field Conditions. Chronobiol Int 2010; 28:70-5. [DOI: 10.3109/07420528.2010.525674] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Cong X, Xiao C, Han F, He C, Liu X, Zhang Q, Zhao Z. The rhythmic characteristics of locomotion between females and males inDrosophila melanogasteras detected by manual recordings. BIOL RHYTHM RES 2010. [DOI: 10.1080/09291010903475877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Masuda K, Zhdanova IV. Intrinsic Activity Rhythms in Macaca mulatta: Their Entrainment to Light and Melatonin. J Biol Rhythms 2010; 25:361-71. [DOI: 10.1177/0748730410379382] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mounting evidence that circadian abnormalities are a risk factor for cancer and for cardiovascular, psychiatric, and other disorders calls for in-depth investigation of intrinsic clock-dependent processes in diurnal animal models phylogenetically close to humans. Rhesus monkey ( Macaca mulatta) is the most extensively studied diurnal nonhuman primate. Similar to humans, it features consolidated nighttime sleep and advanced cardiovascular, neuroendocrine, and cognitive responses. However, the intrinsic circadian rhythmicity in this species remains to be fully characterized. Here it is demonstrated that under constant dim light (~10 lx) conditions, young adult rhesus monkeys maintain robust intrinsic circadian rhythms of activity, with periods ranging from 23.4 to 25.1 h. Constant environmental light of moderate intensity (~100 lx) slows down the circadian clock in rhesus monkeys. The exposure to light or melatonin shifts the phase of intrinsic circadian rhythms, with the direction and magnitude of the shift dependent on the circadian phase at which a stimulus was administered. The length of the intrinsic period largely defines an individual’s chronotype (morningness or eveningness) and affects the stability of intrinsic rhythms and the phase angle of entrainment to melatonin and light. This first detailed characterization of intrinsic circadian rhythms of activity and their responses to light and melatonin in rhesus monkeys shows principal similarities to those in humans. These findings should provide new opportunities for translational research on the effects of diverse agents, environmental conditions, aging, and disease on the circadian clock and its outputs.
Collapse
Affiliation(s)
- Ken Masuda
- Boston University School of Medicine, Boston, MA
| | | |
Collapse
|
8
|
Perret M, Gomez D, Barbosa A, Aujard F, Théry M. Increased late night response to light controls the circadian pacemaker in a nocturnal primate. J Biol Rhythms 2010; 25:186-96. [PMID: 20484690 DOI: 10.1177/0748730410368244] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mammalian endogenous circadian clock, the suprachiasmatic nuclei, receives environmental inputs, namely the light-dark cycle, through photopigments located in the eye and from melanopsin-expressing retinal ganglion cells. The authors investigated the influence of light wavelength and intensity on the synchronization of the rest-activity rhythm of the gray mouse lemur, a nocturnal Malagasy primate. Animals were tested at different irradiance levels (320, 45, 13, and 6 nmol x m(-2) x s(- 1)) under several light wavelengths (from 400 to 610 nm). Several parameters including circadian period, activity, and body temperature waveforms were used to assess synchronization to a 12:12 light-dark cycle in comparison to control treatments (12:12 white light or continuous darkness). Entrainment of the circadian rest-activity cycle increased with light intensity. It was more efficient for mid wavelengths relative to shorter or longer wavelengths but not coincident with melanopsin maximal sensitivity, suggesting other photoreceptors are likely involved in lemurs' photoentrainment. The authors obtained a novel synchronization pattern characterized by a clear synchronization to lights-on only without phasing to lights-off. Changes in photo-responsiveness at dusk and dawn highlight differential responses of evening and morning oscillators in the circadian clock.
Collapse
Affiliation(s)
- Martine Perret
- UMR 7179 Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Département d'Ecologie et Gestion de la Biodiversité, Brunoy, France.
| | | | | | | | | |
Collapse
|
9
|
Kempinger L, Dittmann R, Rieger D, Helfrich‐Förster C. The Nocturnal Activity of Fruit Flies Exposed to Artificial Moonlight Is Partly Caused by Direct Light Effects on the Activity Level That Bypass the Endogenous Clock. Chronobiol Int 2009; 26:151-66. [DOI: 10.1080/07420520902747124] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Erkert HG. Diurnality and nocturnality in nonhuman primates: comparative chronobiological studies in laboratory and nature. BIOL RHYTHM RES 2008. [DOI: 10.1080/09291010701683391] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Bachleitner W, Kempinger L, Wülbeck C, Rieger D, Helfrich-Förster C. Moonlight shifts the endogenous clock of Drosophila melanogaster. Proc Natl Acad Sci U S A 2007; 104:3538-43. [PMID: 17307880 PMCID: PMC1805525 DOI: 10.1073/pnas.0606870104] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability to be synchronized by light-dark cycles is a fundamental property of circadian clocks. Although there are indications that circadian clocks are extremely light-sensitive and that they can be set by the low irradiances that occur at dawn and dusk, this has not been shown on the cellular level. Here, we demonstrate that a subset of Drosophila's pacemaker neurons responds to nocturnal dim light. At a nighttime illumination comparable to quarter-moonlight intensity, the flies increase activity levels and shift their typical morning and evening activity peaks into the night. In parallel, clock protein levels are reduced, and clock protein rhythms shift in opposed direction in subsets of the previously identified morning and evening pacemaker cells. No effect was observed on the peripheral clock in the eye. Our results demonstrate that the neurons driving rhythmic behavior are extremely light-sensitive and capable of shifting activity in response to the very low light intensities that regularly occur in nature. This sensitivity may be instrumental in adaptation to different photoperiods, as was proposed by the morning and evening oscillator model of Pittendrigh and Daan. We also show that this adaptation depends on retinal input but is independent of cryptochrome.
Collapse
Affiliation(s)
| | - Lena Kempinger
- University of Regensburg, Institute of Zoology, 93040 Regensburg, Germany
| | - Corinna Wülbeck
- University of Regensburg, Institute of Zoology, 93040 Regensburg, Germany
| | - Dirk Rieger
- University of Regensburg, Institute of Zoology, 93040 Regensburg, Germany
| | - Charlotte Helfrich-Förster
- University of Regensburg, Institute of Zoology, 93040 Regensburg, Germany
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|