1
|
Abd Alhusen SK, Hasan AF. Evaluating the renoprotective effects of omega-3-6-9 against cisplatin-induced nephrotoxicity in mice. J Med Life 2023; 16:1756-1759. [PMID: 38585532 PMCID: PMC10994620 DOI: 10.25122/jml-2023-0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/13/2023] [Indexed: 04/09/2024] Open
Abstract
Fatty acids, particularly omega-3, omega-6, and omega-9, play a vital role in various biological processes. As the body cannot synthesize omega-3 and omega-6, dietary sources of these fatty acids are essential. Each omega fatty acid has a distinct chemical structure, source, and function. Cisplatin (CP) treatment is known to cause acute kidney injury (AKI) due to its inflammatory effects. This study explored the renoprotective potential of omega-3-6-9 when co-administered with cisplatin in a mice model. We divided adult mice into five groups: a control group received 0.5 ml of liquid paraffin; a cisplatin-only group; two groups were treated with low (50 mg/kg) and high (100 mg/kg) doses of omega-3-6-9 plus cisplatin; and a final group received vitamin E before cisplatin administration. The administration of omega-3-6-9 significantly decreased pro-inflammatory modulators and kidney function markers such as TNF-α, IL-1β, blood urea nitrogen, and creatinine, indicating potential renoprotective effects. Our research concluded that omega-3- 6- 9 had anti-inflammatory properties and was effective against the harmful effects of cisplatin.
Collapse
Affiliation(s)
- Saja Kareem Abd Alhusen
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| | - Ali Faris Hasan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
2
|
Atherosclerotic Lesion of the Carotid Artery in Indonesian Cynomolgus Monkeys Receiving a Locally Sourced Atherogenic Diet. Vet Sci 2022; 9:vetsci9030105. [PMID: 35324833 PMCID: PMC8954025 DOI: 10.3390/vetsci9030105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
The atherosclerotic lesion is a principal hallmark of atherosclerotic animal models. This study aimed to assess lesions of the carotid artery in Indonesian cynomolgus monkeys exposed to an IPB-1 atherogenic diet. A total of 20 adult male cynomolgus monkeys received the local IPB-1 diet for two years. Blood lipid profiles, morphology, and carotid ultrasound of monkeys were measured. Nine of them were euthanized to confirm atherosclerotic lesions. Common carotid arteries (CCA) and carotid bifurcation (BIF) samples were collected and stained using Verhoef-van Giessen and CD68 immunohistochemistry. The results reveal the presence of severe atherosclerosis plaques in six out of nine animals (66.7%) corresponding to intermediately and hyper-responsive groups. The hyper-responsive group displayed the highest response in the developing intimal area (IA) at the CCA (0.821 mm2), whereas the hyporesponsive group had the smallest IA (0.045 mm2) (p = 0.0001). At the BIF, the hyporesponsive group showed the smallest IA (p = 0.001), but there was no difference between the intermediately and hyper-responsive groups (p = 0.312). The macrophage marker CD68 was also expressed on the cartotid of the intermediately and hyper-responsive groups. These results indicate that severe atherosclerotic lesions with high infiltration of macrophages were formed in the carotid arteries of intermediately and hyper-responsive Indonesian cynomolgus monkeys fed with the local atherogenic diet IPB-1 over two years, thus confirming atherosclerosis in a nonhuman primate model.
Collapse
|
3
|
Frankel JS, Mallott EK, Hopper LM, Ross SR, Amato KR. The effect of captivity on the primate gut microbiome varies with host dietary niche. Am J Primatol 2019; 81:e23061. [PMID: 31713260 DOI: 10.1002/ajp.23061] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/07/2019] [Accepted: 09/13/2019] [Indexed: 01/01/2023]
Abstract
Despite careful attention to animal nutrition and wellbeing, gastrointestinal distress remains relatively common in captive non-human primates (NHPs), particularly dietary specialists such as folivores. These patterns may be a result of marked dietary differences between captive and wild settings and associated impacts on the gut microbiome. However, given that most existing studies target NHP dietary specialists, it is unclear if captive environments have distinct impacts on the gut microbiome of NHPs with different dietary niches. To begin to examine this question, we used 16S ribosomal RNA gene amplicon sequences to compare the gut microbiomes of five NHP genera categorized either as folivores (Alouatta, Colobus) or non-folivores (Cercopithecus, Gorilla, Pan) sampled both in captivity and in the wild. Though captivity affected the gut microbiomes of all NHPs in this study, the effects were largest in folivorous NHPs. Shifts in gut microbial diversity and in the relative abundances of fiber-degrading microbial taxa suggest that these findings are driven by marked dietary shifts for folivorous NHPs in captive settings. We propose that zoos and other captive care institutions consider including more natural browse in folivorous NHP diets and regularly bank fecal samples to further explore the relationship between NHP diet, the gut microbiome, and health outcomes.
Collapse
Affiliation(s)
- Jeffrey S Frankel
- Department of Anthropology, Northwestern University, Evanston, Illinois
| | | | - Lydia M Hopper
- Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, Illinois
| | - Stephen R Ross
- Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, Illinois
| | - Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, Illinois
| |
Collapse
|
4
|
Shively CA, Silverstein-Metzler M, Justice J, Willard SL. The impact of treatment with selective serotonin reuptake inhibitors on primate cardiovascular disease, behavior, and neuroanatomy. Neurosci Biobehav Rev 2016; 74:433-443. [PMID: 27590831 DOI: 10.1016/j.neubiorev.2016.08.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 08/12/2016] [Accepted: 08/29/2016] [Indexed: 11/26/2022]
Abstract
Selective serotonin reuptake inhibitor (SSRI) use is ubiquitous because they are widely prescribed for a number of disorders in addition to depression. Depression increases the risk of coronary heart disease (CHD). Hence, treating depression with SSRIs could reduce CHD risk. However, the effects of long term antidepressant treatment on CHD risk, as well as other aspects of health, remain poorly understood. Thus, we undertook an investigation of multisystem effects of SSRI treatment with a physiologically relevant dose in middle-aged adult female cynomolgus monkeys, a primate species shown to be a useful model of both depression and coronary and carotid artery atherosclerosis. Sertraline had no effect on depressive behavior, reduced anxious behavior, increased affiliation, reduced aggression, changed serotonin neurotransmission and volumes of neural areas critical to mood disorders, and exacerbated coronary and carotid atherosclerosis. These data suggest that a conservative approach to prescribing SSRIs for cardiovascular or other disorders for long periods may be warranted, and that further study is critical given the widespread use of these medications.
Collapse
Affiliation(s)
- Carol A Shively
- Department of Pathology, Wake Forest School of Medicine, United States.
| | | | - Jamie Justice
- Department of Internal Medicine - Geriatrics, J. Paul Sticht Center on Aging, Wake Forest School of Medicine, United States
| | - Stephanie L Willard
- Center for Neurobiology and Behavior, University of Pennsylvania, United States
| |
Collapse
|
5
|
Gong MJ, Han B, Wang SM, Liang SW, Zou ZJ. Icariin reverses corticosterone-induced depression-like behavior, decrease in hippocampal brain-derived neurotrophic factor (BDNF) and metabolic network disturbances revealed by NMR-based metabonomics in rats. J Pharm Biomed Anal 2016; 123:63-73. [DOI: 10.1016/j.jpba.2016.02.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/29/2016] [Accepted: 02/01/2016] [Indexed: 12/21/2022]
|
6
|
Marx I, Alexopoulos P, Irmisch G, Topalidis S, Syrgiannis Z, Herpertz SC, Cohrs S. Altered serum fatty acid composition in geriatric depression. J Neural Transm (Vienna) 2015; 124:119-126. [DOI: 10.1007/s00702-015-1466-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/21/2015] [Indexed: 01/01/2023]
|
7
|
Long term sertraline effects on neural structures in depressed and nondepressed adult female nonhuman primates. Neuropharmacology 2015; 99:369-78. [PMID: 26116816 DOI: 10.1016/j.neuropharm.2015.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 06/08/2015] [Accepted: 06/14/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND Selective serotonin reuptake inhibitors (SSRIs) are widely prescribed for mood and other disorders. However, their neural effects are difficult to study due to patient compliance and drug history variability, and rarely studied in those prescribed SSRIs for non-mood disorders. Here we evaluated SSRI effects on neural volumetrics in depressed and nondepressed monkeys. METHODS 42 socially-housed cynomolgus monkeys were randomized to treatment balanced on pretreatment depressive behavior and body weight. Monkeys were trained for oral administration of placebo or 20 mg/kg sertraline HCl daily for 18 months and depressive and anxious behavior recorded. Volumes of neural regions of interest in depression were measured in magnetic resonance images and analyzed by 2 (depressed, nondepressed)×2 (placebo, sertraline) ANOVA. RESULTS Sertraline reduced anxiety (p=0.04) but not depressive behavior (p=0.43). Left Brodmann's Area (BA) 32 was smaller in depressed than nondepressed monkeys (main effect of depression: p<0.05). Sertraline and depression status interacted to affect volumes of left Anterior Cingulate Cortex (ACC), left BA24, right hippocampus (HC), and right anterior HC (sertraline×depression interactions: all p's<0.05). In the Placebo group, depressed monkeys had smaller right anterior HC and left ACC than nondepressed monkeys. In nondepressed monkeys, sertraline reduced right HC volume, especially right anterior HC volume. In depressed monkeys sertraline increased left ACC volume. In nondepressed monkeys, sertraline reduced left BA24 volumes resulting in smaller BA24 volumes in nondepressed than sertraline-treated depressed monkeys. CONCLUSIONS These observations suggest that SSRIs may differentially affect neural structures in depressed and nondepressed individuals.
Collapse
|
8
|
Bethea CL, Reddy AP, Flowers M, Shapiro RA, Colman RJ, Abbott DH, Levine JE. High fat diet decreases beneficial effects of estrogen on serotonin-related gene expression in marmosets. Prog Neuropsychopharmacol Biol Psychiatry 2015; 58:71-80. [PMID: 25542371 PMCID: PMC4339406 DOI: 10.1016/j.pnpbp.2014.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/27/2014] [Accepted: 11/23/2014] [Indexed: 01/18/2023]
Abstract
The administration of estradiol-17β (E) to animal models after loss of ovarian steroid production has many beneficial effects on neural functions, particularly in the serotonin system in nonhuman primates (NHPs). E also has anorexic effects, although the mechanism of action is not well defined. In the US, obesity has reached epidemic proportions, and blame is partially directed at the Western style diet, which is high in fat and sugar. This study examined the interaction of E and diet in surgically menopausal nonhuman primates with a 2×2 block design. Marmosets (Callithrix jacchus; n=4/group) were placed on control-low fat diet (LFD; 14%kcal from fat) or high fat diet (HFD; 28%kcal from fat) 1month prior to ovariectomy (Ovx). Empty (placebo) or E-filled Silastic capsules were implanted immediately following Ovx surgery. Treatments extended 6months. The established groups were: placebo+LFD, E+LFD, placebo+HFD, or E+HFD. At necropsy, the brain was flushed with saline and harvested. The midbrain was dissected and a small block containing the dorsal raphe nucleus was processed for qRT-PCR using Evagreen (Biotinum). Genes previously found to impact serotonin neural functions were examined. Results were compared with 2-way ANOVA followed by Bonferroni post-hoc tests or Cohen's D analysis. There was a significant effect of treatment on tryptophan hydroxylase 2 (TPH2) across the groups (p=0.019). E stimulated TPH2 expression and HFD prevented E-stimulated TPH2 expression (p<0.01). Treatment differentially affected monoamine oxidase B (MAO-B) across the groups (p=0.05). E increased MAO-B with LFD, and this stimulatory effect was prevented by HFD (p<0.05). There was a significant difference between treatments in corticotrophin releasing factor-receptor 2 (CRF-R2) expression (p=0.012). E increased CRF-R2 and this stimulatory effect was blocked by HFD (p<0.01). Regardless of diet, E increased Fev mRNA (p=0.028) and decreased CRF-receptor 1 (CRF-R1) mRNA (p=0.04). HFD suppressed urocortin 1 (UCN1; stresscopin) expression (p=0.045) but E treatment had no effect. Monoamine oxidase A (MAO-A) was different due to treatment across the groups (p=0.028). MAO-A was increased in the E+HFD group (p<0.01) whereas previous studies showed E suppressed MAO-A in macaques. The serotonin reuptake transporter (SERT), the serotonin 1A receptor (5HT1A), estrogen receptor beta (ERβ) and progestin receptor (PR) expressions were not different between groups. Estrogen receptor alpha (ERα) was undetectable. In summary, the data indicate that important actions of hormone therapy in the serotonin system may be lost in the context of a HFD.
Collapse
Affiliation(s)
- Cynthia L Bethea
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA; Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA; Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97201, USA.
| | - Arubala P Reddy
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006
| | - Matthew Flowers
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI,Wisconsin National Primate Research Center, Madison, WI
| | - Robert A. Shapiro
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI,Wisconsin National Primate Research Center, Madison, WI
| | | | - David H Abbott
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI,Wisconsin National Primate Research Center, Madison, WI
| | - Jon E Levine
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI,Wisconsin National Primate Research Center, Madison, WI
| |
Collapse
|
9
|
Rossetti C, Halfon O, Boutrel B. Controversies about a common etiology for eating and mood disorders. Front Psychol 2014; 5:1205. [PMID: 25386150 PMCID: PMC4209809 DOI: 10.3389/fpsyg.2014.01205] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 10/06/2014] [Indexed: 12/25/2022] Open
Abstract
Obesity and depression represent a growing health concern worldwide. For many years, basic science and medicine have considered obesity as a metabolic illness, while depression was classified a psychiatric disorder. Despite accumulating evidence suggesting that obesity and depression may share commonalities, the causal link between eating and mood disorders remains to be fully understood. This etiology is highly complex, consisting of multiple environmental and genetic risk factors that interact with each other. In this review, we sought to summarize the preclinical and clinical evidence supporting a common etiology for eating and mood disorders, with a particular emphasis on signaling pathways involved in the maintenance of energy balance and mood stability, among which orexigenic and anorexigenic neuropeptides, metabolic factors, stress responsive hormones, cytokines, and neurotrophic factors.
Collapse
Affiliation(s)
- Clara Rossetti
- Center for Psychiatric Neuroscience, Lausanne University Hospital Lausanne, Switzerland
| | - Olivier Halfon
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital Lausanne, Switzerland
| | - Benjamin Boutrel
- Center for Psychiatric Neuroscience, Lausanne University Hospital Lausanne, Switzerland ; Division of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital Lausanne, Switzerland
| |
Collapse
|
10
|
Chu XX, Dominic Rizak J, Yang SC, Wang JH, Ma YY, Hu XT. A natural model of behavioral depression in postpartum adult female cynomolgus monkeys (Macaca fascicularis). DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2014; 35:174-81. [PMID: 24866487 DOI: 10.11813/j.issn.0254-5853.2014.3.174] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Postpartum depression (PPD) is a modified form of major depressive disorders (MDD) that can exert profound negative effects on both mothers and infants than MDD. Within the postpartum period, both mothers and infants are susceptible; but because PPD typically occurs for short durations and has moderate symptoms, there exists challenges in exploring and addressing the underlying cause of the depression. This fact highlights the need for relevant animal models. In the present study, postpartum adult female cynomolgus monkeys (Macaca fascicularis) living in breeding groups were observed for typical depressive behavior. The huddle posture behavior was utilized as an indicator of behavioral depression postpartum (BDP) as it has been established as the core depressive-like behavior in primates. Monkeys were divided into two groups: A BDP group (n=6), which were found to spend more time huddling over the first two weeks postpartum than other individuals that formed a non-depression control group (n=4). The two groups were then further analyzed for locomotive activity, stressful events, hair cortisol levels and for maternal interactive behaviors. No differences were found between the BDP and control groups in locomotive activity, in the frequencies of stressful events experienced and in hair cortisol levels. These findings suggested that the postpartum depression witnessed in the monkeys was not related to external factors other than puerperium period. Interestingly, the BDP monkeys displayed an abnormal maternal relationship consisting of increased infant grooming. Taken together, these findings suggest that the adult female cynomolgus monkeys provide a natural model of behavioral postpartum depression that holds a number of advantages over commonly used rodent systems in PPD modeling. The cynomolgus monkeys have a highly-organized social hierarchy and reproductive characteristics without seasonal restriction-similar to humans-as well as much greater homology to humans than rodents. As such, this model may provide a greater translational efficiency and research platform for systematically investigating the etiology, treatment, prevention of PPD.
Collapse
Affiliation(s)
- Xun-Xun Chu
- Laboratory of Primate Neuroscience Research and Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China;University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Joshua Dominic Rizak
- Laboratory of Primate Neuroscience Research and Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shang-Chuan Yang
- Laboratory of Primate Neuroscience Research and Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China
| | - Jian-Hong Wang
- Laboratory of Primate Neuroscience Research and Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China; Kunming Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yuan-Ye Ma
- Laboratory of Primate Neuroscience Research and Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China; Kunming Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| | - Xin-Tian Hu
- Laboratory of Primate Neuroscience Research and Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China; Kunming Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
11
|
Tourtas T, Birke MT, Kruse FE, Welge-Lüssen UC, Birke K. Preventive effects of omega-3 and omega-6 Fatty acids on peroxide mediated oxidative stress responses in primary human trabecular meshwork cells. PLoS One 2012; 7:e31340. [PMID: 22319624 PMCID: PMC3272013 DOI: 10.1371/journal.pone.0031340] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 01/06/2012] [Indexed: 11/18/2022] Open
Abstract
Pathologic processes in glaucoma include increased apoptosis, accumulation of extracellular material in the trabecular meshwork and optic nerve, condensations of the cytoskeleton and precocious cellular senescence. Oxidative stress was shown to generate these alterations in primary ocular cells. Fatty acids omega-3 and -6 are alleged to constitute a prophylaxis against these deleterious effects. Here, we tested actual preventive effects omega-3 and -6 against peroxide induced stress responses in primary human trabecular meshwork cells. Changes of mitochondrial activity, proliferation, heat shock proteins, extracellular matrix components, and inflammatory markers were evaluated. Alterations of the cytoskeleton were evaluated by phalloidin labeling. Here we report a repressive effect of omega-6 on metabolic activity and proliferation, which was not detected for omega-3. Both agents were able to prevent the anti-proliferative effect of H2O2, but only omega-3 prevented metabolic repression. Expression of heat shock protein 27 was unaltered by both fatty acids, whereas heat shock protein 90 was significantly induced by both. Omega-6 increased fibronectin and connective tissue growth factor synthesis, as well as the amount of secreted fibronectin. Omega-3, instead, induced plasminogen activator inhibitor 1 synthesis. H2O2 further increased fibronectin production in omega-6 supplemented cells, which was not the case in omega-3 treated cells. H2O2 stimulation of plasminogen activator inhibitor 1 and connective tissue growth factor was repressed by both fatty acids. Both fatty acids appeared to abolish H2O2 mediated stimulation of nuclear factor κB and IL-6, but not IL-1α and IL-8. H2O2 induced formation of cross-linked actin networks and stress fibers, which was reduced by preemptive application of omega-3. Omega-6, in contrast, had no protective effect on that, and even seemed to promote condensation. Based on the observed side effects of omega-6, omega-3 appears to be the more beneficial fatty acid in respect of prophylactic intake for prevention of a glaucomatous disease.
Collapse
Affiliation(s)
- Theofilos Tourtas
- Department of Ophthalmology, University Hospital Erlangen, Erlangen, Germany
| | - Marco T. Birke
- Department of Ophthalmology, University Hospital Erlangen, Erlangen, Germany
| | - Friedrich E. Kruse
- Department of Ophthalmology, University Hospital Erlangen, Erlangen, Germany
| | | | - Kerstin Birke
- Department of Ophthalmology, University Hospital Erlangen, Erlangen, Germany
- * E-mail:
| |
Collapse
|
12
|
Shively CA, Willard SL. Behavioral and neurobiological characteristics of social stress versus depression in nonhuman primates. Exp Neurol 2012; 233:87-94. [PMID: 21983263 PMCID: PMC4031682 DOI: 10.1016/j.expneurol.2011.09.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 08/30/2011] [Accepted: 09/16/2011] [Indexed: 12/28/2022]
Abstract
The focus of the review is on the behavioral and physiological manifestations of stress versus depression. The purpose of the review is to evaluate the conceptual approach of using stress models as surrogates for depression. Social stress and depression have many characteristics in common and promote each other. Both have adverse effects on social relationships and the quality of life, and increase risk of other diseases. However, they are not the same constructs. In human and nonhuman primates, the behavior and neurobiology of stressed individuals differ from that of depressed individuals. Some similarities in stress physiology in socially stressed and depressed individuals have been used to support the use of stressed animals as models of depression, and much has been learned from stress models of depression. However, the studies reviewed here also suggest that the depressed state also has different characteristics than the stressed state, and studying the differences may be important to furthering our understanding of each of these constructs as well as their mutual relationship.
Collapse
Affiliation(s)
- Carol A Shively
- Department of Pathology Section on Comparative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1040, USA.
| | | |
Collapse
|
13
|
Willard SL, Shively CA. Modeling depression in adult female cynomolgus monkeys (Macaca fascicularis). Am J Primatol 2011; 74:528-42. [PMID: 22076882 DOI: 10.1002/ajp.21013] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 09/13/2011] [Accepted: 09/23/2011] [Indexed: 01/11/2023]
Abstract
Depressive disorders are prevalent, costly, and poorly understood. Male rodents in stress paradigms are most commonly used as animal models, despite the two-fold increased prevalence of depression in women and sex differences in response to stress. Although these models have provided valuable insights, new models are needed to move the field forward. Social stress-associated behavioral depression in adult female cynomolgus macaques closely resembles human depression in physiological, neurobiological, and behavioral characteristics, including reduced body mass, hypothalamic-pituitary-adrenal axis perturbations, autonomic dysfunction, increased cardiovascular disease risk, reduced hippocampal volume, altered serotonergic function, decreased activity levels, and increased mortality. In addition, behaviorally depressed monkeys also have low ovarian steroid concentrations, even though they continue to have menstrual cycles. Although this type of ovarian dysfunction has not been reported in depressed women and is difficult to identify, it may be the key to understanding the high prevalence of depression in women. Depressive behavior in female cynomolgus monkeys is naturally occurring and not induced by experimental manipulation. Different social environmental challenges, including isolation vs. subordination, may elicit the depression-like response in some animals and not others. Similarly, social subordination is stressful and depressive behavior is more common in socially subordinate monkeys. Yet, not all subordinates exhibit behavioral depression, suggesting individual differences in sensitivity to specific environmental stressors and enhanced risk of behavioral depression in some individuals. The behavior and neurobiology of subordinates is distinctly different than that of behaviorally depressed monkeys, which affords the opportunity to differentiate between stressed and depressed states. Thus, behaviorally depressed monkeys exhibit numerous physiological, neurobiological, and behavioral characteristics same as those of depressed human beings. The nonhuman primate model represents a new animal model of depression with great promise for furthering our understanding of this prevalent and debilitating disease and identifying novel therapeutic targets.
Collapse
Affiliation(s)
- Stephanie L Willard
- Integrative Neuroscience Graduate Program, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | | |
Collapse
|