1
|
Sutton NM, Suski C, Payne K, O'Dwyer JP. Moving beyond the mean: an analysis of faecal corticosterone metabolites shows substantial variability both within and across white-tailed deer populations. CONSERVATION PHYSIOLOGY 2024; 12:coae062. [PMID: 39252885 PMCID: PMC11381565 DOI: 10.1093/conphys/coae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024]
Abstract
Glucocorticoid (GC) levels have significant impacts on the health and behaviour of wildlife populations and are involved in many essential body functions including circadian rhythm, stress physiology and metabolism. However, studies of GCs in wildlife often focus on estimating mean hormone levels in populations, or a subset of a population, rather than on assessing the entire distribution of hormone levels within populations. Additionally, explorations of population GC data are limited due to the tradeoff between the number of individuals included in studies and the amount of data per individual that can be collected. In this study, we explore patterns of GC level distributions in three white-tailed deer (Odocoileus virginianus) populations using a non-invasive, opportunistic sampling approach. GC levels were assessed by measuring faecal corticosterone metabolite levels ('fCMs') from deer faecal samples throughout the year. We found both population and seasonal differences in fCMs but observed similarly shaped fCM distributions in all populations. Specifically, all population fCM cumulative distributions were found to be very heavy-tailed. We developed two toy models of acute corticosterone elevation in an effort to recreate the observed heavy-tailed distributions. We found that, in all three populations, cumulative fCM distributions were better described by an assumption of large, periodic spikes in corticosterone levels every few days, as opposed to an assumption of random spikes in corticosterone levels. The analyses presented in this study demonstrate the potential for exploring population-level patterns of GC levels from random, opportunistically sampled data. When taken together with individual-focused studies of GC levels, such analyses can improve our understanding of how individual hormone production scales up to population-level patterns.
Collapse
Affiliation(s)
- Nicholas M Sutton
- Department of Biology, Grinnell College, 1116 8th Avenue, Grinnell, IA, 50112, USA
- Program in Ecology, Evolution, and Conservation Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Avenue, Urbana, IL, 61801, USA
| | - Cory Suski
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana- Champaign, 1102 S. Goodwin Avenue, Urbana, IL, 61801, USA
| | - Keegan Payne
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana- Champaign, 1102 S. Goodwin Avenue, Urbana, IL, 61801, USA
| | - James P O'Dwyer
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Avenue, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL,61801, USA
| |
Collapse
|
2
|
Luchiari AC, Maximino C. Fish personality: meta-theoretical issues, personality dimensions, and applications to neuroscience and psychopathology. PERSONALITY NEUROSCIENCE 2023; 6:e9. [PMID: 38107778 PMCID: PMC10725779 DOI: 10.1017/pen.2023.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/30/2023] [Accepted: 05/09/2023] [Indexed: 12/19/2023]
Abstract
While the field of personality neuroscience has extensively focused on humans and, in a few cases, primates and rodents, a wide range of research on fish personality has emerged in the last decades. This research is focused mainly on the ecological and evolutionary causes of individual differences and also aimed less extensively at proximal mechanisms (e.g., neurochemistry or genetics). We argue that, if consistent and intentional work is made to solve some of the meta-theoretical issues of personality research both on fish and mammals, fish personality research can lead to important advances in personality neuroscience as a whole. The five dimensions of personality in fish (shyness-boldness, exploration-avoidance, activity, aggressiveness, and sociability) need to be translated into models that explicitly recognize the impacts of personality in psychopathology, synergizing research on fish as model organisms in experimental psychopathology, personality neuroscience, and ecological-ethological approaches to the evolutionary underpinnings of personality to produce a powerful framework to understand individual differences.
Collapse
Affiliation(s)
- Ana Carolina Luchiari
- Department of Physiology & Behavior, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Caio Maximino
- Laboratório de Neurociências e Comportamento, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá, Brazil
| |
Collapse
|
3
|
Wund MA, Stevens DR. An introduction to the Special Issue honouring Susan A. Foster. Anim Behav 2023. [DOI: 10.1016/j.anbehav.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
4
|
Brain monoaminergic activity during predator inspection in female Trinidadian guppies (Poecilia reticulata). Behav Brain Res 2023; 436:114088. [DOI: 10.1016/j.bbr.2022.114088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 11/24/2022]
|
5
|
Roth AM, Kent SM, Hobson EA, Kritsky G, Nakagawa S. Personality-mediated speed-accuracy tradeoffs in mating in a 17-year periodical cicada. Behav Ecol 2022. [DOI: 10.1093/beheco/arac082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
There exists growing evidence that animal personality (consistent between individual differences in behavior) can influence an individual’s fitness. Furthermore, limitations in behavioral plasticity may cause personality-mediated tradeoffs to occur, for example, between speed and accuracy in decision making. We explored whether various measures of personality could predict speed-accuracy tradeoffs in mate selection using Pharaoh cicadas (Magicicada septendecim) and examined the phenotypic traits predicting male mating performance and advertisement rates. We assessed whether male exploration behavior, boldness, and weight could predict a male’s overall copulation attempt rate (the number of attempted copulations with conspecifics of either sex), the number of errors a male made when selecting a mate (the number of same-sex copulation attempts), and male reproductive performance (whether a male successfully copulated with a female). We also assessed whether personality-dependent variation in male advertisement rate (the number of calling song bouts) might underpin the correlation between exploration behavior and mating performance. Although male exploration behavior did not predict male advertisement rate, we found that faster-exploring males exhibited higher overall rates of attempted copulations while also attempting more same-sex copulations, compared to slower-exploring males, suggesting a personality-mediated speed-accuracy tradeoff. Despite making more mate choice errors, however, faster explorers were more likely to successfully copulate with females, compared to slower explorers, indicating that speed may be favored over accuracy in systems where heavily male-biased sex ratios lead to scramble competition. Overall, this work highlights the role of personality in sexual selection and demonstrates that personality can influence speed-accuracy trade-offs in mating.
Collapse
Affiliation(s)
- Allison M Roth
- Department of Biology, McGill University , 1205 Dr Penfield Ave Montréal, Québec, H3A 1B1 , Canada
| | - Sarah M Kent
- Winton Centre, Great Parks of Hamilton County , 10245 Winton Rd, Cincinnati, OH 45231 , USA
| | - Elizabeth A Hobson
- Department of Biological Sciences, University of Cincinnati , 318 College Drive, Cincinnati, OH 45221 , USA
| | - Gene Kritsky
- Department of Biology, Mount St. Joseph University , 5701 Delhi Rd, Cincinnati, OH 45233 , USA
| | - Shinichi Nakagawa
- Evolution and Ecology Research Centre and School of Biological and Environmental Sciences, University of New South Wales , Sydney, NSW 2052 , Australia
| |
Collapse
|
6
|
Al Shuraiqi A, Al-Habsi A, Barry MJ. Time-, dose- and transgenerational effects of fluoxetine on the behavioural responses of zebrafish to a conspecific alarm substance. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116164. [PMID: 33341298 DOI: 10.1016/j.envpol.2020.116164] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/05/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Despite publication of numerous of papers, the effects of fluoxetine on fish behaviour remains mired in controversy and contradiction. One reason for this controversy is that fluoxetine displays distinct and opposing acute and chronic effects. A second reason is that most studies have been limited to two or at the most three concentrations. To address these deficiencies we exposed adult zebrafish, both single females and shoals consisting of one male and two females, to seven fluoxetine concentrations, ranging from 5 ng/L to 5 μg/L and measured their swimming behaviour, and response to a conspecific alarm substance (CAS) at seven, 14 and 28 days. We also measured the light startle response of unexposed F1 larvae at days seven and 28 post-hatch and the response to CAS at day 28. On day 7 fluoxetine decreased swimming speed at concentrations ≥500 ng/L. After addition of CAS fish exposed to 5, 500 and 1000 ng/L decreased swimming, while fish exposed to 10, 500 and 1000 ng/L significantly increased time motionless. On day 14 only fish exposed to 50 ng/L were significantly slower than controls before addition of CAS, but afterwards fish exposed to 5, 50, 1000 and 5000 ng/L showed significant differences from controls. On day 28 fish exposed to 50 and 5000 ng/L had slower average swimming speeds than controls before addition of CAS. After addition all fish except controls and those exposed to 500 ng/L showed decreased average speed. At seven days post-hatch, F1 larvae whose parents were exposed to 100 ng/L showed significantly higher activity than controls and those exposed to 500 ng/L fluoxetine showed lower activity in the light startle response. This study shows that the effects of fluoxetine vary with time and also in a non-monotonic manner. We suggest that the complex nature of the serotonergic system with multilateral effects at the genomic, biochemical and physiological levels interacting with environmental stimuli result in non-linear dose-response behavioural patterns.
Collapse
Affiliation(s)
- Asma Al Shuraiqi
- Biology Department, Sultan Qaboos University, Muscat, PO Box 36, 123, Oman
| | - Aziz Al-Habsi
- Biology Department, Sultan Qaboos University, Muscat, PO Box 36, 123, Oman
| | - Michael J Barry
- Biology Department, Sultan Qaboos University, Muscat, PO Box 36, 123, Oman.
| |
Collapse
|
7
|
Culbert BM, Ligocki IY, Salena MG, Wong MYL, Bernier NJ, Hamilton IM, Balshine S. Glucocorticoids do not promote prosociality in a wild group-living fish. Horm Behav 2021; 127:104879. [PMID: 33121993 DOI: 10.1016/j.yhbeh.2020.104879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/13/2020] [Accepted: 10/21/2020] [Indexed: 10/23/2022]
Abstract
Individuals often respond to social disturbances by increasing prosociality, which can strengthen social bonds, buffer against stress, and promote overall group cohesion. Given their importance in mediating stress responses, glucocorticoids have received considerable attention as potential proximate regulators of prosocial behaviour during disturbances. However, previous investigations have largely focused on mammals and our understanding of the potential prosocial effects of glucocorticoids across vertebrates more broadly is still lacking. Here, we assessed whether experimentally elevated glucocorticoid levels (simulating endogenous cortisol responses mounted following disturbances) promote prosocial behaviours in wild groups of the cichlid fish, Neolamprologus pulcher. Using SCUBA in Lake Tanganyika, we observed how subordinate group members adjusted affiliation, helping, and submission (all forms of prosocial behaviour) following underwater injections of either cortisol or saline. Cortisol treatment reduced affiliative behaviours-but only in females-suggesting that glucocorticoids may reduce overall prosociality. Fish with elevated glucocorticoid levels did not increase performance of submission or helping behaviours. Taken together, our results do not support a role for glucocorticoids in promoting prosocial behaviour in this species and emphasize the complexity of the proximate mechanisms that underlie prosociality.
Collapse
Affiliation(s)
- Brett M Culbert
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada.
| | - Isaac Y Ligocki
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA; Department of Biology, Millersville University, Millersville, PA, USA
| | - Matthew G Salena
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Marian Y L Wong
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Nicholas J Bernier
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Ian M Hamilton
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA; Department of Mathematics, The Ohio State University, Columbus, OH, USA
| | - Sigal Balshine
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
8
|
James N, Furukawa M. Nest construction and presence do not alter territorial aggression in male threespine stickleback. Anim Behav 2020; 166:9-17. [PMID: 32655149 PMCID: PMC7351080 DOI: 10.1016/j.anbehav.2020.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Constructing a nest within a mating territory provides a clear benefit to the resident, particularly by improving the opportunity to mate. It is unclear whether animals who use nests exclusively for reproductive purposes account for either the effort invested or the resulting increase in mating potential when valuing their territories. We sought to explicitly reveal a nest’s added subjective resource value through within-group comparison of aggressive behaviour before and after nest construction. An increase in aggression following construction would indicate that the resident perceives greater subjective value in his territory, and thus values the nest. Threespine stickleback, Gasterosteus aculeatus, fish demonstrate stereotypical aggressive behaviours during an easily induced territorial defence. The male’s nest is used exclusively for reproductive purposes, avoiding any confound of shelter. Contrary to our hypothesis, neither nest presence, timing of construction, nor nesting outcome was associated with differences in behavioural measures of territorial aggression. Assessed behaviours were robust, repeatable and inter-correlated. We conclude that territorial aggression is neither predictive of nor altered by nesting in threespine stickleback fish. Our results suggest that nests used transiently for a portion of the mating season add negligible subjective resource value to a territory. We additionally demonstrate that examinations of territorial aggression in sticklebacks do not need to control for nest building, improving statistical power by decreasing dropout rates. These results dovetail with recent work in other fish species to suggest that assessment of territorial aggression absent a nest may be practicable for fish in general.
Collapse
Affiliation(s)
- Noelle James
- Neuroscience Program, University of Illinois at Urbana Champaign, Urbana, IL, U.S.A
- Department of Evolution, Ecology and Behavior, University of Illinois at Urbana Champaign, Urbana, IL, U.S.A
- Correspondence: N. James, Department of Evolution, Ecology and Behavior, University of Illinois at Urbana-Champaign, 439 Morrill Hall, 505 South Goodwin Ave., Urbana, IL, 61801, U.S.A.. (N. James)
| | - Megan Furukawa
- The School of Molecular and Cellular Biology, University of Illinois at Urbana Champaign, Urbana, IL, U.S.A
| |
Collapse
|
9
|
Effects of predation risk on egg steroid profiles across multiple populations of threespine stickleback. Sci Rep 2020; 10:5239. [PMID: 32251316 PMCID: PMC7090078 DOI: 10.1038/s41598-020-61412-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/24/2020] [Indexed: 11/16/2022] Open
Abstract
Predation often has consistent effects on prey behavior and morphology, but whether the physiological mechanisms underlying these effects show similarly consistent patterns across different populations remains an open question. In vertebrates, predation risk activates the hypothalamic-pituitary-adrenal (HPA) axis, and there is growing evidence that activation of the maternal HPA axis can have intergenerational consequences via, for example, maternally-derived steroids in eggs. Here, we investigated how predation risk affects a suite of maternally-derived steroids in threespine stickleback eggs across nine Alaskan lakes that vary in whether predatory trout are absent, native, or have been stocked within the last 25 years. Using liquid chromatography coupled with mass spectroscopy (LC-MS/MS), we detected 20 steroids within unfertilized eggs. Factor analysis suggests that steroids covary within and across steroid classes (i.e. glucocorticoids, progestogens, sex steroids), emphasizing the modularity and interconnectedness of the endocrine response. Surprisingly, egg steroid profiles were not significantly associated with predator regime, although they were more variable when predators were absent compared to when predators were present, with either native or stocked trout. Despite being the most abundant steroid, cortisol was not consistently associated with predation regime. Thus, while predators can affect steroids in adults, including mothers, the link between maternal stress and embryonic development is more complex than a simple one-to-one relationship between the population-level predation risk experienced by mothers and the steroids mothers transfer to their eggs.
Collapse
|
10
|
Abbey-Lee RN, Kreshchenko A, Fernandez Sala X, Petkova I, Løvlie H. Effects of monoamine manipulations on the personality and gene expression of three-spined sticklebacks. J Exp Biol 2019; 222:222/20/jeb211888. [DOI: 10.1242/jeb.211888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/05/2019] [Indexed: 12/27/2022]
Abstract
ABSTRACT
Among-individual behavioral differences (i.e. animal personality) are commonly observed across taxa, although the underlying, causal mechanisms of such differences are poorly understood. Animal personality has been correlated with physiological functions as well as fitness-related traits. Variation in many aspects of monoamine systems, such as metabolite levels and gene polymorphisms, has been linked to behavioral variation. Therefore, here we experimentally investigated the potential role of monoamines in explaining individual variation in personality, using two common pharmaceuticals that respectively alter the levels of serotonin and dopamine in the brain: fluoxetine and ropinirole. We exposed three-spined sticklebacks, a species that shows animal personality, to either chemical alone or to a combination of the two chemicals, for 18 days. During the experiment, fish were assayed at four time points for the following personality traits: exploration, boldness, aggression and sociability. To quantify brain gene expression on short- and longer-term scales, fish were sampled at two time points. Our results show that monoamine manipulations influence fish behavior. Specifically, fish exposed to either fluoxetine or ropinirole were significantly bolder, and fish exposed to the two chemicals together tended to be bolder than control fish. Our monoamine manipulations did not alter the gene expression of monoamine or stress-associated neurotransmitter genes, but control, untreated fish showed covariation between gene expression and behavior. Specifically, exploration and boldness were predicted by genes in the dopaminergic, serotonergic and stress pathways, and sociability was predicted by genes in the dopaminergic and stress pathways. These results add further support to the links between monoaminergic systems and personality, and show that exposure to monoamines can causally alter animal personality.
Collapse
Affiliation(s)
- Robin N. Abbey-Lee
- IFM Biology, AVIAN Behavioural Genomics and Physiology Group, Linköping University, 58183 Linköping, Sweden
| | - Anastasia Kreshchenko
- IFM Biology, AVIAN Behavioural Genomics and Physiology Group, Linköping University, 58183 Linköping, Sweden
| | - Xavier Fernandez Sala
- IFM Biology, AVIAN Behavioural Genomics and Physiology Group, Linköping University, 58183 Linköping, Sweden
| | - Irina Petkova
- IFM Biology, AVIAN Behavioural Genomics and Physiology Group, Linköping University, 58183 Linköping, Sweden
| | - Hanne Løvlie
- IFM Biology, AVIAN Behavioural Genomics and Physiology Group, Linköping University, 58183 Linköping, Sweden
| |
Collapse
|
11
|
The three-spined stickleback as a model for behavioural neuroscience. PLoS One 2019; 14:e0213320. [PMID: 30913214 PMCID: PMC6435232 DOI: 10.1371/journal.pone.0213320] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/19/2019] [Indexed: 12/18/2022] Open
Abstract
The three-spined stickleback (Gasterosteus aculeatus) is a small teleost fish that is ubiquitous across the Northern Hemisphere. Among the behaviours that have been characterised in this species is ritualized courtship, aggressiveness and parental behaviour. Whereas three-spined sticklebacks have been used for ecological, evolutionary, parasitological and toxicological research, its complex behavioural repertoire and experimental advantages have not been exploited for basic neuroscience research. The aim of the present study is to describe some innate behaviours of laboratory bred three-spined sticklebacks by using a battery of tests that have been developed and validated to model some aspects of human psychiatric disorders in zebrafish. We recorded mirror induced aggression, novel object boldness, shoaling, and anxiety-like behaviour using both the novel tank diving and the black-white preference tests. We show that behaviour of three-spined sticklebacks in these standard tests is remarkably similar to that of zebrafish and other species and can be altered by fluoxetine and buspirone. These findings highlight the potential of using three-spined sticklebacks for cross-species and translational studies.
Collapse
|
12
|
Abbey-Lee RN, Uhrig EJ, Garnham L, Lundgren K, Child S, Løvlie H. Experimental manipulation of monoamine levels alters personality in crickets. Sci Rep 2018; 8:16211. [PMID: 30385805 PMCID: PMC6212410 DOI: 10.1038/s41598-018-34519-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/22/2018] [Indexed: 01/15/2023] Open
Abstract
Animal personality has been described in a range of species with ecological and evolutionary consequences. Factors shaping and maintaining variation in personality are not fully understood, but monoaminergic systems are consistently linked to personality variation. We experimentally explored how personality was influenced by alterations in two key monoamine systems: dopamine and serotonin. This was done using ropinirole and fluoxetine, two common human pharmaceuticals. Using the Mediterranean field cricket (Gryllus bimaculatus), we focused on the personality traits activity, exploration, and aggression, with confirmed repeatability in our study. Dopamine manipulations explained little variation in the personality traits investigated, while serotonin manipulation reduced both activity and aggression. Due to limited previous research, we created a dose-response curve for ropinirole, ranging from concentrations measured in surface waters to human therapeutic doses. No ropinirole dose level strongly influenced cricket personality, suggesting our results did not come from a dose mismatch. Our results indicate that the serotonergic system explains more variation in personality than manipulations of the dopaminergic system. Additionally, they suggest that monoamine systems differ across taxa, and confirm the importance of the mode of action of pharmaceuticals in determining their effects on behaviour.
Collapse
Affiliation(s)
- Robin N Abbey-Lee
- Dept of Physics, Chemistry and Biology, IFM Biology, Linköping University, 58183, Linköping, Sweden.
| | - Emily J Uhrig
- Dept of Physics, Chemistry and Biology, IFM Biology, Linköping University, 58183, Linköping, Sweden.,Department of Biology, Southern Oregon University, 1250 Siskiyou Blvd, Ashland, OR, 97520, USA
| | - Laura Garnham
- Dept of Physics, Chemistry and Biology, IFM Biology, Linköping University, 58183, Linköping, Sweden
| | - Kristoffer Lundgren
- Dept of Physics, Chemistry and Biology, IFM Biology, Linköping University, 58183, Linköping, Sweden
| | - Sarah Child
- Dept of Physics, Chemistry and Biology, IFM Biology, Linköping University, 58183, Linköping, Sweden.,Faculty of Biology, Medicine, and Health, Manchester University, Michael Smith Building, Dover St, Manchester, M13 9, UK
| | - Hanne Løvlie
- Dept of Physics, Chemistry and Biology, IFM Biology, Linköping University, 58183, Linköping, Sweden
| |
Collapse
|
13
|
Fiori LF, Figueiredo BRS, Pavanello A, Alves VS, Mathias PCDF, Benedito E. Physiological responses of anti-predation in prey fish to the threat of piscivorous fish in different underwater visibility conditions. IHERINGIA. SERIE ZOOLOGIA 2018. [DOI: 10.1590/1678-4766e2018032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT Considering that the anti-predation behaviour of prey fishes may vary with predator hunting strategy, we experimentally investigated the physiological responses of Astyanax bimaculatus (Linnaeus, 1758) shoals to the presence of two piscivorous fish species with different hunting modes: sit-and-wait and active pursuit. In addition, we evaluated the influence of underwater visibility conditions on the interaction between predator and prey. We tested the hypotheses that: (i) prey plasma cortisol and glucose levels vary according to piscivore hunting strategy, and (ii) no reduction in plasma glucose and cortisol levels takes place in turbid environments due to the inability of prey to accurately recognise predators by non-visual signals. The results revealed that the presence of piscivorous fish increased plasma cortisol levels in prey, with no significant difference recorded between the two hunting strategy treatments. We also observed no significant change in plasma glucose levels in different water transparency conditions. Thus, we conclude that physiological changes in the selected prey fish do not vary with predator hunting mode, and it is therefore necessary to consider the ability of the prey to recognise and evaluate danger, regardless of piscivore hunting strategy.
Collapse
Affiliation(s)
| | | | | | | | | | - Evanilde Benedito
- Universidade Estadual de Maringá, Brazil; Universidade Estadual de Maringá, Brazil
| |
Collapse
|
14
|
Timm K, Van Oers K, Tilgar V. SERT gene polymorphisms are associated with risk-taking behaviour and breeding parameters in wild great tits. ACTA ACUST UNITED AC 2018; 221:jeb.171595. [PMID: 29361593 DOI: 10.1242/jeb.171595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/03/2018] [Indexed: 11/20/2022]
Abstract
Individual differences in coping with potentially dangerous situations are affected by a combination of genetic and environmental factors. How genetic polymorphisms and behavioural variations are related to fitness is unknown. One of the candidate genes affecting a variety of behavioural processes, including impulsivity, anxiety and mood fluctuations in both humans and other vertebrates, is the serotonin transporter gene (SERT/SLC6A). The aim of this study was to assess an association between SERT genotypes and novelty-seeking and risk-taking behaviours as well as breeding parameters of great tits (Parus major) in a natural environment. We associated polymorphisms in the promoter exonic regions of the SERT gene with parental risk-taking-related behaviour and fitness traits. Our results show that: (1) risk-taking behaviour in our great tit population is linked to single nucleotide polymorphisms in the SERT gene exon 3 and exon 8; (2) the genotype-behaviour associations are consistent with the presence of different stressors; and (3) polymorphisms in exon 8 could be associated with fitness-related traits, such as the start of egg-laying and hatching success. We showed for the first time that genetic variability of SERT plays an important role in shaping individual decision-making that affects fitness in a wild population. However, the results are based on one population and on the polymorphisms that are in a single gene. Therefore, replication studies are needed in order to confirm these preliminary results.
Collapse
Affiliation(s)
- Killu Timm
- University of Tartu, Vanemuise 46, Tartu 51101, Estonia
| | - Kees Van Oers
- University of Tartu, Vanemuise 46, Tartu 51101, Estonia
| | - Vallo Tilgar
- University of Tartu, Vanemuise 46, Tartu 51101, Estonia
| |
Collapse
|
15
|
Kellner M, Porseryd T, Porsch-Hällström I, Borg B, Roufidou C, Olsén KH. Developmental exposure to the SSRI citalopram causes long-lasting behavioural effects in the three-spined stickleback (Gasterosteus aculeatus). ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:12-22. [PMID: 29058178 PMCID: PMC5758650 DOI: 10.1007/s10646-017-1866-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/04/2017] [Indexed: 05/10/2023]
Abstract
Selective Serotonin re-uptake inhibitors (SSRIs) are a class of psychotropic drugs used to treat depression in both adolescents and pregnant or breast-feeding mothers as well as in the general population. Recent research on rodents points to long-lasting behavioural effects of pre- and perinatal exposure to SSRIs which last into adulthood. In fish however, studies on effects of developmental exposure to SSRIs appears to be non-existent. In order to study effects of developmental SSRI exposure in fish, three-spine sticklebacks were exposed to 1.5 µg/l of the SSRI citalopram in the ambient water for 30 days, starting two days post-fertilisation. After approximately 100 days of remediation in clean water the fish were put through an extensive battery of behavioural tests. Feeding behaviour was tested as the number of bites against a piece of food and found to be increased in the exposed fish. Aggression levels were measured as the number of bites against a mirror image during 10 min and was also found to be significantly increased in the exposed fish. Novel tank behaviour and locomotor activity was tested in an aquarium that had a horizontal line drawn half-way between the bottom and the surface. Neither the latency to the first transition to the upper half, nor the number of transitions or the total time spent in the upper half was affected by treatment. Locomotor activity was significantly reduced in the exposed fish. The light/dark preference was tested in an aquarium where the bottom and walls were black on one side and white on the other. The number of transitions to the white side was significantly reduced in the exposed fish but there was no effect on the latency to the first transition or the total time spent in the white half. The results in the current study indicate that developmental SSRI exposure causes long-lasting behavioural effects in fish and contribute to the existing knowledge about SSRIs as environmental pollutants.
Collapse
Affiliation(s)
- M Kellner
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, Alfred Nobels allé 7, SE-141 89, Huddinge, Sweden.
| | - T Porseryd
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, Alfred Nobels allé 7, SE-141 89, Huddinge, Sweden
| | - I Porsch-Hällström
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, Alfred Nobels allé 7, SE-141 89, Huddinge, Sweden
| | - B Borg
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18 B, SE-106 91, Stockholm, Sweden
| | - C Roufidou
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18 B, SE-106 91, Stockholm, Sweden
| | - K H Olsén
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, Alfred Nobels allé 7, SE-141 89, Huddinge, Sweden
| |
Collapse
|
16
|
Bukhari SA, Saul MC, Seward CH, Zhang H, Bensky M, James N, Zhao SD, Chandrasekaran S, Stubbs L, Bell AM. Temporal dynamics of neurogenomic plasticity in response to social interactions in male threespined sticklebacks. PLoS Genet 2017; 13:e1006840. [PMID: 28704398 PMCID: PMC5509087 DOI: 10.1371/journal.pgen.1006840] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/27/2017] [Indexed: 11/18/2022] Open
Abstract
Animals exhibit dramatic immediate behavioral plasticity in response to social interactions, and brief social interactions can shape the future social landscape. However, the molecular mechanisms contributing to behavioral plasticity are unclear. Here, we show that the genome dynamically responds to social interactions with multiple waves of transcription associated with distinct molecular functions in the brain of male threespined sticklebacks, a species famous for its behavioral repertoire and evolution. Some biological functions (e.g., hormone activity) peaked soon after a brief territorial challenge and then declined, while others (e.g., immune response) peaked hours afterwards. We identify transcription factors that are predicted to coordinate waves of transcription associated with different components of behavioral plasticity. Next, using H3K27Ac as a marker of chromatin accessibility, we show that a brief territorial intrusion was sufficient to cause rapid and dramatic changes in the epigenome. Finally, we integrate the time course brain gene expression data with a transcriptional regulatory network, and link gene expression to changes in chromatin accessibility. This study reveals rapid and dramatic epigenomic plasticity in response to a brief, highly consequential social interaction. Social interactions provoke changes in the brain and behavior but their underlying molecular mechanisms remain obscure. Male sticklebacks are small fish whose fitness depends on their ability to defend a territory. Here, by measuring the time course of gene expression in response to a territorial challenge in two brain regions, we show that a single brief territorial intrusion provoked waves of gene expression that persisted for hours afterwards, with waves of transcription associated with distinct biological processes. Moreover, a single territorial challenge caused dramatic changes to the epigenome. Changes in chromatin accessibility corresponded to changes in gene expression, and to the activity of transcription factors operating within gene regulatory networks. This study reveals rapid and dramatic epigenomic plasticity in response to a brief, highly consequential social interaction. These results suggest that meaningful social interactions (even brief ones) can provoke waves of transcription and changes to the epigenome which lead to changes in neural functioning, and those changes are a mechanism by which animals update their assessment of their social world.
Collapse
Affiliation(s)
- Syed Abbas Bukhari
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, Urbana, IL, United States of America
- Illinois Informatics Institute, University of Illinois, Urbana Champaign, Urbana, IL, United States of America
| | - Michael C. Saul
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, Urbana, IL, United States of America
| | - Christopher H. Seward
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, Urbana, IL, United States of America
| | - Huimin Zhang
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, Urbana, IL, United States of America
| | - Miles Bensky
- Program in Ecology, Evolution and Conservation Biology, University of Illinois, Urbana Champaign, Urbana, IL, United States of America
| | - Noelle James
- Neuroscience Program, University of Illinois, Urbana Champaign, Urbana, IL, United States of America
| | - Sihai Dave Zhao
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, Urbana, IL, United States of America
- Department of Statistics, University of Illinois, Urbana Champaign, Urbana, IL United States of America
| | - Sriram Chandrasekaran
- Harvard Society of Fellows, Harvard University, Cambridge, MA, United States of America
- Faculty of Arts and Sciences, Harvard University, Cambridge, MA, United States of America
- Broad Institute of MIT and Harvard, Cambridge, MA, United States of America
| | - Lisa Stubbs
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, Urbana, IL, United States of America
- Department of Cell and Developmental Biology, University of Illinois, Urbana Champaign, Urbana, IL, United States of America
| | - Alison M. Bell
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, Urbana, IL, United States of America
- Program in Ecology, Evolution and Conservation Biology, University of Illinois, Urbana Champaign, Urbana, IL, United States of America
- Neuroscience Program, University of Illinois, Urbana Champaign, Urbana, IL, United States of America
- * E-mail:
| |
Collapse
|
17
|
Le Roy A, Loughland I, Seebacher F. Differential effects of developmental thermal plasticity across three generations of guppies (Poecilia reticulata): canalization and anticipatory matching. Sci Rep 2017; 7:4313. [PMID: 28659598 PMCID: PMC5489511 DOI: 10.1038/s41598-017-03300-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/26/2017] [Indexed: 12/22/2022] Open
Abstract
Developmental plasticity can match offspring phenotypes to environmental conditions experienced by parents. Such epigenetic modifications are advantageous when parental conditions anticipate offspring environments. Here we show firstly, that developmental plasticity manifests differently in males and females. Secondly, that under stable conditions, phenotypic responses (metabolism and locomotion) accumulate across several generations. Metabolic scope in males was greater at warmer test temperatures (26–36 °C) in offspring bred at warm temperatures (29–30 °C) compared to those bred at cooler temperatures (22–23 °C), lending support to the predictive adaptive hypothesis. However, this transgenerational matching was not established until the second (F2) generation. For other responses, e.g. swimming performance in females, phenotypes of offspring bred in different thermal environments were different in the first (F1) generation, but became more similar across three generations, implying canalization. Thirdly, when environments changed across generations, the grandparental environment affected offspring phenotypes. In females, the mode of the swimming thermal performance curve shifted to coincide with the grandparental rather than the parental or offspring developmental environments, and this lag in response may represent a cost of plasticity. These findings show that the effects of developmental plasticity differ between traits, and may be modulated by the different life histories of males and females.
Collapse
Affiliation(s)
- Amélie Le Roy
- School of Life and Environmental Sciences A08, University of Sydney, NSW, 2006, Camperdown, Australia
| | - Isabella Loughland
- School of Life and Environmental Sciences A08, University of Sydney, NSW, 2006, Camperdown, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, NSW, 2006, Camperdown, Australia.
| |
Collapse
|
18
|
Rapid molecular sexing of three-spined sticklebacks, Gasterosteus aculeatus L., based on large Y-chromosomal insertions. J Appl Genet 2017; 58:401-407. [DOI: 10.1007/s13353-017-0399-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 03/05/2017] [Accepted: 05/02/2017] [Indexed: 01/13/2023]
|
19
|
Weitekamp CA, Nguyen J, Hofmann HA. Neuromolecular Regulation of Aggression Differs by Social Role during Joint Territory Defense. Integr Comp Biol 2017; 57:631-639. [DOI: 10.1093/icb/icx009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
20
|
Individual variation in an acute stress response reflects divergent coping strategies in a large herbivore. Behav Processes 2016; 132:22-28. [DOI: 10.1016/j.beproc.2016.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 09/15/2016] [Accepted: 09/15/2016] [Indexed: 01/22/2023]
|
21
|
Di Poi C, Bélanger D, Amyot M, Rogers S, Aubin-Horth N. Receptors rather than signals change in expression in four physiological regulatory networks during evolutionary divergence in threespine stickleback. Mol Ecol 2016; 25:3416-27. [DOI: 10.1111/mec.13690] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/13/2016] [Accepted: 05/02/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Carole Di Poi
- Département de Biologie & Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec Quebec Canada, G1V 0A6
| | - Dominic Bélanger
- Département de Sciences Biologiques; Université de Montréal; Montréal Quebec Canada H3C 3J7
| | - Marc Amyot
- Département de Sciences Biologiques; Université de Montréal; Montréal Quebec Canada H3C 3J7
| | - Sean Rogers
- Department of Biological Sciences; University of Calgary; Calgary Alberta Canada T2N 1N4
| | - Nadia Aubin-Horth
- Département de Biologie & Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec Quebec Canada, G1V 0A6
| |
Collapse
|
22
|
Harris BN, Carr JA. The role of the hypothalamus-pituitary-adrenal/interrenal axis in mediating predator-avoidance trade-offs. Gen Comp Endocrinol 2016; 230-231:110-42. [PMID: 27080550 DOI: 10.1016/j.ygcen.2016.04.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 04/07/2016] [Accepted: 04/09/2016] [Indexed: 11/20/2022]
Abstract
Maintaining energy balance and reproducing are important for fitness, yet animals have evolved mechanisms by which the hypothalamus-pituitary-adrenal/interrenal (HPA/HPI) axis can shut these activities off. While HPA/HPI axis inhibition of feeding and reproduction may have evolved as a predator defense, to date there has been no review across taxa of the causal evidence for such a relationship. Here we review the literature on this topic by addressing evidence for three predictions: that exposure to predators decreases reproduction and feeding, that exposure to predators activates the HPA/HPI axis, and that predator-induced activation of the HPA/HPI axis inhibits foraging and reproduction. Weight of evidence indicates that exposure to predator cues inhibits several aspects of foraging and reproduction. While the evidence from fish and mammals supports the hypothesis that predator cues activate the HPA/HPI axis, the existing data in other vertebrate taxa are equivocal. A causal role for the HPA axis in predator-induced suppression of feeding and reproduction has not been demonstrated to date, although many studies report correlative relationships between HPA activity and reproduction and/or feeding. Manipulation of HPA/HPI axis signaling will be required in future studies to demonstrate direct mediation of predator-induced inhibition of feeding and reproduction. Understanding the circuitry linking sensory pathways to their control of the HPA/HPI axis also is needed. Finally, the role that fear and anxiety pathways play in the response of the HPA axis to predator cues is needed to better understand the role that predators have played in shaping anxiety related behaviors in all species, including humans.
Collapse
Affiliation(s)
- Breanna N Harris
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, United States
| | - James A Carr
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, United States.
| |
Collapse
|
23
|
Chase DA, Flynn EE, Todgham AE. Survival, growth and stress response of juvenile tidewater goby, Eucyclogobius newberryi, to interspecific competition for food. CONSERVATION PHYSIOLOGY 2016; 4:cow013. [PMID: 27293761 PMCID: PMC4845346 DOI: 10.1093/conphys/cow013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/27/2016] [Accepted: 03/16/2016] [Indexed: 06/06/2023]
Abstract
Reintroduction of endangered fishes to historic habitat has been used as a recovery tool; however, these fish may face competition from other fishes that established in their native habitat since extirpation. This study investigated the physiological response of tidewater goby, Eucyclogobius newberryi, an endangered California fish, when competing for food with threespine stickleback, Gasterosteus aculeatus, a native species, and rainwater killifish, Lucania parva, a non-native species. Survival, growth and physiological indicators of stress (i.e. cortisol, glucose and lactate concentrations) were assessed for juvenile fish held for 28 days in two food-limited conditions. When fed a 75% ration, survival of E. newberryi was significantly lower when held with G. aculeatus. In all fish assemblages, weight and relative condition decreased then stabilized over the 28 day experiment, while length remained unchanged. Whole-body cortisol in E. newberryi was not affected by fish assemblage; however, glucose and lactate concentrations were significantly higher with conspecifics than with other fish assemblages. When fed a 50% ration, survival of E. newberryi decreased during the second half of the experiment, while weight and relative condition decreased and length remained unchanged in all three fish assemblages. Cortisol concentrations were significantly higher for all fish assemblages compared with concentrations at the start of the experiment, whereas glucose and lactate concentrations were depressed relative to concentrations at the start of the experiment, with the magnitude of decrease dependent on the species assemblage. Our findings indicate that E. newberryi exhibited reduced growth and an elevated generalized stress response during low food availability. In response to reduced food availability, competition with G. aculeatus had the greatest physiological effect on E. newberryi, with minimal effects from the non-native L. parva. This study presents the first reported cortisol, glucose and lactate concentrations in response to chronic stress for E. newberryi.
Collapse
Affiliation(s)
- Daniel A Chase
- Department of Animal Science, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Erin E Flynn
- Department of Animal Science, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Anne E Todgham
- Department of Animal Science, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
24
|
Bell AM, McGhee KE, Stein L. Effects of mothers' and fathers' experience with predation risk on the behavioral development of their offspring in threespined sticklebacks. Curr Opin Behav Sci 2016; 7:28-32. [PMID: 26858970 DOI: 10.1016/j.cobeha.2015.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Stressors experienced by parents can influence the behavioral development of their offspring. Here, we review recent studies in threespined sticklebacks (a species in which males are the sole providers of parental care) showing that when parents are exposed to an ecologically relevant stressor (predation risk), there are consequences for offspring. For example, female sticklebacks exposed to predation risk produce eggs with higher concentrations of cortisol, a stress hormone, and offspring with altered behavior and physiology. Male sticklebacks exposed to predation risk produce offspring that are less active, smaller, and in poorer condition. The precise mechanisms by which maternal and paternal experiences with predators affect offspring phenotypes are under investigation, and could include steroid hormones, olfactory cues and/or parental behavior. As in other species, some of the consequences of parental exposure to predation risk for offspring in sticklebacks might be adaptive, but depend on the stressor, the reliability of the parental and offspring environments and the evolutionary history of the population.
Collapse
Affiliation(s)
- Alison M Bell
- Department of Animal Biology, School of Integrative Biology, 505 S. Goodwin Ave, University of Illinois, Urbana-Champaign, IL 61801, U.S.A
| | - Katie E McGhee
- Department of Animal Biology, School of Integrative Biology, 505 S. Goodwin Ave, University of Illinois, Urbana-Champaign, IL 61801, U.S.A
| | - Laura Stein
- Department of Animal Biology, School of Integrative Biology, 505 S. Goodwin Ave, University of Illinois, Urbana-Champaign, IL 61801, U.S.A
| |
Collapse
|
25
|
Bell AM, Bukhari SA, Sanogo YO. Natural variation in brain gene expression profiles of aggressive and nonaggressive individual sticklebacks. BEHAVIOUR 2016; 153:1723-1743. [PMID: 29046592 DOI: 10.1163/1568539x-00003393] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Within many species, some individuals are consistently more aggressive than others. We examine whether there are differences in brain gene expression between aggressive versus nonaggressive behavioural types of individuals within a natural population of male three-spined sticklebacks (Gasterosteus aculeatus). We compared gene expression profiles of aggressive male sticklebacks to nonaggressive males in four regions of the brain (brainstem, cerebellum, diencephalon and telencephalon). Relatively few genes were differentially expressed between behavioural types in telencephalon, cerebellum and diencephalon, but hundreds of genes were differentially expressed in brainstem, a brain area involved in detecting threats. Six genes that were differentially expressed in response to a territorial intrusion in a previous study were also differentially expressed between behavioural types in this study, implying primarily non-shared but some shared molecular mechanisms. Our findings offer new insights into the molecular causes and correlates of behavioural plasticity and individual variation in behaviour.
Collapse
Affiliation(s)
- Alison M Bell
- School of Integrative Biology, Program in Ecology, Evolution and Conservation, Program in Neuroscience, Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, IL, USA
| | - Syed Abbas Bukhari
- Illinois Informatics Program, Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, IL, USA
| | - Yibayiri Osee Sanogo
- Genomics Core, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
26
|
Sopinka NM, Donaldson MR, O’Connor CM, Suski CD, Cooke SJ. Stress Indicators in Fish. FISH PHYSIOLOGY 2016. [DOI: 10.1016/b978-0-12-802728-8.00011-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
27
|
Pleizier N, Wilson ADM, Shultz AD, Cooke SJ. Puffed and bothered: Personality, performance, and the effects of stress on checkered pufferfish. Physiol Behav 2015; 152:68-78. [PMID: 26375573 DOI: 10.1016/j.physbeh.2015.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 11/19/2022]
Abstract
Although consistent individual-level differences in behaviour are widespread and potentially important in evolutionary and ecological processes, relatively few studies focus on the physiological mechanisms that might underlie and regulate these individual-level differences in wild populations. We conducted experiments to determine whether checkered pufferfish (Sphoeroides testudineus), which were collected from a dynamic (in terms of depth and water temperature) tidal mangrove creek environment in The Bahamas, have consistent individual-level differences in locomotor activity and the response to a simulated predator threat, as well as swimming performance and puffing in response to stressors. The relationships between personality and performance traits were evaluated to determine whether they represented stress-coping styles or syndromes. Subsequently, a displacement study was conducted to determine how personality and performance in the laboratory compared to movements in the field. In addition, we tested whether a physiological dose of the stress hormone cortisol would alter individual consistency in behavioural and performance traits. We found that pufferfish exhibited consistent individual differences in personality traits over time (e.g., activity and the duration of a response to a threat) and that performance was consistent between the lab and the natural enclosure. Locomotor activity and the duration of startled behaviour were not associated with swimming and puffing performance. Locomotor activity, puffing performance, and swimming performance were not related to whether fish returned to the tidal creek of capture after displacement. Similarly, a cortisol treatment did not modify behaviour or performance in the laboratory. The results reveal that consistent individual-level differences in behaviour and performance were present in a population from a fluctuating and physiologically challenging environment but that such traits are not necessarily correlated. We also determined that certain individual performance traits were repeatable between the lab and a natural enclosure. However, we found no evidence of a relationship between exogenous cortisol levels and behavioural traits or performance in these fish, which suggests that other internal and external mechanisms may underlie the behaviours and performance tested.
Collapse
Affiliation(s)
- Naomi Pleizier
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada.
| | - Alexander D M Wilson
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada; Centre for Integrative Ecology, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216 Australia
| | - Aaron D Shultz
- Department of Natural Resources and Environmental Sciences, University of Illinois, Champaign-Urbana, IL 61801, USA; Cape Eleuthera Institute, Eleuthera, The Bahamas
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
28
|
Maternal investment influences development of behavioural syndrome in swordtail fish, Xiphophorus multilineatus. Anim Behav 2015. [DOI: 10.1016/j.anbehav.2015.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
29
|
Fürtbauer I, King AJ, Heistermann M. Visible implant elastomer (VIE) tagging and simulated predation risk elicit similar physiological stress responses in three-spined stickleback Gasterosteus aculeatus. JOURNAL OF FISH BIOLOGY 2015; 86:1644-1649. [PMID: 25809838 DOI: 10.1111/jfb.12662] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 02/06/2015] [Indexed: 06/04/2023]
Abstract
The effect of visible implant elastomer (VIE) tagging on the immediate physiological stress response was tested in female three-spined stickleback Gasterosteus aculeatus, using non-invasive waterborne cortisol analysis. Post-tagging cortisol levels were significantly higher compared with pretreatment baseline concentrations; however, when comparing post-tagging cortisol levels with cortisol levels after exposure to a simulated aerial predator, no significant differences were found. This study indicates that VIE tagging elicits a physiological stress response similar to those occurring in the everyday lives of this important biological model organism.
Collapse
Affiliation(s)
- I Fürtbauer
- College of Science, Department of Biosciences, Swansea University, SA2 8PP, Swansea, U.K
| | | | | |
Collapse
|
30
|
Silva PI, Martins CI, Khan UW, Gjøen HM, Øverli Ø, Höglund E. Stress and fear responses in the teleost pallium. Physiol Behav 2015; 141:17-22. [DOI: 10.1016/j.physbeh.2014.12.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 12/02/2014] [Accepted: 12/08/2014] [Indexed: 01/23/2023]
|
31
|
Fürtbauer I, Pond A, Heistermann M, King AJ. Personality, plasticity and predation: linking endocrine and behavioural reaction norms in stickleback fish. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12400] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ines Fürtbauer
- Department of Biosciences College of Science Swansea University Swansea UK
| | - Alice Pond
- Department of Biosciences College of Science Swansea University Swansea UK
| | | | - Andrew J. King
- Department of Biosciences College of Science Swansea University Swansea UK
| |
Collapse
|
32
|
Hall ZJ, De Serrano AR, Rodd FH, Tropepe V. Casting a wider fish net on animal models in neuropsychiatric research. Prog Neuropsychopharmacol Biol Psychiatry 2014; 55:7-15. [PMID: 24726811 DOI: 10.1016/j.pnpbp.2014.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 03/28/2014] [Accepted: 04/01/2014] [Indexed: 01/11/2023]
Abstract
Neuropsychiatric disorders, such as schizophrenia, are associated with abnormal brain development. In this review, we discuss how studying dimensional components of these disorders, or endophenotypes, in a wider range of animal models will deepen our understanding of how interactions between biological and environmental factors alter the trajectory of neurodevelopment leading to aberrant behavior. In particular, we discuss some of the advantages of incorporating studies of brain and behavior using a range of teleost fish species into current neuropsychiatric research. From the perspective of comparative neurobiology, teleosts share a fundamental pattern of neurodevelopment and functional brain organization with other vertebrates, including humans. These shared features provide a basis for experimentally probing the mechanisms of disease-associated brain abnormalities. Moreover, incorporating information about how behaviors have been shaped by evolution will allow us to better understand the relevance of behavioral variation to determine their physiological underpinnings. We believe that exploiting the conservation in brain development across vertebrate species, and the rich diversity of fish behavior in lab and natural populations will lead to significant new insights and a holistic understanding of the neurobiological systems implicated in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Zachary J Hall
- Department of Cell & Systems Biology, University of Toronto, Canada
| | - Alex R De Serrano
- Department of Ecology & Evolutionary Biology, University of Toronto, Canada
| | - F Helen Rodd
- Department of Ecology & Evolutionary Biology, University of Toronto, Canada.
| | - Vincent Tropepe
- Department of Cell & Systems Biology, University of Toronto, Canada.
| |
Collapse
|
33
|
Neuromolecular responses to social challenge: common mechanisms across mouse, stickleback fish, and honey bee. Proc Natl Acad Sci U S A 2014; 111:17929-34. [PMID: 25453090 DOI: 10.1073/pnas.1420369111] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Certain complex phenotypes appear repeatedly across diverse species due to processes of evolutionary conservation and convergence. In some contexts like developmental body patterning, there is increased appreciation that common molecular mechanisms underlie common phenotypes; these molecular mechanisms include highly conserved genes and networks that may be modified by lineage-specific mutations. However, the existence of deeply conserved mechanisms for social behaviors has not yet been demonstrated. We used a comparative genomics approach to determine whether shared neuromolecular mechanisms could underlie behavioral response to territory intrusion across species spanning a broad phylogenetic range: house mouse (Mus musculus), stickleback fish (Gasterosteus aculeatus), and honey bee (Apis mellifera). Territory intrusion modulated similar brain functional processes in each species, including those associated with hormone-mediated signal transduction and neurodevelopment. Changes in chromosome organization and energy metabolism appear to be core, conserved processes involved in the response to territory intrusion. We also found that several homologous transcription factors that are typically associated with neural development were modulated across all three species, suggesting that shared neuronal effects may involve transcriptional cascades of evolutionarily conserved genes. Furthermore, immunohistochemical analyses of a subset of these transcription factors in mouse again implicated modulation of energy metabolism in the behavioral response. These results provide support for conserved genetic "toolkits" that are used in independent evolutions of the response to social challenge in diverse taxa.
Collapse
|
34
|
Rosvall KA, Peterson MP. Behavioral effects of social challenges and genomic mechanisms of social priming: What's testosterone got to do with it? Curr Zool 2014; 60:791-803. [PMID: 27721823 DOI: 10.1093/czoolo/60.6.791] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Social challenges from rival conspecifics are common in the lives of animals, and changes in an animal's social environment can influence physiology and behavior in ways that appear to be adaptive in the face of continued social instability (i.e. social priming). Recently, it has become clear that testosterone, long thought to be the primary mediator of these effects, may not always change in response to social challenges, an observation that highlights gaps in our understanding of the proximate mechanisms by which animals respond to their social environment. Here, our goal is to address the degree to which testosterone mediates organismal responses to social cues. To this end, we review the behavioral and physiological consequences of social challenges, as well as their underlying hormonal and gene regulatory mechanisms. We also present a new case study from a wild songbird, the dark-eyed junco (Junco hyemalis), in which we find largely divergent genome-wide transcriptional changes induced by social challenges and testosterone, respectively, in muscle and liver tissue. Our review underscores the diversity of mechanisms that link the dynamic social environment with an organisms' genomic, hormonal, and behavioral state. This diversity among species, and even among tissues within an organism, reveals new insights into the pattern and process by which evolution may alter proximate mechanisms of social priming.
Collapse
Affiliation(s)
- Kimberly A Rosvall
- Indiana University, Department of Biology and Center for the Integrative Study of Animal Behavior
| | | |
Collapse
|
35
|
Novelty, stress, and biological roots in human market behavior. Behav Sci (Basel) 2014; 4:53-69. [PMID: 25379268 PMCID: PMC4219248 DOI: 10.3390/bs4010053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 01/23/2014] [Accepted: 01/27/2014] [Indexed: 11/17/2022] Open
Abstract
Although studies examining the biological roots of human behavior have been conducted since the seminal work Kahneman and Tversky, crises and panics have not disappeared. The frequent occurrence of various types of crises has led some economists to the conviction that financial markets occasionally praise irrational judgments and that market crashes cannot be avoided a priori (Sornette 2009; Smith 2004). From a biological point of view, human behaviors are essentially the same during crises accompanied by stock market crashes and during bubble growth when share prices exceed historic highs. During those periods, most market participants see something new for themselves, and this inevitably induces a stress response in them with accompanying changes in their endocrine profiles and motivations. The result is quantitative and qualitative changes in behavior (Zhukov 2007). An underestimation of the role of novelty as a stressor is the primary shortcoming of current approaches for market research. When developing a mathematical market model, it is necessary to account for the biologically determined diphasisms of human behavior in everyday low-stress conditions and in response to stressors. This is the only type of approach that will enable forecasts of market dynamics and investor behaviors under normal conditions as well as during bubbles and panics.
Collapse
|
36
|
Consistent individual differences in paternal behavior: a field study of threespine stickleback. Behav Ecol Sociobiol 2014; 69:227-236. [PMID: 25663736 DOI: 10.1007/s00265-014-1835-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Consistent individual differences in parenting are widespread; however, we know little about why there is variation in parenting behavior among individuals within species. One possible explanation for consistent individual differences in parenting is that individuals invest in different aspects of parental care, such as provisioning or defense. In this field study we measured consistent individual differences in parenting behavior and evaluated correlations between parenting and other behaviors in threespine stickleback (Gasterosteus aculeatus). We repeatedly measured male parenting behavior and male behavior in the presence of three different types of live intruders: a female, a conspecific male, and a predator, meant to provoke courtship, aggressive and antipredator behavior, respectively. While males plastically adjusted their reactions to different types of intruders, we found consistent individual differences in behavior (behavioral types) both within and across contexts, even after accounting for variation in body size and nest characteristics. Males that performed more parenting behavior responded faster to all types of intruders. These results suggest that in nature, individual male stickleback exhibit robust parental behavioral types, and highly parental males are more attentive to their surroundings. Future studies are needed to examine the potential causes of individual variation in parental behavior in the field.
Collapse
|
37
|
Mommer BC, Bell AM. Maternal experience with predation risk influences genome-wide embryonic gene expression in threespined sticklebacks (Gasterosteus aculeatus). PLoS One 2014; 9:e98564. [PMID: 24887438 PMCID: PMC4041765 DOI: 10.1371/journal.pone.0098564] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 05/05/2014] [Indexed: 12/04/2022] Open
Abstract
There is growing evidence for nongenetic effects of maternal experience on offspring. For example, previous studies have shown that female threespined stickleback fish (Gasterosteus aculeatus) exposed to predation risk produce offspring with altered behavior, metabolism and stress physiology. Here, we investigate the effect of maternal exposure to predation risk on the embryonic transcriptome in sticklebacks. Using RNA-sequencing we compared genome-wide transcription in three day post-fertilization embryos of predator-exposed and control mothers. There were hundreds of differentially expressed transcripts between embryos of predator-exposed mothers and embryos of control mothers including several non-coding RNAs. Gene Ontology analysis revealed biological pathways involved in metabolism, epigenetic inheritance, and neural proliferation and differentiation that differed between treatments. Interestingly, predation risk is associated with an accelerated life history in many vertebrates, and several of the genes and biological pathways that were identified in this study suggest that maternal exposure to predation risk accelerates the timing of embryonic development. Consistent with this hypothesis, embryos of predator-exposed mothers were larger than embryos of control mothers. These findings point to some of the molecular mechanisms that might underlie maternal effects.
Collapse
Affiliation(s)
- Brett C. Mommer
- Department of Animal Biology, School of Integrative Biology, University of Illinois, Urbana, Illinois, United States of America
- * E-mail:
| | - Alison M. Bell
- Department of Animal Biology, School of Integrative Biology, University of Illinois, Urbana, Illinois, United States of America
| |
Collapse
|
38
|
Chemical communication of predation risk in zebrafish does not depend on cortisol increase. Sci Rep 2014; 4:5076. [PMID: 24861706 PMCID: PMC4034034 DOI: 10.1038/srep05076] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 05/06/2014] [Indexed: 11/22/2022] Open
Abstract
We investigated chemical cues among groups of zebrafish (Danio rerio) when communicating information about the risk of predation. We found that visual cues of the predator (tiger Oscar, Astronotus ocellatus) did not increase whole-body cortisol levels in groups of zebrafish but that water conditioned by these (donor) zebrafish stressed (target) conspecifics, thereby increasing whole-body cortisol. This finding was confirmed when these zebrafish groups were in different aquaria and communicated exclusively via water transfer. This result indicates that the stress induced in the target zebrafish does not depend on an increase in whole-body cortisol levels in the donor zebrafish. Because cortisol participation is rejected in this predation-risk communication, other chemicals from the stress systems should be investigated.
Collapse
|
39
|
Farwell M, Fuzzen MLM, Bernier NJ, McLaughlin RL. Individual differences in foraging behavior and cortisol levels in recently emerged brook charr (Salvelinus fontinalis). Behav Ecol Sociobiol 2014. [DOI: 10.1007/s00265-014-1691-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Chichinadze K, Chichinadze N, Gachechiladze L, Lazarashvili A, Nikolaishvili M. Physical predictors, behavioural/emotional attributes and neurochemical determinants of dominant behaviour. Biol Rev Camb Philos Soc 2014; 89:1005-20. [DOI: 10.1111/brv.12091] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 01/20/2014] [Accepted: 01/30/2014] [Indexed: 01/25/2023]
Affiliation(s)
- Konstantin Chichinadze
- Laboratory of Behavior and Cognitive Functions; I. Beritashvili Center of Experimental Biomedicine; Gotua Street 14 0160 Tbilisi Georgia
- Department of Pathology; I. Javakhishvili Tbilisi State University; 0128 Tbilisi Georgia
- Laboratory of Theoretical Investigations, Systemic Research Center; 0179 Tbilisi Georgia
| | - Nodar Chichinadze
- Department of Andrology; A. Natishvili Institute of Morphology; 0159 Tbilisi Georgia
| | - Ledi Gachechiladze
- Laboratory of Theoretical Investigations, Systemic Research Center; 0179 Tbilisi Georgia
| | - Ann Lazarashvili
- Laboratory of Theoretical Investigations, Systemic Research Center; 0179 Tbilisi Georgia
| | - Marina Nikolaishvili
- Laboratory of Problems of Radiation Safety, Department of Radiobiology; I. Beritashvili Center of Experimental Biomedicine; 0160 Tbilisi Georgia
| |
Collapse
|
41
|
López JM, González A. Organization of the Serotonergic System in the Central Nervous System of Two Basal Actinopterygian Fishes: the CladistiansPolypterus senegalusandErpetoichthys calabaricus. BRAIN, BEHAVIOR AND EVOLUTION 2014; 83:54-76. [DOI: 10.1159/000358266] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 12/24/2013] [Indexed: 11/19/2022]
|
42
|
Hanson JL, Hurley LM. Context-dependent fluctuation of serotonin in the auditory midbrain: the influence of sex, reproductive state and experience. ACTA ACUST UNITED AC 2013; 217:526-35. [PMID: 24198252 DOI: 10.1242/jeb.087627] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In the face of changing behavioral situations, plasticity of sensory systems can be a valuable mechanism to facilitate appropriate behavioral responses. In the auditory system, the neurotransmitter serotonin is an important messenger for context-dependent regulation because it is sensitive to both external events and internal state, and it modulates neural activity. In male mice, serotonin increases in the auditory midbrain region, the inferior colliculus (IC), in response to changes in behavioral context such as restriction stress and social contact. Female mice have not been measured in similar contexts, although the serotonergic system is sexually dimorphic in many ways. In the present study, we investigated the effects of sex, experience and estrous state on the fluctuation of serotonin in the IC across contexts, as well as potential relationships between behavior and serotonin. Contrary to our expectation, there were no sex differences in increases of serotonin in response to a restriction stimulus. Both sexes had larger increases in second exposures, suggesting experience plays a role in serotonergic release in the IC. In females, serotonin increased during both restriction and interactions with males; however, the increase was more rapid during restriction. There was no effect of female estrous phase on the serotonergic change for either context, but serotonin was related to behavioral activity in females interacting with males. These results show that changes in behavioral context induce increases in serotonin in the IC by a mechanism that appears to be uninfluenced by sex or estrous state, but may depend on experience and behavioral activity.
Collapse
Affiliation(s)
- Jessica L Hanson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
43
|
Laine VN, Herczeg G, Shikano T, Vilkki J, Merilä J. QTL analysis of behavior in nine-spined sticklebacks (Pungitius pungitius). Behav Genet 2013; 44:77-88. [PMID: 24190427 DOI: 10.1007/s10519-013-9624-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 10/12/2013] [Indexed: 11/25/2022]
Abstract
The genetic architecture of behavioral traits is yet relatively poorly understood in most non-model organisms. Using an F2-intercross (n = 283 offspring) between behaviorally divergent nine-spined stickleback (Pungitius pungitius) populations, we tested for and explored the genetic basis of different behavioral traits with the aid of quantitative trait locus (QTL) analyses based on 226 microsatellite markers. The behaviors were analyzed both separately (viz. feeding activity, risk-taking and exploration) and combined in order to map composite behavioral type. Two significant QTL-explaining on average 6 % of the phenotypic variance-were detected for composite behavioral type on the experiment-wide level, located on linkage groups 3 and 8. In addition, several suggestive QTL located on six other linkage groups were detected on the chromosome-wide level. Apart from providing evidence for the genetic basis of behavioral variation, the results provide a good starting point for finer-scale analyses of genetic factors influencing behavioral variation in the nine-spined stickleback.
Collapse
Affiliation(s)
- Veronika N Laine
- Division of Genetics and Physiology, Department of Biology, University of Turku, 20014, Turku, Finland,
| | | | | | | | | |
Collapse
|
44
|
Oliveira TA, Koakoski G, Kreutz LC, Ferreira D, da Rosa JGS, de Abreu MS, Giacomini ACV, Oliveira RP, Fagundes M, Piato AL, Barreto RE, Barcellos LJG. Alcohol impairs predation risk response and communication in zebrafish. PLoS One 2013; 8:e75780. [PMID: 24116073 PMCID: PMC3792133 DOI: 10.1371/journal.pone.0075780] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 08/16/2013] [Indexed: 11/18/2022] Open
Abstract
The effects of ethanol exposure on Danio rerio have been studied from the perspectives of developmental biology and behavior. However, little is known about the effects of ethanol on the prey-predator relationship and chemical communication of predation risk. Here, we showed that visual contact with a predator triggers stress axis activation in zebrafish. We also observed a typical stress response in zebrafish receiving water from these conspecifics, indicating that these fish chemically communicate predation risk. Our work is the first to demonstrate how alcohol effects this prey-predator interaction. We showed for the first time that alcohol exposure completely blocks stress axis activation in both fish seeing the predator and in fish that come in indirect contact with a predator by receiving water from these conspecifics. Together with other research results and with the translational relevance of this fish species, our data points to zebrafish as a promising animal model to study human alcoholism.
Collapse
Affiliation(s)
- Thiago Acosta Oliveira
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Gessi Koakoski
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Luiz Carlos Kreutz
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Daiane Ferreira
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - João Gabriel Santos da Rosa
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Murilo Sander de Abreu
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Ana Cristina Vendrametto Giacomini
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Ricardo Pimentel Oliveira
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Michele Fagundes
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Angelo Luis Piato
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
| | | | - Leonardo José Gil Barcellos
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brazil
- * E-mail:
| |
Collapse
|
45
|
A test of maternal programming of offspring stress response to predation risk in threespine sticklebacks. Physiol Behav 2013; 122:222-7. [PMID: 23628383 DOI: 10.1016/j.physbeh.2013.04.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 04/16/2013] [Accepted: 04/19/2013] [Indexed: 12/19/2022]
Abstract
Non-genetic maternal effects are widespread across taxa and challenge our traditional understanding of inheritance. Maternal experience with predators, for example, can have lifelong consequences for offspring traits, including fitness. Previous work in threespine sticklebacks showed that females exposed to simulated predation risk produced eggs with higher cortisol content and offspring with altered anti-predator behavior. However, it is unknown whether this maternal effect is mediated via the offspring glucocorticoid stress response and if it is retained over the entire lifetime of offspring. Therefore, we tested the hypothesis that maternal exposure to simulated predation risk has long-lasting effects on the cortisol response to simulated predation risk in stickleback offspring. We measured circulating concentrations of cortisol before (baseline), 15 min after, and 60 min after exposure to a simulated predation risk. We compared adult offspring of predator-exposed mothers and control mothers in two different social environments (alone or in a group). Relative to baseline, offspring plasma cortisol was highest 15 min after exposure to simulated predation risk and decreased after 60 min. Offspring of predator-exposed mothers differed in the cortisol response to simulated predation risk compared to offspring of control mothers. In general, females had higher cortisol than males, and fish in a group had lower cortisol than fish that were by themselves. The buffering effect of the social environment did not differ between maternal treatments or between males and females. Altogether the results show that while a mother's experience with simulated predation risk might affect the physiological response of her adult offspring to a predator, sex and social isolation have much larger effects on the stress response to predation risk in sticklebacks.
Collapse
|
46
|
Middlemis Maher J, Werner EE, Denver RJ. Stress hormones mediate predator-induced phenotypic plasticity in amphibian tadpoles. Proc Biol Sci 2013; 280:20123075. [PMID: 23466985 DOI: 10.1098/rspb.2012.3075] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Amphibian tadpoles display extensive anti-predator phenotypic plasticity, reducing locomotory activity and, with chronic predator exposure, developing relatively smaller trunks and larger tails. In many vertebrates, predator exposure alters activity of the neuroendocrine stress axis. We investigated predator-induced effects on stress hormone production and the mechanistic link to anti-predator defences in Rana sylvatica tadpoles. Whole-body corticosterone (CORT) content was positively correlated with predator biomass in natural ponds. Exposure to caged predators in mesocosms caused a reduction in CORT by 4 hours, but increased CORT after 4 days. Tadpoles chronically exposed to exogenous CORT developed larger tails relative to their trunks, matching morphological changes induced by predator chemical cue; this predator effect was blocked by the corticosteroid biosynthesis inhibitor metyrapone. Tadpole tail explants treated in vitro with CORT increased tissue weight, suggesting that CORT acts directly on the tail. Short-term treatment of tadpoles with CORT increased predation mortality, likely due to increased locomotory activity. However, long-term CORT treatment enhanced survivorship, likely due to induced morphology. Our findings support the hypothesis that tadpole physiological and behavioural/morphological responses to predation are causally interrelated. Tadpoles initially suppress CORT and behaviour to avoid capture, but increase CORT with longer exposure, inducing adaptive phenotypic changes.
Collapse
Affiliation(s)
- Jessica Middlemis Maher
- Department of Ecology and Evolutionary Biology, The University of Michigan, Ann Arbor, MI 48109-1048, USA.
| | | | | |
Collapse
|
47
|
Pottinger TG, Henrys PA, Williams RJ, Matthiessen P. The stress response of three-spined sticklebacks is modified in proportion to effluent exposure downstream of wastewater treatment works. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 126:382-392. [PMID: 23021553 DOI: 10.1016/j.aquatox.2012.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/31/2012] [Accepted: 09/04/2012] [Indexed: 06/01/2023]
Abstract
This study was conducted to investigate whether exposure to wastewater treatment works (WWTW) effluent affects the adaptive stress axis of fish resident within the receiving water. Three-spined sticklebacks (Gasterosteus aculeatus) were sampled from sites downstream of ten WWTWs in north-west England, selected to represent a range of human population equivalents between 1000 and 125,000. Following capture, indices of stress (whole-body cortisol and glucose concentrations) were measured both prior to, and following, the imposition of a standardised stressor to establish both baseline and stress-induced concentrations of cortisol and glucose. There was considerable between-site variation in size, and to a lesser extent condition, of the fish. Pre- and post-stress cortisol and glucose concentrations also varied significantly between-sites. A large proportion of the variation in both the somatic data and the stress response was explained by variation in the proportion of effluent contributing to total river flow at the study sites. Mass (r(2)=0.35, P<0.001) and length (r(2)=0.37, P<0.001) of the fish, and cortisol (r(2)=0.26, P<0.001) and glucose (r(2)=0.12, P<0.01) concentrations in unstressed sticklebacks, were positively related to the concentration of effluent across the sample sites. However, in stressed fish, cortisol (r(2)=0.32, P<0.001) and glucose (r(2)=0.14, P<0.001) concentrations exhibited a negative trend in relation to the effluent concentrations across sites. Individual variation in fish size did not account for the variation in either cortisol or glucose levels. These data provide the first indication that modulation of the stress axis in fish by anthropogenic factors might be widespread and of greater significance than hitherto assumed.
Collapse
Affiliation(s)
- Tom G Pottinger
- Centre for Ecology & Hydrology, Lancaster Environment Centre, Bailrigg, UK.
| | | | | | | |
Collapse
|
48
|
Roche DP, McGhee KE, Bell AM. Maternal predator-exposure has lifelong consequences for offspring learning in threespined sticklebacks. Biol Lett 2012; 8:932-5. [PMID: 22993240 PMCID: PMC3497140 DOI: 10.1098/rsbl.2012.0685] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 08/28/2012] [Indexed: 12/30/2022] Open
Abstract
Learning is an important form of phenotypic plasticity that allows organisms to adjust their behaviour to the environment. An individual's learning performance can be affected by its mother's environment. For example, mothers exposed to stressors, such as restraint and forced swimming, often produce offspring with impaired learning performance. However, it is unclear whether there are maternal effects on offspring learning when mothers are exposed to ecologically relevant stressors, such as predation risk. Here, we examined whether maternal predator-exposure affects adult offsprings' learning of a discrimination task in threespined sticklebacks (Gasterosteus aculeatus). Mothers were either repeatedly chased by a model predator (predator-exposed) or not (unexposed) while producing eggs. Performance of adult offspring from predator-exposed and unexposed mothers was assessed in a discrimination task that paired a particular coloured chamber with a food reward. Following training, all offspring learned the colour-association, but offspring of predator-exposed mothers located the food reward more slowly than offspring of unexposed mothers. This pattern was not driven by initial differences in exploratory behaviour. These results demonstrate that an ecologically relevant stressor (predation risk) can induce maternal effects on offspring learning, and perhaps behavioural plasticity more generally, that last into adulthood.
Collapse
Affiliation(s)
| | - Katie E. McGhee
- School of Integrative Biology, University of Illinois, Urbana, IL 61801, USA
| | | |
Collapse
|
49
|
Sanogo YO, Band M, Blatti C, Sinha S, Bell AM. Transcriptional regulation of brain gene expression in response to a territorial intrusion. Proc Biol Sci 2012; 279:4929-38. [PMID: 23097509 DOI: 10.1098/rspb.2012.2087] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Aggressive behaviour associated with territorial defence is widespread and has fitness consequences. However, excess aggression can interfere with other important biological functions such as immunity and energy homeostasis. How the expression of complex behaviours such as aggression is regulated in the brain has long intrigued ethologists, but has only recently become amenable for molecular dissection in non-model organisms. We investigated the transcriptomic response to territorial intrusion in four brain regions in breeding male threespined sticklebacks using expression microarrays and quantitative polymerase chain reaction (qPCR). Each region of the brain had a distinct genomic response to a territorial challenge. We identified a set of genes that were upregulated in the diencephalon and downregulated in the cerebellum and the brain stem. Cis-regulatory network analysis suggested transcription factors that regulated or co-regulated genes that were consistently regulated in all brain regions and others that regulated gene expression in opposing directions across brain regions. Our results support the hypothesis that territorial animals respond to social challenges via transcriptional regulation of genes in different brain regions. Finally, we found a remarkably close association between gene expression and aggressive behaviour at the individual level. This study sheds light on the molecular mechanisms in the brain that underlie the response to social challenges.
Collapse
Affiliation(s)
- Yibayiri O Sanogo
- Integrative Biology, University of Illinois, Urbana-Champaign, IL, USA
| | | | | | | | | |
Collapse
|
50
|
Bell A. Randomized or fixed order for studies of behavioral syndromes? ACTA ACUST UNITED AC 2012; 24:16-20. [PMID: 27307687 DOI: 10.1093/beheco/ars148] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 07/28/2012] [Accepted: 08/03/2012] [Indexed: 12/27/2022]
Abstract
There is a growing interest among behavioral ecologists in behavioral syndromes and animal personality. Studies of behavioral syndromes repeatedly measure the same individuals to quantify within-individual consistency and between-individual variation in behavior. Often these studies measure behavior in different contexts or in different behavioral assays to determine whether individual differences in behavior in one context are related to behavior in other contexts, that is, a behavioral syndrome. For studies of behavioral syndromes, there is not universal agreement about whether it is preferable to randomize the order of different assays or to administer them in a fixed order. Here, I articulate the advantages and disadvantages of testing in a randomized or fixed order and offer some recommendations according to the goals and power of the experiment. In general, studies using within-subjects designs that are primarily interested in mean-level differences between treatments should randomize the order that individuals experience different treatments. Under certain conditions, studies of behavioral syndromes should also administer the assays in a randomized order, but only if the study is sufficiently powerful to statistically account for carryover and period effects. If the experimenter is interested in behavioral syndromes that are caused by carryovers, it is often preferable to test in a fixed order. If the experimenter wants to guard against carryovers, but the experiment is not sufficiently powerful to account for carryover and period effects, then a compromise is to test in a fixed order, but to test individuals in the context that is most likely to affect subsequent behavior last.
Collapse
Affiliation(s)
- Alison Bell
- School of Integrative Biology, University of Illinois , 505 S. Goodwin Ave. , Urbana, IL 61801, USA
| |
Collapse
|