1
|
Kim SQ, Spann RA, Khan MSH, Berthoud HR, Münzberg H, Albaugh VL, He Y, McDougal DH, Soto P, Yu S, Morrison CD. FGF21 as a mediator of adaptive changes in food intake and macronutrient preference in response to protein restriction. Neuropharmacology 2024; 255:110010. [PMID: 38797244 PMCID: PMC11156534 DOI: 10.1016/j.neuropharm.2024.110010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Free-feeding animals navigate complex nutritional landscapes in which food availability, cost, and nutritional value can vary markedly. Animals have thus developed neural mechanisms that enable the detection of nutrient restriction, and these mechanisms engage adaptive physiological and behavioral responses that limit or reverse this nutrient restriction. This review focuses specifically on dietary protein as an essential and independently defended nutrient. Adequate protein intake is required for life, and ample evidence exists to support an active defense of protein that involves behavioral changes in food intake, food preference, and food motivation, likely mediated by neural changes that increase the reward value of protein foods. Available evidence also suggests that the circulating hormone fibroblast growth factor 21 (FGF21) acts in the brain to coordinate these adaptive changes in food intake, making it a unique endocrine signal that drives changes in macronutrient preference in the context of protein restriction. This article is part of the Special Issue on "Food intake and feeding states".
Collapse
Affiliation(s)
- Sora Q Kim
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Redin A Spann
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | | | | | - Heike Münzberg
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Vance L Albaugh
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA; Department of Surgery, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Yanlin He
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - David H McDougal
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Paul Soto
- Department of Psychology, Louisiana State University, Baton Rouge, LA, 70810, USA
| | - Sangho Yu
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | | |
Collapse
|
2
|
Even PC, Gehring J, Tomé D. What does self-selection of dietary proteins in rats tell us about protein requirements and body weight control? Obes Rev 2021; 22:e13194. [PMID: 33403737 DOI: 10.1111/obr.13194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 12/30/2022]
Abstract
Omnivores are able to correctly select adequate amounts of macronutrients from natural foods as well as purified macronutrients. In the rat model, the selected protein levels are often well above the requirements estimated from the nitrogen balance. These high intake levels were initially interpreted as reflecting poor control of protein intake, but the selected levels were later found to be precisely controlled for changes in dietary protein quality and adjusted for cold, exercise, pregnancy, lactation, age, etc. and therefore met physiological requirements. Several authors have also suggested that instead of a given level of protein intake, rodents regulate a ratio of protein to dietary carbohydrates in order to achieve metabolic benefits such as reduced insulin levels, improved blood glucose control, and, in the long term, reduced weight and fat gain. The objective of this review was to analyze the most significant results of studies carried out on rats and mice since the beginning of the 20th century, to consider what these results can bring us to interpret the current causes of the obesity pandemic and to anticipate the possible consequences of policies aimed at reducing the contribution of animal proteins in the human diet.
Collapse
Affiliation(s)
- Patrick C Even
- AgroParisTech, INRAE, UMR PNCA, Université Paris-Saclay, Paris, France
| | - Joséphine Gehring
- AgroParisTech, INRAE, UMR PNCA, Université Paris-Saclay, Paris, France
| | - Daniel Tomé
- AgroParisTech, INRAE, UMR PNCA, Université Paris-Saclay, Paris, France
| |
Collapse
|
3
|
de Almeida CAL, de Almeida CKL, de Fátima Ferreira Martins E, Bessonart M, Pereira RT, Paulino RR, Rosa PV, Fortes-Silva R. Coping with suboptimal water temperature: modifications in blood parameters, body composition, and postingestive-driven diet selection in Nile tilapia fed two vegetable oil blends. Animal 2020; 15:100092. [PMID: 33573961 DOI: 10.1016/j.animal.2020.100092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 11/17/2022] Open
Abstract
The world tilapia production faces seasonal variations. However, very few nutritional studies have addressed suboptimal temperature. We evaluated the effect of two temperatures (20 or 30 °C) and two vegetable oil blends (one rich in corn oil (COR) and one rich linseed oil (LIN)) on tilapia growth, body composition, and blood parameters using a 2×2 factorial design with the following treatments: COR-20; LIN-20; COR-30; LIN-30 (Trial 1). In addition, we also evaluated the effect of postingestive signals of dietary oils when the organoleptic properties of diets were isolated (Trial 2). In the Trial 1, 256 fish (15.36 ± 0.14 g) were placed in 16 aquariums and submitted during 30 days to the 2×2 factorial designs: COR-20; LIN-20; COR-30; LIN-30. The temperatures were established in two independent water recirculation systems. In the Trial 2, 96 fish (34.02 ± 0.79 g) were placed in 12 aquariums and subjected to the same experimental design of Trial 1, but to evaluate fish feeding behavior. They were allowed to select the encapsulated diets provided in different feeding halls to evaluate if diet preferences are influenced by postingestive signals. As the Trial 1 results show, diets had no significant effects on growth, dietary protein use, and body centesimal composition, but 30 °C induced the best performance and protein deposition (P < 0.05). LIN-20 showed lower very-low-density lipoprotein and cortisol, but higher high-density lipoprotein (HDL), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and triglycerides (TG) than COR-20 (P < 0.05). COR-30 presented higher HDL, AST, ALT, TG, and cortisol than LIN-30. The fish fed COR showed lower C20:5n-3 (EPA) and higher n-6 than fish fed LIN (P < 0.05). The fish fed LIN had high n-3 highly unsaturated fatty acid. ∑ polyunsaturated fatty acid was higher at 30 °C. Finally, the tilapia in Trial 2 showed clear diet intake regulation and preference for LIN (P < 0.05), regardless of temperature. In short, lipid sources had no influence on tilapia performance; however, temperature affects carcass lipid deposition as well as fatty acids profile. Notably, the preference for linseed oil can suggest nutritional metabolic issues, contributing to animal behavior knowledge.
Collapse
Affiliation(s)
- C A L de Almeida
- Department of Animal Science and Veterinary Medicine, Campus Salvador, Federal University of Bahia (UFBA), 40170-110, Bahia, Brazil
| | - C K L de Almeida
- Department of Animal Science and Veterinary Medicine, Campus Salvador, Federal University of Bahia (UFBA), 40170-110, Bahia, Brazil
| | - E de Fátima Ferreira Martins
- Laboratory of Feeding Behavior and Fish Nutrition, Center of Agricultural Sciences, Environmental and Biological (CCAAB/NEPA/AQUAUFRB), Campus Cruz das Almas, Federal University of Bahia (UFRB), 44380-000, Bahia, Brazil
| | - M Bessonart
- Natural Resources Laboratory, Institute of Ecology and Environmental Sciences, Faculty of Sciences, Universidad de la República, Iguá, 4225 Montevideo, Uruguay
| | - R T Pereira
- Department of Animal Science, University of Lavras (UFLA), 37200-000 Lavras, Brazil
| | - R R Paulino
- Department of Animal Science, University of Lavras (UFLA), 37200-000 Lavras, Brazil
| | - P V Rosa
- Department of Animal Science, University of Lavras (UFLA), 37200-000 Lavras, Brazil
| | - R Fortes-Silva
- Department of Animal Science and Veterinary Medicine, Campus Salvador, Federal University of Bahia (UFBA), 40170-110, Bahia, Brazil; Laboratory of Feeding Behavior and Fish Nutrition, Center of Agricultural Sciences, Environmental and Biological (CCAAB/NEPA/AQUAUFRB), Campus Cruz das Almas, Federal University of Bahia (UFRB), 44380-000, Bahia, Brazil; Department of Animal Science, University of Viçosa (UFV), 36570-000 Viçosa, Brazil.
| |
Collapse
|
4
|
Oil sources administered to tambaqui (Colossoma macropomum): growth, body composition and effect of masking organoleptic properties and fasting on diet preference. Appl Anim Behav Sci 2018. [DOI: 10.1016/j.applanim.2017.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
5
|
Guerra-Santos B, López-Olmeda JF, de Mattos BO, Baião AB, Pereira DSP, Sánchez-Vázquez FJ, Cerqueira RB, Albinati RCB, Fortes-Silva R. Synchronization to light and mealtime of daily rhythms of locomotor activity, plasma glucose and digestive enzymes in the Nile tilapia (Oreochromis niloticus). Comp Biochem Physiol A Mol Integr Physiol 2017; 204:40-47. [DOI: 10.1016/j.cbpa.2016.11.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 08/11/2016] [Accepted: 11/09/2016] [Indexed: 01/27/2023]
|
6
|
Hansen MJ, Schaerf TM, Simpson SJ, Ward AJW. Group foraging decisions in nutritionally differentiated environments. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Matthew J. Hansen
- Animal Behaviour Lab School of Biological Sciences The University of Sydney Sydney New South Wales 2006 Australia
| | - Timothy M. Schaerf
- Animal Behaviour Lab School of Biological Sciences The University of Sydney Sydney New South Wales 2006 Australia
- School of Science and Technology University of New England Armidale New South Wales 2351 Australia
| | - Stephen J. Simpson
- Charles Perkins Centre The University of Sydney Sydney New South Wales 2006 Australia
| | - Ashley J. W. Ward
- Animal Behaviour Lab School of Biological Sciences The University of Sydney Sydney New South Wales 2006 Australia
| |
Collapse
|
7
|
Bernardes CL, Navarro RD, Guerra Santos B, Fortes Silva R. Effects of dietary carbohydrate/lipid ratios on growth, body composition, and nutrient utilization of hybrid catfish (Pseudoplatystoma reticulatum x Leiarius marmoratus). REV COLOMB CIENC PEC 2016. [DOI: 10.17533/udea.rccp.v29n1a08] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
8
|
Dias C, Fagundes D, Gouveia Junior A, Silanes M, Oliveira J. Luz, Melatonina e Estresse Oxidativo na Piscicultura. BIOTA AMAZÔNIA 2013. [DOI: 10.18561/2179-5746/biotaamazonia.v3n3p169-176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
9
|
Fortes-Silva R, Rosa PV, Zamora S, Sánchez-Vázquez FJ. Dietary self-selection of protein-unbalanced diets supplemented with three essential amino acids in Nile tilapia. Physiol Behav 2011; 105:639-44. [PMID: 22001492 DOI: 10.1016/j.physbeh.2011.09.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 08/16/2011] [Accepted: 09/29/2011] [Indexed: 10/17/2022]
Abstract
Animals do not eat whatever food item they encounter, but choose different foods that best match their requirements. Fish exhibit such "nutritional wisdom" and adapt their feeding behaviour and food intake according to their needs and the nutritional properties of diets. In this paper, we tested the ability of Nile tilapia to select between diets with a balanced or unbalanced composition of essential amino acids. To this end, three different diets were prepared: a gelatine based diet (D(1)), a gelatine diet supplemented with three essential amino acids (EAA, l-tryptophane, l-methionine, l-threonine) (D(2)), and a diet containing only cellulose and the three crystalline EAA (D(3)). In addition, the putative role of both orosensorial factors (using pellets vs capsules) and social interactions (single vs groups of ten fish) was investigated. To this end, a total of 68 male tilapia of about 141±48 g (mean±S.D.) were challenged, individually or in groups, to select between D(1)vs D(2) using pellets dispensed by self-feeders (exp. 1). In another experiment (exp. 2), 11 individual fish were challenged to select encapsulated diets with non flavour or smell proprieties (D(1)vs D(2)), and in exp. 3 fish were challenged to self-supplementation in EAA (D(1)vs D(3)). The results showed the ability of tilapia to avoid the EAA-deficient diet, choosing 82.2% D(2) in the case of individual fish, and 80.8% D(2) in the case of fish groups. Dietary selection was not directly driven by the orosensorial characteristics of food, since tilapia sustained a higher preference for D(2) when fed with encapsulated diets. Finally, in exp. 3 tilapia self-supplemented the EAA deficiency by selecting a synchronised combination of D(1) and D(3) that matched their nutritional requirements. These findings highlighted the capacity of fish to make dietary selection based on the EAA content, which should be considered when discussing food intake regulation mechanisms, and diet formulation and supplementation with EAA.
Collapse
Affiliation(s)
- R Fortes-Silva
- Department of Animal Science, University José do Rósario Vellano, 37130 Alfenas, Brazil.
| | | | | | | |
Collapse
|