1
|
Xiao N, Wu G, Zhou Z, Yao J, Wu B, Sui J, Tin C. Positive feedback of efferent copy via pontine nucleus facilitates cerebellum-mediated associative learning. Cell Rep 2023; 42:112072. [PMID: 36735531 DOI: 10.1016/j.celrep.2023.112072] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/07/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
The cerebellum is critical for motor coordination and learning. However, the role of feedback circuitry in this brain region has not been fully explored. Here, we characterize a nucleo-ponto-cortical feedback pathway in classical delayed eyeblink conditioning (dEBC) of rats. We find that the efference copy is conveyed from the interposed cerebellar nucleus (Int) to cerebellar cortex through pontine nucleus (PN). Inhibiting or exciting the projection from the Int to the PN can decelerate or speed up acquisition of dEBC, respectively. Importantly, we identify two subpopulations of PN neurons (PN1 and PN2) that convey and integrate the feedback signals with feedforward sensory signals. We also show that the feedforward and feedback pathways via different types of PN neurons contribute to the plastic changes and cooperate synergistically to the learning of dEBC. Our results suggest that this excitatory nucleo-ponto-cortical feedback plays a significant role in modulating associative motor learning in cerebellum.
Collapse
Affiliation(s)
- Na Xiao
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong; Advanced Biomedical Instrumentation Centre, Shatin, N.T., Hong Kong; Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Guangyan Wu
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China; Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Zhanhong Zhou
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Juan Yao
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China; Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Bing Wu
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China; Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Jianfeng Sui
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China; Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China.
| | - Chung Tin
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong.
| |
Collapse
|
2
|
Lindquist DH. Emotion in motion: A three-stage model of aversive classical conditioning. Neurosci Biobehav Rev 2020; 115:363-377. [DOI: 10.1016/j.neubiorev.2020.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 01/12/2023]
|
3
|
Wang YJ, Chen H, Hu C, Ke XF, Yang L, Xiong Y, Hu B. Baseline theta activities in medial prefrontal cortex and deep cerebellar nuclei are associated with the extinction of trace conditioned eyeblink responses in guinea pigs. Behav Brain Res 2014; 275:72-83. [PMID: 25200518 DOI: 10.1016/j.bbr.2014.08.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/23/2014] [Accepted: 08/30/2014] [Indexed: 12/12/2022]
Abstract
It has been shown that both the medial prefrontal cortex (mPFC) and the cerebellum are involved in the extinction of trace conditioned eyeblink responses (CR). However, the neural mechanisms underlying the extinction are still relatively unclear. Theta oscillation in either the mPFC or the cerebellum has been revealed to correlate with the performance of trace CRs during the asymptotic acquisition. Therefore, we sought to further evaluate the impacts of pre-conditioned stimulus (CS) spontaneous theta (5.0-10.0Hz) oscillations in the mPFC and the deep cerebellar nuclei (DCN) on the extinction of trace CRs. Albino guinea pigs were given acquisition training for ten daily sessions followed by seven daily sessions of extinction. Local field potential (LFP) signals in the mPFC and the DCN were recorded when the animals received the CS-alone extinction training. It was found that higher mPFC relative theta ratios [theta/(delta+beta)] during the baseline period (850-ms prior to the CS onset) were predictive of fewer CR incidences rather than more adaptive CR performance (i.e., higher CR magnitude and later CR peak/onset latencies). Likewise, the pre-CS DCN theta activity was associated with the faster CR extinction. Furthermore, it was revealed that the power of pre-CS theta activities in the mPFC and the DCN were correlated until the extinction training day 2. Collectively, these results suggest that the mPFC and the DCN may interact with each other, and the brain oscillation state in which baseline theta activities in both areas are present contributes to the subsequent extinction of trace CRs.
Collapse
Affiliation(s)
- Yi-jie Wang
- Department of Physiology, College of Basic Medical Sciences, Chongqing 400038, PR China; Battalion 5 of Cadet Brigade, Third Military Medical University, Chongqing 400038, PR China
| | - Hao Chen
- Department of Physiology, College of Basic Medical Sciences, Chongqing 400038, PR China
| | - Chen Hu
- Department of Physiology, College of Basic Medical Sciences, Chongqing 400038, PR China; Battalion 8 of Cadet Brigade, Third Military Medical University, Chongqing 400038, PR China
| | - Xian-feng Ke
- Department of Physiology, College of Basic Medical Sciences, Chongqing 400038, PR China; Battalion 8 of Cadet Brigade, Third Military Medical University, Chongqing 400038, PR China
| | - Li Yang
- Department of Physiology, College of Basic Medical Sciences, Chongqing 400038, PR China
| | - Yan Xiong
- Department of Orthopedics, Daping Hospital, Third Military Medical University, Chongqing 400042, PR China.
| | - Bo Hu
- Department of Physiology, College of Basic Medical Sciences, Chongqing 400038, PR China.
| |
Collapse
|
4
|
Lindquist DH, Sokoloff G, Milner E, Steinmetz JE. Neonatal ethanol exposure results in dose-dependent impairments in the acquisition and timing of the conditioned eyeblink response and altered cerebellar interpositus nucleus and hippocampal CA1 unit activity in adult rats. Alcohol 2013; 47:447-57. [PMID: 23871534 DOI: 10.1016/j.alcohol.2013.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 03/24/2013] [Accepted: 05/15/2013] [Indexed: 10/26/2022]
Abstract
Exposure to ethanol in neonatal rats results in reduced neuronal numbers in the cerebellar cortex and deep nuclei of juvenile and adult animals. This reduction in cell numbers is correlated with impaired delay eyeblink conditioning (EBC), a simple motor learning task in which a neutral conditioned stimulus (CS; tone) is repeatedly paired with a co-terminating unconditioned stimulus (US; periorbital shock). Across training, cell populations in the interpositus (IP) nucleus model the temporal form of the eyeblink-conditioned response (CR). The hippocampus, though not required for delay EBC, also shows learning-dependent increases in CA1 and CA3 unit activity. In the present study, rat pups were exposed to 0, 3, 4, or 5 mg/kg/day of ethanol during postnatal days (PD) 4-9. As adults, CR acquisition and timing were assessed during 6 training sessions of delay EBC with a short (280 ms) interstimulus interval (ISI; time from CS onset to US onset) followed by another 6 sessions with a long (880 ms) ISI. Neuronal activity was recorded in the IP and area CA1 during all 12 sessions. The high-dose rats learned the most slowly and, with the moderate-dose rats, produced the longest CR peak latencies over training to the short ISI. The low dose of alcohol impaired CR performance to the long ISI only. The 3E (3 mg/kg/day of ethanol) and 5E (5 mg/kg/day of ethanol) rats also showed slower-than-normal increases in learning-dependent excitatory unit activity in the IP and CA1. The 4E (4 mg/kg/day of ethanol) rats showed a higher rate of CR production to the long ISI and enhanced IP and CA1 activation when compared to the 3E and 5E rats. The results indicate that binge-like ethanol exposure in neonatal rats induces long-lasting, dose-dependent deficits in CR acquisition and timing and diminishes conditioning-related neuronal excitation in both the cerebellum and hippocampus.
Collapse
|
5
|
Kryukov VI. Towards a unified model of pavlovian conditioning: short review of trace conditioning models. Cogn Neurodyn 2012; 6:377-98. [PMID: 24082960 PMCID: PMC3438324 DOI: 10.1007/s11571-012-9195-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 12/12/2011] [Accepted: 02/03/2012] [Indexed: 12/18/2022] Open
Abstract
There are three basic paradigms of classical conditioning: delay, trace and context conditioning where presentation of a conditioned stimulus (CS) or a context typically predicts an unconditioned stimulus (US). In delay conditioning CS and US normally coterminate, whereas in trace conditioning an interval of time exists between CS termination and US onset. The modeling of trace conditioning is a rather difficult computational problem and is a challenge to the behavior and connectionist approaches mainly due to a time gap between CS and US. To account for trace conditioning, Pavlov (Conditioned reflexes: an investigation of the physiological activity of the cerebral cortex, Oxford University Press, London, 1927) postulated the existence of a stimulus "trace" in the nervous system. Meanwhile, there exist many other options for solving this association problem. There are several excellent reviews of computational models of classical conditioning but none has thus far been devoted to trace conditioning. Eight representative models of trace conditioning aimed at building a prospective model are being reviewed below in a brief form. As a result, one of them, comprising the most important features of its predecessors, can be suggested as a real candidate for a unified model of trace conditioning.
Collapse
Affiliation(s)
- V. I. Kryukov
- St. Daniel Monastery, Danilovsky Val 22, 115191 Moscow, Russia
| |
Collapse
|
6
|
Gal-Ben-Ari S, Rosenblum K. Molecular mechanisms underlying memory consolidation of taste information in the cortex. Front Behav Neurosci 2012; 5:87. [PMID: 22319481 PMCID: PMC3251832 DOI: 10.3389/fnbeh.2011.00087] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 12/12/2011] [Indexed: 12/22/2022] Open
Abstract
The senses of taste and odor are both chemical senses. However, whereas an organism can detect an odor at a relatively long distance from its source, taste serves as the ultimate proximate gatekeeper of food intake: it helps in avoiding poisons and consuming beneficial substances. The automatic reaction to a given taste has been developed during evolution and is well adapted to conditions that may occur with high probability during the lifetime of an organism. However, in addition to this automatic reaction, animals can learn and remember tastes, together with their positive or negative values, with high precision and in light of minimal experience. This ability of mammalians to learn and remember tastes has been studied extensively in rodents through application of reasonably simple and well defined behavioral paradigms. The learning process follows a temporal continuum similar to those of other memories: acquisition, consolidation, retrieval, relearning, and reconsolidation. Moreover, inhibiting protein synthesis in the gustatory cortex (GC) specifically affects the consolidation phase of taste memory, i.e., the transformation of short- to long-term memory, in keeping with the general biochemical definition of memory consolidation. This review aims to present a general background of taste learning, and to focus on recent findings regarding the molecular mechanisms underlying taste–memory consolidation in the GC. Specifically, the roles of neurotransmitters, neuromodulators, immediate early genes, and translation regulation are addressed.
Collapse
|
7
|
Okamoto K, Tashiro A, Chang Z, Bereiter DA. Bright light activates a trigeminal nociceptive pathway. Pain 2010; 149:235-242. [PMID: 20206444 PMCID: PMC2860692 DOI: 10.1016/j.pain.2010.02.004] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 11/30/2009] [Accepted: 02/01/2010] [Indexed: 01/07/2023]
Abstract
Bright light can cause ocular discomfort and/or pain; however, the mechanism linking luminance to trigeminal nerve activity is not known. In this study we identify a novel reflex circuit necessary for bright light to excite nociceptive neurons in superficial laminae of trigeminal subnucleus caudalis (Vc/C1). Vc/C1 neurons encoded light intensity and displayed a long delay (>10s) for activation. Microinjection of lidocaine into the eye or trigeminal root ganglion (TRG) inhibited light responses completely, whereas topical application onto the ocular surface had no effect. These findings indicated that light-evoked Vc/C1 activity was mediated by an intraocular mechanism and transmission through the TRG. Disrupting local vasomotor activity by intraocular microinjection of the vasoconstrictive agents, norepinephrine or phenylephrine, blocked light-evoked neural activity, whereas ocular surface or intra-TRG microinjection of norepinephrine had no effect. Pupillary muscle activity did not contribute since light-evoked responses were not altered by atropine. Microinjection of lidocaine into the superior salivatory nucleus diminished light-evoked Vc/C1 activity and lacrimation suggesting that increased parasympathetic outflow was critical for light-evoked responses. The reflex circuit also required input through accessory visual pathways since both Vc/C1 activity and lacrimation were prevented by local blockade of the olivary pretectal nucleus. These findings support the hypothesis that bright light activates trigeminal nerve activity through an intraocular mechanism driven by a luminance-responsive circuit and increased parasympathetic outflow to the eye.
Collapse
Affiliation(s)
- Keiichiro Okamoto
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, 18-214 Moos Tower, 515 Delaware St. SE, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
8
|
Comparison of auditory and visual conditioning stimuli in delay eyeblink conditioning in healthy young adults. Learn Behav 2009; 37:349-56. [PMID: 19815931 DOI: 10.3758/lb.37.4.349] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Classical eyeblink conditioning (EBC) has been widely used to probe cerebellar function in humans and nonhuman mammals. Although the neural pathways governing behavior in this task are well understood and fairly discrete, it remains unclear in the human literature how conditioned stimuli (CSs) of different modalities (e.g., visual and auditory) influence the exhibition of conditioned responses (CRs). In the present study, therefore, CRs to a visual CS and an auditory CS were examined with the single-cue delay EBC procedure. An initial experiment (N = 61) was conducted to identify visual and auditory stimuli that had equal perceived intensities. Using these perceptually equivalent stimuli, a second group of 25 subjects completed auditory and visual EBC procedures in two testing sessions 5-8 days apart. Whereas the acquisition of CRs was similar between the CS modality conditions, the timing of the CRs differed such that earlier CR onset and peak latencies were associated with the visual CS. In addition, CR timing improved across testing sessions, as indicated by the later CR peak latencies exhibited during the second testing session, as compared with the first.
Collapse
|