1
|
Recent Advances in the Knowledge of the Mechanisms of Leptin Physiology and Actions in Neurological and Metabolic Pathologies. Int J Mol Sci 2023; 24:ijms24021422. [PMID: 36674935 PMCID: PMC9860943 DOI: 10.3390/ijms24021422] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
Excess body weight is frequently associated with low-grade inflammation. Evidence indicates a relationship between obesity and cancer, as well as with other diseases, such as diabetes and non-alcoholic fatty liver disease, in which inflammation and the actions of various adipokines play a role in the pathological mechanisms involved in these disorders. Leptin is mainly produced by adipose tissue in proportion to fat stores, but it is also synthesized in other organs, where leptin receptors are expressed. This hormone performs numerous actions in the brain, mainly related to the control of energy homeostasis. It is also involved in neurogenesis and neuroprotection, and central leptin resistance is related to some neurological disorders, e.g., Parkinson's and Alzheimer's diseases. In peripheral tissues, leptin is implicated in the regulation of metabolism, as well as of bone density and muscle mass. All these actions can be affected by changes in leptin levels and the mechanisms associated with resistance to this hormone. This review will present recent advances in the molecular mechanisms of leptin action and their underlying roles in pathological situations, which may be of interest for revealing new approaches for the treatment of diseases where the actions of this adipokine might be compromised.
Collapse
|
2
|
Karcioglu Batur L, Hekim N. Correlation between interleukin gene polymorphisms and current prevalence and mortality rates due to novel coronavirus disease 2019 (COVID-2019) in 23 countries. J Med Virol 2021; 93:5853-5863. [PMID: 34081354 PMCID: PMC8242628 DOI: 10.1002/jmv.27127] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 12/26/2022]
Abstract
Background The novel coronavirus disease 2019 (COVID‐19) infection may rely on a potential genetic background for the variations in the inflammatory response. We aimed to investigate the possible correlation between polymorphisms in the IL‐6 gene at rs1800796/rs1800795, in IL‐6R at rs2228145, in IL‐10 at rs1800896 and rs1800871, in IL‐17 at rs2275913 and rs763780 loci, and COVID‐19 prevalence and mortality rates among populations of 23 countries. Methods We searched the literature for polymorphisms in China, Japan, India, Spain, Mexico, Sweden, Turkey, Brazil, Russia, Poland, Italy, South Africa, Netherlands, Greece, Germany, UK, Iran, Finland, Czechia, Tunisia, Norway, Egypt, Croatia. We recorded the prevalence and mortality rates (per million) caused by the Coronavirus infection recorded on 7th September 2020 and 6th December 2020. Results There was a significant positive correlation between the frequency of AG genotype of rs1800896 and prevalence recorded on 6th December 2020 (r: 0.53, r2: 0.28, p < .05). There was a significant negative correlation between the mortality rates recorded on 7th September, and the AG genotype of rs2275913 (r: −0.51, r2: 0.26, p < .05). There was a significant positive correlation between the prevalence recorded on 6th December, and TT genotype at rs763780 (r: 0.65, r2:0.42, p < .05) while a negative correlation between prevalence and TC genotype at rs763780 (r: −0.66, r2: 0.43, p < .05). Also, a significant negative correlation was found between mortality rates recorded on 6th December 2020 and CC genotype at rs763780 (r: −0.56, r2: 0.31, p < .05). Conclusion The variations in prevalence of COVID‐19 and its mortality rates among countries may be explained by the polymorphisms at rs1800896 in IL‐10, rs2275913 in IL‐17A, and rs763780 loci in the IL‐17F gene. The variations in prevalence of COVID‐19 and its mortality rates among 23 countries may be explained by the polymorphisms at rs1800896 in IL‐10, rs2275913 in IL‐17A, and rs763780 loci in the IL‐17F gene. AG genotype frequency of rs1800896 was positively correlated with prevalence recorded on 6th December 2020. The mortality rates recorded on 7th September was negatively correlated with AG genotype frequency of rs2275913. The prevalence recorded on 6th December was positively correlated with frequency of TT and negatively with TC genotype at rs763780. The mortality rates recorded on 6th December 2020 was negatively correlated with CC genotype frequency at rs763780.
Collapse
Affiliation(s)
- Lutfiye Karcioglu Batur
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Biruni University, Istanbul, Turkey
| | - Nezih Hekim
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Biruni University, Istanbul, Turkey
| |
Collapse
|
3
|
Koshenov Z, Oflaz FE, Hirtl M, Bachkoenig OA, Rost R, Osibow K, Gottschalk B, Madreiter-Sokolowski CT, Waldeck-Weiermair M, Malli R, Graier WF. The contribution of uncoupling protein 2 to mitochondrial Ca 2+ homeostasis in health and disease - A short revisit. Mitochondrion 2020; 55:164-173. [PMID: 33069910 DOI: 10.1016/j.mito.2020.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/30/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022]
Abstract
Considering the versatile functions attributed to uncoupling protein 2 (UCP2) in health and disease, a profound understanding of the protein's molecular actions under physiological and pathophysiological conditions is indispensable. This review aims to revisit and shed light on the fundamental molecular functions of UCP2 in mitochondria, with particular emphasis on its intricate role in regulating mitochondrial calcium (Ca2+) uptake. UCP2's modulating effect on various vital processes in mitochondria makes it a crucial regulator of mitochondrial homeostasis in health and disease.
Collapse
Affiliation(s)
- Zhanat Koshenov
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Furkan E Oflaz
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Martin Hirtl
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Olaf A Bachkoenig
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Rene Rost
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Karin Osibow
- Diagnostic and Research Institute for Pathology, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; Department of Health Sciences and Technology, ETH Zurich, Schorenstraße 16, 8603 Schwerzenbach, Switzerland
| | - Benjamin Gottschalk
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Corina T Madreiter-Sokolowski
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; Diagnostic and Research Institute for Pathology, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Markus Waldeck-Weiermair
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Roland Malli
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; BioTechMed, Graz, Austria
| | - Wolfgang F Graier
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; BioTechMed, Graz, Austria.
| |
Collapse
|
4
|
Oertelt-Prigione S, Mariman E. The impact of sex differences on genomic research. Int J Biochem Cell Biol 2020; 124:105774. [PMID: 32470538 DOI: 10.1016/j.biocel.2020.105774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/15/2020] [Accepted: 05/22/2020] [Indexed: 01/23/2023]
Abstract
Sex and gender differences affect all dimensions of human health ranging from the biological basis of disease to therapeutic access, choice and response. Genomics research has long ignored the role of sex differences as potential modulators and the concept is gaining more attention only recently. In the present review we summarize the current knowledge of the impact of sex differences on genomic and epigenomic research, the potential interaction of genomics and gender and the role of these differences in disease etiopathogenesis. Sex differences can emerge from differences in the sex chromosomes themselves, from their interaction with the genome and from the influence of hormones on genomic processes. The impact of these processes on the incidence of autoimmune and oncologic disease is well documented. The growing field of systems biology, which aims at integrating information from different networks of the human body, could also greatly benefit from this approach. In the present review we summarize the current knowledge and provide recommendations for the future performance of sex-sensitive genomics research.
Collapse
Affiliation(s)
- Sabine Oertelt-Prigione
- Department of Primary and Community Care, Radboud Institute of Health Sciences, Radboudumc, Nijmegen, The Netherlands; Institute of Legal and Forensic Medicine, Charité - Universitätsmedizin, Berlin, Germany.
| | - Edwin Mariman
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
5
|
Pascual-Gamarra JM, Salazar-Tortosa DF, Labayen I, Rupérez AI, Censi L, Béghin L, Michels N, Gonzalez-Gross M, Manios Y, Lambrinou CP, Moreno LA, Meirhaeghe A, Castillo MJ, Ruiz JR. Association between CNTF Polymorphisms and Adiposity Markers in European Adolescents. J Pediatr 2020; 219:23-30.e1. [PMID: 32037156 DOI: 10.1016/j.jpeds.2019.12.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/28/2019] [Accepted: 12/17/2019] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To examine the association between polymorphisms of the ciliary neurotrophic factor gene (CNTF) and total and central adiposity markers in adolescents. STUDY DESIGN This cross-sectional study involved 1057 European adolescents aged 12-18 years enrolled in the Healthy Lifestyle in Europe by Nutrition in Adolescence Cross-Sectional Study. Five polymorphisms of CNTF were genotyped, and the weight, height, waist and hip circumference, and triceps and subscapular skinfold thickness of the subjects were measured and recorded. RESULTS The T allele of rs2509914, the C allele of rs2515363, and the G allele of rs2515362 were significantly associated (after Bonferroni correction) with higher values for several adiposity markers under different inheritance models. The CNTF CCGGA haplotype (rs2509914, rs17489568, rs2515363 rs1800169, and rs2515362) was also significantly associated with lower body mass index, waist circumference, waist/height ratio, and waist/hip ratio values compared with the TCCGG haplotype under several inheritance models. CONCLUSIONS Three polymorphisms-rs2509914, rs2515363, and rs2515362-and the CCGGA haplotype of CNTF were significantly associated with adiposity in European adolescents. These results suggest the potential role of CTNF in the development of obesity-related phenotypes.
Collapse
Affiliation(s)
- Jose M Pascual-Gamarra
- PROFITH (Promoting Fitness and Health Through Physical Activity) Research Group, Faculty of Medicine, Department of Physiology, University of Granada, Granada, Spain; Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain.
| | | | - Idoia Labayen
- Department of Health Sciences, Public University of Navarra, Pamplona, Spain
| | - Azahara I Rupérez
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, Department of Health and Human Performance, School of Health Sciences, University of Zaragoza, Zaragoza, Spain
| | - Laura Censi
- Council for Agricultural Research and Economics, Research Center for Food and Nutrition, Rome, Italy
| | - Laurent Béghin
- Research Center, Faculty of Medicine, Lille Inflammation Research International Center, Lille Cedex, France
| | - Nathalie Michels
- Department of Public Health and Primary Care, Ghent University, Ghent, Belgium
| | - Marcela Gonzalez-Gross
- Department of Health and Human Performance, Universidad Politécnica de Madrid, Madrid, Spain
| | - Yannis Manios
- Department of Nutrition and Dietetics, Harokopio University of Athens, Greece
| | | | - Luis A Moreno
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, Department of Health and Human Performance, School of Health Sciences, University of Zaragoza, Zaragoza, Spain
| | - Aline Meirhaeghe
- INSERM, Institut Pasteur de Lille, University of Lille, Lille, France
| | - Manuel J Castillo
- Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Jonatan R Ruiz
- PROFITH Research Group, Faculty of Sport Sciences, Department of Physical Education and Sport, Sport and Health University Research Institute, University of Granada, Granada, Spain; Department of Biosciences and Nutrition at NOVUM, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
6
|
Yang L, Dong Z, Zhou J, Ma Y, Pu W, Zhao D, He H, Ji H, Yang Y, Wang X, Xu X, Pang Y, Zou H, Jin L, Yang C, Wang J. Common UCP2 variants contribute to serum urate concentrations and the risk of hyperuricemia. Sci Rep 2016; 6:27279. [PMID: 27273589 PMCID: PMC4897637 DOI: 10.1038/srep27279] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/13/2016] [Indexed: 12/20/2022] Open
Abstract
Elevated serum urate, which is regulated at multiple levels including genetic variants, is a risk factor for gout and other metabolic diseases. This study aimed to investigate the association between UCP2 variants and serum urate as well as hyperuricemia in a Chinese population. In total, 4332 individuals were genotyped for two common UCP2 variants, -866G/A and Ala55Val. These loci were not associated either serum urate level or with a risk of hyperuricemia in the total group of subjects. However, in females, -866G/A and Ala55Val were associated with a lower serum urate (P = 0.006 and 0.014, seperately) and played a protective role against hyperuricemia (OR = 0.80, P = 0.018; OR = 0.79, P = 0.016). These associations were not observed in the males. After further stratification, the two loci were associated with serum urate in overweight, but not underweight females. The haplotype A-T (-866G/A-Ala55Val) was a protective factor for hyperuricemia in the female subgroup (OR = 0.80, P = 0.017). This present study identified a novel gene, UCP2, that influences the serum urate concentration and the risk of hyperuricemia, and the degree of association varies with gender and BMI levels.
Collapse
Affiliation(s)
- Luyu Yang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Zheng Dong
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Jingru Zhou
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanyun Ma
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Weilin Pu
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Dongbao Zhao
- Division of Rheumatology and Immunology, Changhai Hospital, Shanghai, China
| | - Hongjun He
- Division of Rheumatology, Taixing People's Hospital, Jiangsu Province, China
| | - Hengdong Ji
- Division of Rheumatology, Taizhou People's Hospital, Jiangsu Province, China
| | - Yajun Yang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Fudan-Taizhou Institute of Health Sciences, Taizhou, Jiangsu Province, China
| | - Xiaofeng Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Fudan-Taizhou Institute of Health Sciences, Taizhou, Jiangsu Province, China
| | - Xia Xu
- Division of Rheumatology and Immunology, Changhai Hospital, Shanghai, China
| | - Yafei Pang
- Division of Rheumatology and Immunology, Changhai Hospital, Shanghai, China
| | - Hejian Zou
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Fudan-Taizhou Institute of Health Sciences, Taizhou, Jiangsu Province, China
| | - Chengde Yang
- Division of Rheumatology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Fudan-Taizhou Institute of Health Sciences, Taizhou, Jiangsu Province, China.,Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Johns N, Tan BH, MacMillan M, Solheim TS, Ross JA, Baracos VE, Damaraju S, Fearon KCH. Genetic basis of interindividual susceptibility to cancer cachexia: selection of potential candidate gene polymorphisms for association studies. J Genet 2015; 93:893-916. [PMID: 25572253 DOI: 10.1007/s12041-014-0405-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cancer cachexia is a complex and multifactorial disease. Evolving definitions highlight the fact that a diverse range of biological processes contribute to cancer cachexia. Part of the variation in who will and who will not develop cancer cachexia may be genetically determined. As new definitions, classifications and biological targets continue to evolve, there is a need for reappraisal of the literature for future candidate association studies. This review summarizes genes identified or implicated as well as putative candidate genes contributing to cachexia, identified through diverse technology platforms and model systems to further guide association studies. A systematic search covering 1986-2012 was performed for potential candidate genes / genetic polymorphisms relating to cancer cachexia. All candidate genes were reviewed for functional polymorphisms or clinically significant polymorphisms associated with cachexia using the OMIM and GeneRIF databases. Pathway analysis software was used to reveal possible network associations between genes. Functionality of SNPs/genes was explored based on published literature, algorithms for detecting putative deleterious SNPs and interrogating the database for expression of quantitative trait loci (eQTLs). A total of 154 genes associated with cancer cachexia were identified and explored for functional polymorphisms. Of these 154 genes, 119 had a combined total of 281 polymorphisms with functional and/or clinical significance in terms of cachexia associated with them. Of these, 80 polymorphisms (in 51 genes) were replicated in more than one study with 24 polymorphisms found to influence two or more hallmarks of cachexia (i.e., inflammation, loss of fat mass and/or lean mass and reduced survival). Selection of candidate genes and polymorphisms is a key element of multigene study design. The present study provides a contemporary basis to select genes and/or polymorphisms for further association studies in cancer cachexia, and to develop their potential as susceptibility biomarkers of cachexia.
Collapse
Affiliation(s)
- N Johns
- Department of Clinical and Surgical Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Bouwman FG, Boer JMA, Imholz S, Wang P, Verschuren WMM, Dollé MET, Mariman ECM. Gender-specific genetic associations of polymorphisms in ACE, AKR1C2, FTO and MMP2 with weight gain over a 10-year period. GENES AND NUTRITION 2014; 9:434. [PMID: 25322899 DOI: 10.1007/s12263-014-0434-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 10/06/2014] [Indexed: 12/13/2022]
Abstract
Weight gain, when it leads to overweight or obesity, is nowadays one of the major health problems. ACE, FTO, AKR1C2, TIMP4 and MMP2 genes have been implicated in previous studies on weight regulation. This study investigated the contribution of polymorphisms in these five candidate genes to the risk of weight gain over a 10-year time period. Two groups were selected from participants of the Doetinchem cohort study who were followed over a 10-year period: A stable weight group (±2 kg/10 year; n = 259) and a weight gainers group who increased their body weight by roughly 10 % (>8 kg/10 year; n = 237). Starting BMI was between 20 and 35 kg/m(2) and baseline age between 20 and 45 years. Selected SNPs and insert/deletion in candidate genes were measured in each group. In men, the allelic distribution of FTO rs9939609 (χ (2) p = 0.005), ACE rs4340 (χ (2) p = 0.006) and AKR1C2 rs12249281 (χ (2) p = 0.019) differed between the weight stable and weight gainers group. Interaction between FTO rs9939609 and ACE rs4340 was observed. In women, the allelic distribution of MMP2 rs1132896 differed between the weight stable and weight gainers group (χ (2) p = 0.00001). The A-allele of FTO was associated with a 1.99× higher risk of gaining weight in men (OR 1.99, p = 0.020), while in women, the C-allele of MMP2 was associated with a 2.50× higher risk of weight gain (OR 2.50, p = 0.001) over the 10-year period. We found that FTO in men and MMP2 in women are associated with weight gain over a 10-year follow-up period.
Collapse
Affiliation(s)
- Freek G Bouwman
- Department of Human Biology, Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands,
| | | | | | | | | | | | | |
Collapse
|
9
|
Donadelli M, Dando I, Fiorini C, Palmieri M. UCP2, a mitochondrial protein regulated at multiple levels. Cell Mol Life Sci 2014; 71:1171-90. [PMID: 23807210 PMCID: PMC11114077 DOI: 10.1007/s00018-013-1407-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/16/2013] [Accepted: 06/10/2013] [Indexed: 12/11/2022]
Abstract
An ever-increasing number of studies highlight the role of uncoupling protein 2 (UCP2) in a broad range of physiological and pathological processes. The knowledge of the molecular mechanisms of UCP2 regulation is becoming fundamental in both the comprehension of UCP2-related physiological events and the identification of novel therapeutic strategies based on UCP2 modulation. The study of UCP2 regulation is a fast-moving field. Recently, several research groups have made a great effort to thoroughly understand the various molecular mechanisms at the basis of UCP2 regulation. In this review, we describe novel findings concerning events that can occur in a concerted manner at various levels: Ucp2 gene mutation (single nucleotide polymorphisms), UCP2 mRNA and protein expression (transcriptional, translational, and protein turn-over regulation), UCP2 proton conductance (ligands and post-transcriptional modifications), and nutritional and pharmacological regulation of UCP2.
Collapse
Affiliation(s)
- Massimo Donadelli
- Section of Biochemistry, Deparment of Life and Reproduction Sciences, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy,
| | | | | | | |
Collapse
|
10
|
Dzenda T, Ayo JO, Lakpini CAM, Adelaiye AB. Seasonal, sex and live weight variations in feed and water consumptions of adult captive African Giant rats (Cricetomys gambianus, Waterhouse-1840) kept individually in cages. J Anim Physiol Anim Nutr (Berl) 2012; 97:465-74. [PMID: 22404334 DOI: 10.1111/j.1439-0396.2012.01287.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Adult African Giant rats (Cricetomys gambianus, Waterhouse) (AGRs) (n = 231) of both sexes (117 bucks, 114 does) were live-trapped in the wild in Zaria, Nigeria. Live weight (LW), daily feed consumption (FC) and water consumption (WC) of the AGRs were measured during the cold-dry (CDS), hot-dry (HDS) and rainy (RS) seasons for 2 years with the aim of determining seasonal, sex and LW variations. Feed consumption was significantly different (p < 0.001) between all the seasons, with the lowest mean value recorded during the HDS, while the highest was obtained during the RS. Water consumption was also lowest (p < 0.001) during the HDS but did not differ significantly (p > 0.05) between the CDS and RS. Both feed and water consumptions were higher (p < 0.01) in the males (bucks) than the females (does) during the CDS and HDS, but the sex difference was not significant (p > 0.05) during the RS. Feed consumption correlated positively (p < 0.0001) with WC and relative humidity, but negatively (p < 0.0001) with LW, ambient temperature and heat index. In conclusion, both feed and water consumptions in AGRs decrease with increased seasonal heat and adult LW and are lower in does than in bucks during the dry seasons (CDS and HDS). Intervention may be indicated during the HDS to improve feed and water consumptions for optimal performance of the AGRs.
Collapse
Affiliation(s)
- T Dzenda
- Department of Veterinary Physiology and Pharmacology, Ahmadu Bello University, Zaria, Nigeria.
| | | | | | | |
Collapse
|
11
|
Couvreur O, Aubourg A, Crépin D, Degrouard J, Gertler A, Taouis M, Vacher CM. The anorexigenic cytokine ciliary neurotrophic factor stimulates POMC gene expression via receptors localized in the nucleus of arcuate neurons. Am J Physiol Endocrinol Metab 2012; 302:E458-67. [PMID: 22146310 DOI: 10.1152/ajpendo.00388.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ciliary neurotrophic factor (CNTF) is a neural cytokine that reduces appetite and body weight when administrated to rodents or humans. We have demonstrated recently that the level of CNTF in the arcuate nucleus (ARC), a key hypothalamic region involved in food intake regulation, is positively correlated with protection against diet-induced obesity. However, the comprehension of the physiological significance of neural CNTF action was still incomplete because CNTF lacks a signal peptide and thus may not be secreted by the classical exocytosis pathways. Knowing that CNTF distribution shares similarities with that of its receptor subunits in the rat ARC, we hypothesized that CNTF could exert a direct intracrine effect in ARC cells. Here, we demonstrate that CNTF, together with its receptor subunits, translocates to the cell nucleus of anorexigenic POMC neurons in the rat ARC. Furthermore, the stimulation of hypothalamic nuclear fractions with CNTF induces the phosphorylation of several signaling proteins, including Akt, as well as the transcription of the POMC gene. These data strongly suggest that intracellular CNTF may directly modulate POMC gene expression via the activation of receptors localized in the cell nucleus, providing a novel plausible mechanism of CNTF action in regulating energy homeostasis.
Collapse
Affiliation(s)
- Odile Couvreur
- Neuroendocrinologie Moléculaire de la Prise Alimentaire, University of Paris-Sud, Orsay, France
| | | | | | | | | | | | | |
Collapse
|