1
|
Malone IG, Hunter BK, Rossow HL, Herzog H, Zolotukhin S, Munger SD, Dotson CD. Y1 receptors modulate taste-related behavioral responsiveness in male mice to prototypical gustatory stimuli. Horm Behav 2021; 136:105056. [PMID: 34509673 PMCID: PMC8640844 DOI: 10.1016/j.yhbeh.2021.105056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
Mammalian taste bud cells express receptors for numerous peptides implicated elsewhere in the body in the regulation of metabolism, nutrient assimilation, and satiety. The perturbation of several peptide signaling pathways in the gustatory periphery results in changes in behavioral and/or physiological responsiveness to subsets of taste stimuli. We previously showed that Peptide YY (PYY) - which is present in both saliva and in subsets of taste cells - can affect behavioral taste responsiveness and reduce food intake and body weight. Here, we investigated the contributions of taste bud-localized receptors for PYY and the related Neuropeptide Y (NPY) on behavioral taste responsiveness. Y1R, but not Y2R, null mice show reduced responsiveness to sweet, bitter, and salty taste stimuli in brief-access taste tests; similar results were seen when wildtype mice were exposed to Y receptor antagonists in the taste stimuli. Finally, mice in which the gene encoding the NPY propeptide was deleted also showed reduced taste responsiveness to sweet and bitter taste stimuli. Collectively, these results suggest that Y1R signaling, likely through its interactions with NPY, can modulate peripheral taste responsiveness in mice.
Collapse
Affiliation(s)
- Ian G Malone
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Brianna K Hunter
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Heidi L Rossow
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | - Sergei Zolotukhin
- Center for Smell and Taste, University of Florida, Gainesville, FL 32610, USA; Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Steven D Munger
- Center for Smell and Taste, University of Florida, Gainesville, FL 32610, USA; Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL 32610, USA; Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Cedrick D Dotson
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
2
|
Gupta A, Li X, DiCicco-Bloom E, Bello NT. Altered salt taste response and increased tongue epithelium Scnna1 expression in adult Engrailed-2 null mice. Physiol Behav 2018; 194:410-419. [PMID: 29953887 DOI: 10.1016/j.physbeh.2018.06.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 02/06/2023]
Abstract
Sensory impairments are critical for diagnosing and characterizing neurodevelopmental disorders. Taste is a sensory modality often not well characterized. Engrailed-2 (En2) is a transcription factor critical for neural development, and mice lacking En2 (En2-/-) display signs of impaired social interaction, cognitive processes (e.g., learning and memory, conditioned fear), and neurodevelopmental alterations. As such, En2-/- mice display the behavioral deficits and neural impairments characteristic of the core symptoms associated with autism spectrum disorder (ASD). The objective of this study was to characterize the taste function in En2-/- compared with En2+/+ in adult male mice. Measuring taste responsiveness by an automated gustometer, En2 null mice had decreased lick responses for 1.6 M fructose, whereas they demonstrated an increased taste responsivity (i.e., relative to water) at 0.3 M sodium chloride and 1 M monosodium glutamate. In a separate cohort of mice, En2-/- mice had an increased preference for sodium chloride over a range of concentrations (0.032-0.3 M) compared with En2+/+ mice. Regional gene expression of the tongue epithelium demonstrated an increase in Scnn1a, T2R140, T1R3, and Trpm5 and a decrease in Pkd1l3 in En2 null mice. Taken together, such data indicate that deficits in En2 can produce sensory impairments that can have a measurable impact on taste, particularly salt taste.
Collapse
Affiliation(s)
- Ankita Gupta
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Xinyi Li
- Nutritional Sciences Graduate Program, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Emanuel DiCicco-Bloom
- Department of Neuroscience and Cell Biology/Pediatrics, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Nicholas T Bello
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA; Nutritional Sciences Graduate Program, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
3
|
Li X, Treesukosol Y, Moghadam A, Smith M, Ofeldt E, Yang D, Li T, Tamashiro K, Choi P, Moran TH, Smith WW. Behavioral characterization of the hyperphagia synphilin-1 overexpressing mice. PLoS One 2014; 9:e91449. [PMID: 24829096 PMCID: PMC4020742 DOI: 10.1371/journal.pone.0091449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 02/12/2014] [Indexed: 01/06/2023] Open
Abstract
Synphilin-1 is a cytoplasmic protein that has been shown to be involved in the control of energy balance. Previously, we reported on the generation of a human synphilin-1 transgenic mouse model (SP1), in which overexpression of human synphilin-1 resulted in hyperphagia and obesity. Here, behavioral measures in SP1 mice were compared with those of their age-matched controls (NTg) at two time points: when there was not yet a group body weight difference ("pre-obese") and when SP1 mice were heavier ("obese"). At both time points, meal pattern analyses revealed that SP1 mice displayed higher daily chow intake than non-transgenic control mice. Furthermore, there was an increase in meal size in SP1 mice compared with NTg control mice at the obese stage. In contrast, there was no meal number change between SP1 and NTg control mice. In a brief-access taste procedure, both "pre-obese" and "obese" SP1 mice displayed concentration-dependent licking across a sucrose concentration range similar to their NTg controls. However, at the pre-obese stage, SP1 mice initiated significantly more trials to sucrose across the testing sessions and licked more vigorously at the highest concentration presented, than the NTg counterparts. These group differences in responsiveness to sucrose were no longer apparent in obese SP1 mice. These results suggest that at the pre-obese stage, the increased trials to sucrose in the SP1 mice reflects increased appetitive behavior to sucrose that may be indicative of the behavioral changes that may contribute to hyperphagia and development of obesity in SP1 mice. These studies provide new insight into synphilin-1 contributions to energy homeostasis.
Collapse
Affiliation(s)
- Xueping Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, United States of America
| | - Yada Treesukosol
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Alexander Moghadam
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Megan Smith
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Erica Ofeldt
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Dejun Yang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, United States of America
| | - Tianxia Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, United States of America
| | - Kellie Tamashiro
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Pique Choi
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Timothy H. Moran
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Wanli W. Smith
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, United States of America
| |
Collapse
|
4
|
Treesukosol Y, Sun B, Moghadam AA, Liang NC, Tamashiro KL, Moran TH. Maternal high-fat diet during pregnancy and lactation reduces the appetitive behavioral component in female offspring tested in a brief-access taste procedure. Am J Physiol Regul Integr Comp Physiol 2014; 306:R499-509. [PMID: 24500433 DOI: 10.1152/ajpregu.00419.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Maternal high-fat diet appears to disrupt several energy balance mechanisms in offspring. Here, female offspring from dams fed a high-fat diet (HF) did not significantly differ in body weight compared with those fed chow (CHOW), when weaned onto chow diet. Yet when presented with both a chow and a high-fat diet, high-fat intake was significantly higher in HF compared with CHOW offspring. To assess taste-based responsiveness, offspring (12 wk old) were tested in 30-min sessions (10-s trials) to a sucrose concentration series in a brief-access taste test. Compared with CHOW, the HF offspring initiated significantly fewer trials but did not significantly differ in the amount of concentration-dependent licking. Thus, rather than affect lick response (consummatory), maternal diet affects spout approach (appetitive), which may be attributed to motivation-related mechanisms. Consistent with this possibility, naltrexone, an opioid receptor antagonist, further reduced trial initiation, but not licking in both groups. With naltrexone administration, the group difference in trial initiation was no longer evident, suggesting differences in endogenous opioid activity between the two groups. Relative expression of μ-opioid receptor in the ventral tegmental area was significantly lower in HF rats. When trial initiation was not required in one-bottle intake tests, no main effect of maternal diet on the intake of sucrose and corn oil emulsions was observed. Thus, the maternal high-fat diet-induced difference in diet preference is not likely due to changes in the sensory orosensory component of the taste stimulus but may depend on alterations in satiety signals or absorptive mechanisms.
Collapse
Affiliation(s)
- Yada Treesukosol
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore Maryland
| | | | | | | | | | | |
Collapse
|
5
|
McCaughey SA, Glendinning JI. Experience with sugar modifies behavioral but not taste-evoked medullary responses to sweeteners in mice. Chem Senses 2013; 38:793-802. [PMID: 24084168 DOI: 10.1093/chemse/bjt046] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dietary exposure to sugars increases the preference for and intake of sugar solutions in mice. We used brief-access lick tests and multiunit electrophysiological recordings from the nucleus of the solitary tract (NST) to investigate the role of taste in diet-induced changes in sucrose responsiveness. We exposed C57BL/6J (B6) and 129X1/SvJ (129) mice to either a sucrose diet (chow, water, and a 500mM sucrose solution) or a control diet (chow and water) for 3 days. In B6 mice, exposure to the sucrose diet decreased the appetitive response (i.e., number of trials initiated) but had no effect on the consummatory response (i.e., rate of licking) to 500mM sucrose and 20mM saccharin. In 129 mice, exposure to the sucrose diet increased the appetitive response but had no effect on the consummatory response to the sweetener solutions. In the NST recordings, the B6 mice exhibited larger multiunit responses to sweeteners than 129 mice, but there was no effect of the sucrose diet in either strain. Our results indicate that sucrose exposure alters the appetitive response of B6 and 129 mice to sweeteners in diametrically opposed ways and that these changes are mediated by structures in the gustatory neuraxis above the NST (e.g., ventral forebrain).
Collapse
Affiliation(s)
- Stuart A McCaughey
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY 10027, USA.
| | | |
Collapse
|