1
|
Caba M, Lehman MN, Caba-Flores MD. Food Entrainment, Arousal, and Motivation in the Neonatal Rabbit Pup. Front Neurosci 2021; 15:636764. [PMID: 33815041 PMCID: PMC8010146 DOI: 10.3389/fnins.2021.636764] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/01/2021] [Indexed: 01/20/2023] Open
Abstract
In the newborn rabbit, the light entrainable circadian system is immature and once a day nursing provides the primary timing cue for entrainment. In advance of the mother's arrival, pups display food anticipatory activity (FAA), and metabolic and physiological parameters are synchronized to this daily event. Central structures in the brain are also entrained as indicated by expression of Fos and Per1 proteins, GFAP, a glial marker, and cytochrome oxidase activity. Under fasting conditions, several of these rhythmic parameters persist in the periphery and brain, including rhythms in the olfactory bulb (OB). Here we provide an overview of these physiological and neurobiological changes and focus on three issues, just beginning to be examined in the rabbit. First, we review evidence supporting roles for the organum vasculosum of lamina terminalis (OVLT) and median preoptic nucleus (MnPO) in homeostasis of fluid ingestion and the neural basis of arousal, the latter which also includes the role of the orexigenic system. Second, since FAA in association with the daily visit of the mother is an example of conditioned learning, we review evidence for changes in the corticolimbic system and identified nuclei in the amygdala and extended amygdala as part of the neural substrate responsible for FAA. Third, we review recent evidence supporting the role of oxytocinergic cells of the paraventricular hypothalamic nucleus (PVN) as a link to the autonomic system that underlies physiological events, which occur in preparation for the upcoming next daily meal. We conclude that the rabbit model has contributed to an overall understanding of food entrainment.
Collapse
Affiliation(s)
- Mario Caba
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Mexico
| | - Michael N Lehman
- Brain Health Research Institute, Kent State University, Kent, OH, United States
| | | |
Collapse
|
2
|
Navarrete E, Díaz-Villaseñor A, Díaz G, Salazar AM, Montúfar-Chaveznava R, Ostrosky-Wegman P, Caldelas I. Misadjustment of diurnal expression of core temperature and locomotor activity in lactating rabbits associated with maternal over-nutrition before and during pregnancy. PLoS One 2020; 15:e0232400. [PMID: 32384084 PMCID: PMC7209125 DOI: 10.1371/journal.pone.0232400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 04/15/2020] [Indexed: 01/01/2023] Open
Abstract
Metabolic parameters ranging from circulating nutrient levels and substrate utilization to energy expenditure and thermogenesis are temporally modulated by the circadian timing system. During critical embryonic developmental periods, maternal over-nutrition could alter key elements in different tissues associated with the generation of circadian rhythmicity, compromising normal rhythmicity development. To address this issue, we determine whether maternal over-nutrition leads to alterations in the development of circadian rhythmicity at physiological and behavioral levels in the offspring. For this, female rabbits were fed a standard diet (SD) or high-fat and carbohydrate diet (HFCD) before mating and during gestation. Core body temperature and gross locomotor activity were continuously recorded in newborn rabbits, daily measurements of body weight and the amount of milk ingested was carried out. At the end of lactation, tissue samples, including brown adipose tissue (BAT) and white adipose tissue (WAT), were obtained for determining the expression of uncoupling protein-1 (UCP1) and cell death-inducing DNA fragmentation factor-like effector A (CIDEA) genes. HFCD pups exhibited conspicuous differences in the development of the daily rhythm of temperature and locomotor activity compared to the SD pups, including a significant increase in the daily mean core temperature, changes in the time when temperature or activity remains above the average, shifts in the acrophase, decrease in the duration and intensity of the anticipatory rise previous to nursing, and changes in frequency of the rhythms. HFCD pups exhibited a significant increase in BAT thermogenesis markers, and a decrease of these markers in WAT, indicating more heat generation by brown adipocytes and alterations in the browning process. These results indicate that maternal over-nutrition alters offspring homeostatic and chronostatic regulation at the physiological and behavioral levels. Further studies are needed to determine whether these alterations are associated with the changes in the organization of the circadian system of the progeny.
Collapse
Affiliation(s)
- Erika Navarrete
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Andrea Díaz-Villaseñor
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Georgina Díaz
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Ana María Salazar
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | | | - Patricia Ostrosky-Wegman
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Ivette Caldelas
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
- * E-mail:
| |
Collapse
|
3
|
Aguilar-Roblero R, González-Mariscal G. Behavioral, neuroendocrine and physiological indicators of the circadian biology of male and female rabbits. Eur J Neurosci 2018; 51:429-453. [PMID: 30408249 DOI: 10.1111/ejn.14265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 10/17/2018] [Accepted: 10/25/2018] [Indexed: 12/20/2022]
Abstract
Adult rabbits show robust circadian rhythms of: nursing, food and water intake, hard faeces excretion, locomotion, body temperature, blood and intraocular pressure, corticosteroid secretion, and sleep. Control of several circadian rhythms involves a light-entrained circadian clock and a food-entrained oscillator. Nursing periodicity, however, relies on a suckling stimulation threshold. Brain structures regulating this activity include the paraventricular nucleus and preoptic area, as determined by lesions and quantification of cFOS- and PER1 clock gene-immunoreactive proteins. Melatonin synthesis in the rabbit pineal gland shows a diurnal rhythm, with highest values at night and lowest ones during the day. In kits the main zeitgeber is milk intake, which synchronizes locomotor activity, body temperature, and corticosterone secretion. Brain regions involved in these effects include the median preoptic nucleus and several olfactory structures. As models for particular human illnesses rabbits have been valuable for studying glaucoma and cardiovascular disease. Circadian variations in intraocular pressure (main risk factor for glaucoma) have been found, with highest values at night, which depend on sympathetic innervation. Rabbits fed a high fat diet develop cholesterol plaques and high blood pressure, as do humans, and such increased fat intake directly modulates cardiovascular homeostasis and circadian patterns, independently of white adipose tissue accumulation. Rabbits have also been useful to investigate the characteristics of sleep across the day and its modulation by infections, cytokines and other endogenous humoral factors. Rabbit circadian biology warrants deeper investigation of the role of the suprachiasmatic nucleus in regulating most behavioral and physiological rhythms described above.
Collapse
Affiliation(s)
- Raúl Aguilar-Roblero
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gabriela González-Mariscal
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| |
Collapse
|
4
|
Navarrete E, Díaz G, Montúfar-Chaveznava R, Caldelas I. Temporal variations of nucleosides and nucleotides in rabbit milk. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2018; 37:415-435. [PMID: 30449235 DOI: 10.1080/15257770.2018.1494278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Nucleotides and nucleosides have a preeminent role in physiological and biochemical processes for newborns, the major source of these during early development is the breast milk. Different biomolecules exhibit daily fluctuations in maternal milk that could transfer temporal information that synchronize newborn circadian system. As a first approach, we characterized the diurnal profile of nucleotides and nucleosides contained in maternal milk of rabbits during the first week of lactation. It is possible that some nucleosides, such as adenosine, play a relevant role in setting up the emerging circadian rhythmicity, whereas uridine and guanosine could participate in the maintenance of rhythmicity.
Collapse
Affiliation(s)
- Erika Navarrete
- a Instituto de Investigaciones Biomédicas , Universidad Nacional Autónoma de México , Ciudad de México , México
| | - Georgina Díaz
- a Instituto de Investigaciones Biomédicas , Universidad Nacional Autónoma de México , Ciudad de México , México
| | | | - Ivette Caldelas
- a Instituto de Investigaciones Biomédicas , Universidad Nacional Autónoma de México , Ciudad de México , México
| |
Collapse
|
5
|
Caba M, Mendoza J. Food-Anticipatory Behavior in Neonatal Rabbits and Rodents: An Update on the Role of Clock Genes. Front Endocrinol (Lausanne) 2018; 9:266. [PMID: 29881373 PMCID: PMC5976783 DOI: 10.3389/fendo.2018.00266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/07/2018] [Indexed: 11/25/2022] Open
Abstract
In mammals, the suprachiasmatic nucleus (SCN), the master circadian clock, is mainly synchronized to the environmental light/dark cycle. SCN oscillations are maintained by a molecular clockwork in which certain genes, Period 1-2, Cry1-2, Bmal1, and Clock, are rhythmically expressed. Disruption of these genes leads to a malfunctioning clockwork and behavioral and physiological rhythms are altered. In addition to synchronization of circadian rhythms by light, when subjects are exposed to food for a few hours daily, behavioral and physiological rhythms are entrained to anticipate mealtime, even in the absence of the SCN. The presence of anticipatory rhythms synchronized by food suggests the existence of an SCN-independent circadian pacemaker that might be dependent on clock genes. Interestingly, rabbit pups, unable to perceive light, suckle milk once a day, which entrains behavioral rhythms to anticipate nursing time. Mutations of clock genes, singly or in combination, affect diverse rhythms in brain activity and physiological processes, but anticipatory behavior and physiology to feeding time remains attenuated or unaffected. It had been suggested that compensatory upregulation of paralogs or subtypes genes, or even non-transcriptional mechanisms, are able to maintain circadian oscillations entrained to mealtime. In the present mini-review, we evaluate the current state of the role played by clock genes in meal anticipation and provide evidence for rabbit pups as a natural model of food-anticipatory circadian behavior.
Collapse
Affiliation(s)
- Mario Caba
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Mexico
- *Correspondence: Mario Caba,
| | - Jorge Mendoza
- Institute of Cellular and Integrative Neurosciences, CNRS UPR-3212, University of Strasbourg, Strasbourg, France
| |
Collapse
|
6
|
Navarrete E, Ortega-Bernal JR, Trejo-Muñoz L, Díaz G, Montúfar-Chaveznava R, Caldelas I. Participation of the Olfactory Bulb in Circadian Organization during Early Postnatal Life in Rabbits. PLoS One 2016; 11:e0156539. [PMID: 27305041 PMCID: PMC4909232 DOI: 10.1371/journal.pone.0156539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/16/2016] [Indexed: 12/26/2022] Open
Abstract
Experimental evidence indicates that during pre-visual stages of development in mammals, circadian regulation is still not under the control of the light-entrainable hypothalamic pacemaker, raising the possibility that the circadian rhythmicity that occurs during postnatal development is under the control of peripheral oscillators, such as the main olfactory bulb (MOB). We evaluated the outcome of olfactory bulbectomy on the temporal pattern of core body temperature and gross locomotor activity in newborn rabbits. From postnatal day 1 (P1), pups were randomly assigned to one of the following conditions: intact pups (INT), intact pups fed by enteral gavage (INT+ENT), sham operated pups (SHAM), pups with unilateral lesions of the olfactory bulb (OBx-UNI), and pups with bilateral lesions of the olfactory bulb (OBx-BI). At the beginning of the experiment, from P1-8, the animals in all groups were fed at 11:00, from P9-13 the feeding schedule was delayed 6 h (17:00), and finally, from P14-15 the animals were subjected to fasting conditions. The rabbit pups of the INT, INT+ENT, SHAM and OBx-UNI groups exhibited a clear circadian rhythmicity in body temperature and locomotor activity, with a conspicuous anticipatory rise hours prior to the nursing or feeding schedule, which persisted even during fasting conditions. In addition, phase delays in the nursing or feeding schedule induced a clear phase shift in both parameters. In contrast, the OBx-BI group exhibited atypical rhythmicity in both parameters under entrained conditions that altered the anticipatory component, as well as deficient phase control of both rhythms. The present results demonstrate that the expression of circadian rhythmicity at behavioral and physiological levels during early stages of rabbit development largely depends on the integrity of the main olfactory bulb.
Collapse
Affiliation(s)
- Erika Navarrete
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Juan Roberto Ortega-Bernal
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Lucero Trejo-Muñoz
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Georgina Díaz
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | | | - Ivette Caldelas
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
- * E-mail:
| |
Collapse
|
7
|
Trejo-Muñoz L, Navarrete E, Montúfar-Chaveznava R, Caldelas I. Temporal modulation of the canonical clockwork in the suprachiasmatic nucleus and olfactory bulb by the mammary pheromone 2MB2 in pre-visual rabbits. Neuroscience 2014; 275:170-83. [PMID: 24931761 DOI: 10.1016/j.neuroscience.2014.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 02/05/2023]
Abstract
During the early stages of development, the olfactory system plays a vital role in the survival of altricial mammals. One remarkable example is the Oryctolagus cuniculus, whose mother-young interaction greatly depends on the 2-methylbut-2-enal (2MB2) pheromone that triggers nipple search and grasping behaviors. Olfactory stimulation with 2MB2 regulates the expression of the core body temperature and locomotor activity rhythms in rabbit pups, indicating the modulation of the circadian system by this volatile cue. To address this issue, in the present study, we determined the effect of stimulation with pulses of 2MB2 on the molecular circadian clockwork in the suprachiasmatic nucleus (SCN) and in the main olfactory bulb (MOB). For this purpose, 7-day-old rabbits were stimulated with distilled water (CON), with ethyl isobutyrate (ETHYL) or with the pheromone (2MB2) at different times of the cycle, and 1h later, the expression of the activity marker C-FOS and of the clock proteins PER1, CRY1 and BMAL1 was evaluated in the SCN and in the three layers of the MOB. The clock proteins were abundantly expressed in both structures; nevertheless these showed diurnal rhythmicity only in the MOB, confirming that central pacemakers exhibit a heterochronical development of the molecular clockwork. C-FOS expression in the SCN and in the MOB was modulated by exposure to ETHYL and to 2MB2 only when these stimulants were presented at ZT00 and at ZT18. In contrast, the clock proteins were essentially modulated by 2MB2 at ZT00 and at ZT06 in both structures. In addition, the PER1 and CRY1 proteins exhibited differential responses to stimulation in the three layers of the MOB. For the first time, we report a modulatory and time-dependent effect of the mammary pheromone 2MB2 on the expression of the core clock proteins in the SCN and in the MOB in rabbits during pre-visual stages of development.
Collapse
Affiliation(s)
- L Trejo-Muñoz
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Distrito Federal, Mexico
| | - E Navarrete
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Distrito Federal, Mexico
| | - R Montúfar-Chaveznava
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Distrito Federal, Mexico
| | - I Caldelas
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Distrito Federal, Mexico.
| |
Collapse
|
8
|
Montúfar-Chaveznava R, Trejo-Muñoz L, Hernández-Campos O, Navarrete E, Caldelas I. Maternal olfactory cues synchronize the circadian system of artificially raised newborn rabbits. PLoS One 2013; 8:e74048. [PMID: 24040161 PMCID: PMC3764011 DOI: 10.1371/journal.pone.0074048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 07/26/2013] [Indexed: 01/22/2023] Open
Abstract
In European newborn rabbits, once-daily nursing acts as a strong non-photic entraining cue for the pre-visual circadian system. Nevertheless, there is a lack of information regarding which of the non-photic cues are capable of modulating pup circadian system. In this study, for the first time, we determined that the mammary pheromone 2-methylbut-2-enal (2MB2) presented in the maternal milk acts as a non-photic entraining cue. We evaluated the effect of once-daily exposure to maternal olfactory cues on the temporal pattern of core body temperature, gross locomotor activity and metabolic variables (liver weight, serum glucose, triacylglycerides, free fatty acids, cholecystokinin and cholesterol levels) in newborn rabbits. Rabbit pups were separated from their mothers from postnatal day 1 (P1) to P8 and were randomly assigned to one of the following conditions: nursed by a lactating doe (NAT); exposed to a 3-min pulse of maternal milk (M-Milk), mammary pheromone (2MB2), or water (H₂O). To eliminate maternal stimulation, the pups of the last three groups were artificially fed once every 24-h. On P8, the rabbits were sacrificed at different times of the day. In temperature and activity, the NAT, M-Milk and 2MB2 groups exhibited clear diurnal rhythmicity with a conspicuous anticipatory rise hours prior to nursing. In contrast, the H₂O group exhibited atypical rhythmicity in both parameters, lacking the anticipatory component. At the metabolic level, all of the groups exhibited a diurnal pattern with similar phases in liver weight and metabolites examined. The results obtained in this study suggest that during pre-visual stages of development, the circadian system of newborn rabbits is sensitive to the maternal olfactory cues contained in milk, indicating that these cues function as non-photic entraining signals mainly for the central oscillators regulating the expression of temperature and behavior, whereas in metabolic diurnal rhythmicity, these cues lack an effect, indicating that peripheral oscillators respond to milk administration.
Collapse
Affiliation(s)
| | - Lucero Trejo-Muñoz
- Departamento Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Distrito Federal, México
| | - Oscar Hernández-Campos
- Departamento Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Distrito Federal, México
| | - Erika Navarrete
- Departamento Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Distrito Federal, México
| | - Ivette Caldelas
- Departamento Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Distrito Federal, México
- * E-mail:
| |
Collapse
|
9
|
Circadian Clocks, Food Intake, and Metabolism. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 119:105-35. [DOI: 10.1016/b978-0-12-396971-2.00005-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|