1
|
Govic A, Nasser H, Levay EA, Zelko M, Ebrahimie E, Mohammadi Dehcheshmeh M, Kent S, Penman J, Hazi A. Long-Term Calorie Restriction Alters Anxiety-like Behaviour and the Brain and Adrenal Gland Transcriptomes of the Ageing Male Rat. Nutrients 2022; 14:nu14214670. [PMID: 36364936 PMCID: PMC9654051 DOI: 10.3390/nu14214670] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Further examination of the molecular regulators of long-term calorie restriction (CR), reported to have an anxiolytic effect, may highlight novel therapeutic targets for anxiety disorders. Here, adult male Hooded Wistar rats were exposed to a 25% CR whilst anxiety-like behaviour was assessed at 6-, 12-, and 18-months of age via the elevated plus maze, open field, and acoustic startle tests. Next-generation sequencing was then used to measure transcriptome-wide gene expression in the hypothalamus, amygdala, pituitary, and adrenal glands. Results showed an anxiolytic behavioural profile across early, middle, and late adulthood by CR, with the strongest effects noted at 6-months. Transcriptomic analysis by seven attribute weighting algorithms, including Info Gain Ratio, Rule, Chi Squared, Gini Index, Uncertainty, Relief, and Info Gain, led to the development of a signature of long-term CR, independent of region. Complement C1q A chain (C1qa), an extracellular protein, expression was significantly decreased by CR in most regions examined. Furthermore, text mining highlighted the positive involvement of C1qa in anxiety, depression, neurodegeneration, stress, and ageing, collectively identifying a suitable biomarker candidate for CR. Overall, the current study identified anxiety-related phenotypic changes and a novel transcriptome signature of long-term CR, indicating potential therapeutic targets for anxiety, depression, and neurodegeneration.
Collapse
Affiliation(s)
- Antonina Govic
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC 3010, Australia
- Epigenes Australia Pty Ltd., Melbourne, VIC 3010, Australia
- Correspondence: or ; Tel.: +61-3-9780-9996
| | - Helen Nasser
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC 3010, Australia
- Epigenes Australia Pty Ltd., Melbourne, VIC 3010, Australia
| | - Elizabeth A. Levay
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC 3010, Australia
- Epigenes Australia Pty Ltd., Melbourne, VIC 3010, Australia
| | - Matt Zelko
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC 3010, Australia
- Epigenes Australia Pty Ltd., Melbourne, VIC 3010, Australia
| | - Esmaeil Ebrahimie
- Genomics Research Platform, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3000, Australia
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, SA 5371, Australia
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Manijeh Mohammadi Dehcheshmeh
- Genomics Research Platform, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3000, Australia
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, SA 5371, Australia
| | - Stephen Kent
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC 3010, Australia
| | - Jim Penman
- Epigenes Australia Pty Ltd., Melbourne, VIC 3010, Australia
| | - Agnes Hazi
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC 3010, Australia
| |
Collapse
|
2
|
Wang J, Zeng HL, Du H, Liu Z, Cheng J, Liu T, Hu T, Kamal GM, Li X, Liu H, Xu F. Evaluation of metabolites extraction strategies for identifying different brain regions and their relationship with alcohol preference and gender difference using NMR metabolomics. Talanta 2018; 179:369-376. [DOI: 10.1016/j.talanta.2017.11.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/24/2017] [Accepted: 11/16/2017] [Indexed: 10/18/2022]
|
3
|
Tran S, Chow H, Tsang B, Facciol A, Gandhi P, Desai P, Gerlai R. Zebrafish Are Able to Detect Ethanol in Their Environment. Zebrafish 2017; 14:126-132. [DOI: 10.1089/zeb.2016.1372] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Steven Tran
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Hayden Chow
- Department of Physiology and Pharmacology, University of Western Ontario, London, Canada
| | - Benjamin Tsang
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada
| | - Amanda Facciol
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada
| | - Prabhlene Gandhi
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada
| | - Priyanka Desai
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada
| | - Robert Gerlai
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada
| |
Collapse
|
4
|
Hånell A, Marklund N. Structured evaluation of rodent behavioral tests used in drug discovery research. Front Behav Neurosci 2014; 8:252. [PMID: 25100962 PMCID: PMC4106406 DOI: 10.3389/fnbeh.2014.00252] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 07/03/2014] [Indexed: 12/01/2022] Open
Abstract
A large variety of rodent behavioral tests are currently being used to evaluate traits such as sensory-motor function, social interactions, anxiety-like and depressive-like behavior, substance dependence and various forms of cognitive function. Most behavioral tests have an inherent complexity, and their use requires consideration of several aspects such as the source of motivation in the test, the interaction between experimenter and animal, sources of variability, the sensory modality required by the animal to solve the task as well as costs and required work effort. Of particular importance is a test’s validity because of its influence on the chance of successful translation of preclinical results to clinical settings. High validity may, however, have to be balanced against practical constraints and there are no behavioral tests with optimal characteristics. The design and development of new behavioral tests is therefore an ongoing effort and there are now well over one hundred tests described in the contemporary literature. Some of them are well established following extensive use, while others are novel and still unproven. The task of choosing a behavioral test for a particular project may therefore be daunting and the aim of the present review is to provide a structured way to evaluate rodent behavioral tests aimed at drug discovery research.
Collapse
Affiliation(s)
- Anders Hånell
- Department of Neuroscience, Section for Neurosurgery, Uppsala University Uppsala, Sweden ; Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine Richmond, VA, USA
| | - Niklas Marklund
- Department of Neuroscience, Section for Neurosurgery, Uppsala University Uppsala, Sweden
| |
Collapse
|
5
|
Early ethanol and water consumption: accumulating experience differentially regulates drinking pattern and bout parameters in male alcohol preferring (P) vs. Wistar and Sprague Dawley rats. Physiol Behav 2014; 123:20-32. [PMID: 24095931 DOI: 10.1016/j.physbeh.2013.09.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 07/14/2013] [Accepted: 09/25/2013] [Indexed: 11/19/2022]
Abstract
Alcohol-preferring (P) rats develop high ethanol intake over several weeks of water/10% ethanol (10E) choice drinking. However, it is not yet clear precisely what components of drinking behavior undergo modification to achieve higher intake. Our concurrent report compared precisely measured daily intake in P vs. non-selected Wistar and Sprague Dawley (SD) rats. Here we analyze their drinking patterns and bouts to clarify microbehavioral components that are common to rats of different genetic backgrounds, vs. features that are unique to each. Under sole-fluid conditions P, Wistar and SD rats all consumed water at a high initial rate followed by a slow maintenance phase, but 10E - in a distinctly different step-like pattern of evenly distributed bouts. During choice period, 10E vs. water patterns for P rat appeared as an overlap of sole-fluid patterns. The SD rat choice patterns resembled sole-fluid patterns but were less regular. Choice patterns in Wistar differed from both P and SD rats, by consisting of intermixed small frequent episodes of drinking both 10E and water. Wistar and SD rats increased choice ethanol intake by elevating the number of bouts. A key finding was that P rat increased choice ethanol intake through a gradual increase of the bout size and duration, but kept bout number constant. This supports the hypothesis that genetic selection modifies microbehavioral machinery controlling drinking bout initiation, duration, and other pattern features. Precision analysis of drinking patterns and bouts allows differentiation between genetic lines, and provides a venue for study of localized circuit and transmitter influences mediating mesolimbic control over ethanol consumption.
Collapse
|
6
|
Azarov AV, Woodward DJ. Early ethanol and water intake: choice mechanism and total fluid regulation operate in parallel in male alcohol preferring (P) and both Wistar and Sprague Dawley rats. Physiol Behav 2013; 123:11-9. [PMID: 24095933 DOI: 10.1016/j.physbeh.2013.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 07/13/2013] [Accepted: 09/25/2013] [Indexed: 10/26/2022]
Abstract
The goal of this study was to clarify similar and distinctly different parameters of fluid intake during early phases of ethanol and water choice drinking in alcohol preferring P-rat vs. non-selected Wistar and Sprague Dawley (SD) rats. Precision information on the drinking amounts and timing is needed to analyze micro-behavioral components of the acquisition of ethanol intake and to enable a search for its causal activity patterns within individual CNS circuits. The experiment followed the standard ethanol-drinking test used in P-rat selective breeding, with access to water, then 10% ethanol (10E) as sole fluids, and next to ethanol/water choice. The novelty of the present approach was to eliminate confounding prandial elevations of fluid intake, by time-separating daily food from fluid access. P-rat higher initial intakes of water and 10E as sole fluids suggest adaptations to ethanol-induced dehydration in P vs. Wistar and SD rats. P-rat starting and overall ethanol intake during the choice period were the highest. The absolute extent of ethanol intake elevation during choice period was greatest in Wistar and their final intake levels approached those of P-rat, contrary to the hypothesis that selection would produce the strongest elevation of ethanol intake. The total daily fluid during ethanol/water choice period was strikingly similar between P, Wistar and SD rats. This supports the hypothesis for a universal system that gauges the overall intake volume by titrating and integrating ethanol and water drinking fluctuations, and indicates a stable daily level of total fluid as a main regulated parameter of fluid intake across the three lines in choice conditions. The present findings indicate that a stable daily level of total fluid comprises an independent physiological limit for daily ethanol intake. Ethanol drinking, in turn, stays under the ceiling of this limit, driven by a parallel mechanism of ethanol/water choice.
Collapse
Affiliation(s)
- Alexey V Azarov
- Neuroscience Research Institute of North Carolina, 101 N. Chestnut St., Suite 200, Winston-Salem, NC 27101, United States.
| | | |
Collapse
|