1
|
Rock EM, Parker LA. The Role of Cannabinoids and the Endocannabinoid System in the Treatment and Regulation of Nausea and Vomiting. Curr Top Behav Neurosci 2024. [PMID: 39739175 DOI: 10.1007/7854_2024_554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Despite using the recommended anti-emetic treatments, control of nausea and vomiting is still an unmet need for cancer patients undergoing chemotherapy treatment. Few properly controlled clinical trials have evaluated the potential of exogenously administered cannabinoids or manipulations of the endogenous cannabinoid (eCB) system to treat nausea and vomiting. In this chapter, we explore the pre-clinical and human clinical trial evidence for the potential of exogenous cannabinoids and manipulations of the eCB system to reduce nausea and vomiting. Although there are limited high-quality human clinical trials, pre-clinical evidence suggests that cannabinoids and manipulations of the eCB system have anti-nausea/anti-emetic potential. The pre-clinical anti-nausea/anti-emetic evidence highlights the need for further evaluation of cannabinoids and manipulations of eCBs and other fatty acid amides in clinical trials.
Collapse
Affiliation(s)
- Erin M Rock
- Department of Psychology and Collaborative Neuroscience Graduate Program, University of Guelph, Guelph, ON, Canada
| | - Linda A Parker
- Department of Psychology and Collaborative Neuroscience Graduate Program, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
2
|
Wooldridge LM, Ji L, Liu Y, Nikas SP, Makriyannis A, Bergman J, Kangas BD. Antiemetic Effects of Cannabinoid Agonists in Nonhuman Primates. J Pharmacol Exp Ther 2020; 374:462-468. [PMID: 32561684 PMCID: PMC7445860 DOI: 10.1124/jpet.120.265710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/18/2020] [Indexed: 02/06/2023] Open
Abstract
Attenuating emesis elicited by both disease and medical treatments of disease remains a critical public health challenge. Although cannabinergic medications have been used in certain treatment-resistant populations, Food and Drug Administration-approved cannabinoid antiemetics are associated with undesirable side effects, including cognitive disruption, that limit their prescription. Previous studies have shown that a metabolically stable analog of the endocannabinoid anandamide, methanandamide (mAEA), may produce lesser cognitive disruption than that associated with the primary psychoactive constituent in cannabis, Δ9-tetrahydrocannabinol (Δ9-THC), raising the possibility that endocannabinoids may offer a therapeutic advantage over currently used medications. The present studies were conducted to evaluate this possibility by comparing the antiemetic effects of Δ9-THC (0.032-0.1 mg/kg) and mAEA (3.2-10.0 mg/kg) against nicotine- and lithium chloride (LiCl)-induced emesis and prodromal hypersalivation in squirrel monkeys. Pretreatment with 0.1 mg/kg Δ9-THC blocked nicotine-induced emesis and reduced hypersalivation in all subjects and blocked LiCl-induced emesis and reduced hypersalivation in three of four subjects. Pretreatment with 10 mg/kg mAEA blocked nicotine-induced emesis in three of four subjects and LiCl-induced emesis in one of four subjects and reduced both nicotine- and LiCl-induced hypersalivation. Antiemetic effects of Δ9-THC and mAEA were reversed by rimonabant pretreatment, providing verification of cannabinoid receptor type 1 mediation. These studies systematically demonstrate for the first time the antiemetic effects of cannabinoid agonists in nonhuman primates. Importantly, although Δ9-THC produced superior antiemetic effects, the milder cognitive effects of mAEA demonstrated in previous studies suggest that it may provide a favorable treatment option under clinical circumstances in which antiemetic efficacy must be balanced against side effect liability. SIGNIFICANCE STATEMENT: Emesis has significant evolutionary value as a defense mechanism against ingested toxins; however, it is also one of the most common adverse symptoms associated with both disease and medical treatments of disease. The development of improved antiemetic pharmacotherapies has been impeded by a paucity of animal models. The present studies systematically demonstrate for the first time the antiemetic effects of the phytocannabinoid Δ9-tetrahydrocannabinol and endocannabinoid analog methanandamide in nonhuman primates.
Collapse
Affiliation(s)
- Lisa M Wooldridge
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (J.B., B.D.K.); Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts (L.M.W., J.B., B.D.K.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (L.J., Y.L., S.P.N., A.M.)
| | - Lipin Ji
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (J.B., B.D.K.); Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts (L.M.W., J.B., B.D.K.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (L.J., Y.L., S.P.N., A.M.)
| | - Yingpeng Liu
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (J.B., B.D.K.); Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts (L.M.W., J.B., B.D.K.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (L.J., Y.L., S.P.N., A.M.)
| | - Spyros P Nikas
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (J.B., B.D.K.); Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts (L.M.W., J.B., B.D.K.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (L.J., Y.L., S.P.N., A.M.)
| | - Alexandros Makriyannis
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (J.B., B.D.K.); Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts (L.M.W., J.B., B.D.K.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (L.J., Y.L., S.P.N., A.M.)
| | - Jack Bergman
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (J.B., B.D.K.); Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts (L.M.W., J.B., B.D.K.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (L.J., Y.L., S.P.N., A.M.)
| | - Brian D Kangas
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (J.B., B.D.K.); Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts (L.M.W., J.B., B.D.K.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (L.J., Y.L., S.P.N., A.M.)
| |
Collapse
|
3
|
Zhong W, Darmani NA. The pivotal role of glycogen synthase kinase 3 (GSK-3) in vomiting evoked by specific emetogens in the least shrew (Cryptotis parva). Neurochem Int 2019; 132:104603. [PMID: 31738972 DOI: 10.1016/j.neuint.2019.104603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/27/2022]
Abstract
Glycogen synthase kinase 3 (GSK-3) is a constitutively active multifunctional serine-threonine kinase which is involved in diverse physiological processes. GSK-3 has been implicated in a wide range of diseases including neurodegeneration, inflammation, diabetes and cancer. GSK-3 is a downstream target for protein kinase B (Akt) which phosphorylates GSK-3 and suppresses its activity. Based upon our preliminary findings, we postulated Akt's involvement in emesis. The aim of this study was to investigate the participation of GSK-3 and the antiemetic potential of two GSK-3 inhibitors (AR-A014418 and SB216763) in the least shrew model of vomiting against fully-effective emetic doses of diverse emetogens, including the nonselective and/or selective agonists of serotonin type 3 (e.g. 5-HT or 2-Methyl-5-HT)-, neurokinin type 1 receptor (e.g. GR73632), dopamine D2 (e.g. apomorphine or quinpirole)-, and muscarinic 1 (e.g. pilocarpine or McN-A-343) receptors, as well as the L-type Ca2+ channel agonist (FPL64176), the sarco/endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin, and the chemotherapeutic agent, cisplatin. We first determined if these emetogens could regulate the phosphorylation level of GSK-3 in the brainstem emetic loci of least shrews and then investigated whether AR-A014418 and SB216763 could protect against the evoked emesis. Phospho-GSK-3α/β Ser21/9 levels in the brainstem and the enteric nerves of jejunum in the small intestine were upregulated following intraperitoneal (i.p.) administration of all the tested emetogens. Furthermore, administration of AR-A014418 (2.5-20 mg/kg, i.p.) dose-dependently attenuated both the frequency and percentage of shrews vomiting in response to i.p. administration of 5-HT (5 mg/kg), 2-Methyl-5-HT (5 mg/kg), GR73632 (5 mg/kg), apomorphine (2 mg/kg), quinpirole (2 mg/kg), pilocarpine (2 mg/kg), McN-A-343 (2 mg/kg), FPL64176 (10 mg/kg), or thapsigargin (0.5 mg/kg). Relatively lower doses of SB216763 exerted antiemetic efficacy, but both inhibitors barely affected cisplatin (10 mg/kg)-induced vomiting. Collectively, these results support the notion that vomiting is accompanied by a downregulation of GSK-3 activity and pharmacological inhibition of GSK-3 protects against pharmacologically evoked vomiting.
Collapse
Affiliation(s)
- W Zhong
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA, 91766, USA
| | - N A Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA, 91766, USA.
| |
Collapse
|
4
|
Abstract
Cannabinoid receptors, endocannabinoids and the enzymes responsible for their biosynthesis and degradation constitute the endocannabinoid system. In recent decades, the endocannabinoid system has attracted considerable interest as a potential therapeutic target in numerous pathological conditions. Its involvement in several physiological processes is well known, such as in energy balance, appetite stimulation, blood pressure, pain modulation, embryogenesis, nausea and vomiting control, memory, learning and immune response, among others, as well as in pathological conditions where it exerts a protective role in the development of certain disorders. As a result, it has been reported that changes in endocannabinoid levels may be related to neurological diseases such as Parkinson's disease, Huntington's disease, Alzheimer's disease and multiple sclerosis, as well as anorexia and irritable bowel syndrome. Alterations in the endocannabinoid system have also been associated with cancer, affecting the growth, migration and invasion of some tumours. Cannabinoids have been tested in several cancer types, including brain, breast and prostate cancers. Cannabinoids have shown promise as analgesics for the treatment of both inflammatory and neuropathic pain. There is also evidence for a role of the endocannabinoid system in the control of emotional states, and cannabinoids could prove useful in decreasing and palliating post-traumatic stress disorder symptoms and anxiolytic disorders. The role of the endocannabinoid system in addictions has also been examined, and cannabinoids have been postulated as alternative and co-adjuvant treatments in some abuse syndromes, mainly in ethanol and opioid abuses. The expression of the endocannabinoid system in the eye suggests that it could be a potential therapeutic target for eye diseases. Considering the importance of the endocannabinoid system and the therapeutic potential of cannabinoids in this vast number of medical conditions, several clinical studies with cannabinoid-based medications are ongoing. In addition, some cannabinoid-based medications have already been approved in various countries, including nabilone and dronabinol capsules for the treatment of nausea and vomiting associated with chemotherapy, dronabinol capsules for anorexia, an oral solution of dronabinol for both vomiting associated with chemotherapy and anorexia, a Δ9-tetrahydrocannabinol/cannabidiol oromucosal spray for pain related to cancer and for spasticity and pain associated with multiple sclerosis, and an oral solution of cannabidiol for Dravet and Lennox-Gastaut syndromes. Here, we review the available efficacy, safety and tolerability data for cannabinoids in a range of medical conditions.
Collapse
Affiliation(s)
- Ana Isabel Fraguas-Sánchez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Plaza Ramón y Cajal s/n, 28040 , Madrid, Spain
| | - Ana Isabel Torres-Suárez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Plaza Ramón y Cajal s/n, 28040 , Madrid, Spain. .,Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 , Madrid, Spain.
| |
Collapse
|
5
|
Gil-Ordóñez A, Martín-Fontecha M, Ortega-Gutiérrez S, López-Rodríguez ML. Monoacylglycerol lipase (MAGL) as a promising therapeutic target. Biochem Pharmacol 2018; 157:18-32. [PMID: 30059673 DOI: 10.1016/j.bcp.2018.07.036] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/25/2018] [Indexed: 12/31/2022]
Abstract
Monoacylglycerol lipase (MAGL) has been characterized as the main enzyme responsible for the inactivation of the most abundant brain endocannabinoid, 2-arachidonoylglycerol (2-AG). Besides this role, MAGL has progressively acquired a growing importance as an integrative metabolic hub that controls not only the in vivo levels of 2-AG but also of other monoacylglycerides and, indirectly, the levels of free fatty acids derived from their hydrolysis as well as other lipids with pro-inflammatory or pro-tumorigenic effects, coming from the further metabolism of fatty acids. All these functions have only started to be elucidated in the last years due to the progress made in the knowledge of the structure of MAGL and in the development of genetic and chemical tools. In this review we report the advances made in the field with a special focus on the last decade and how MAGL has become a promising therapeutic target for the treatment of several diseases that currently lack appropriate therapies.
Collapse
Affiliation(s)
- Ana Gil-Ordóñez
- Department of Organic Chemistry, School of Chemistry, Universidad Complutense de Madrid, Av. Complutense s/n, E-28040 Madrid, Spain
| | - Mar Martín-Fontecha
- Department of Organic Chemistry, School of Chemistry, Universidad Complutense de Madrid, Av. Complutense s/n, E-28040 Madrid, Spain
| | - Silvia Ortega-Gutiérrez
- Department of Organic Chemistry, School of Chemistry, Universidad Complutense de Madrid, Av. Complutense s/n, E-28040 Madrid, Spain
| | - María L López-Rodríguez
- Department of Organic Chemistry, School of Chemistry, Universidad Complutense de Madrid, Av. Complutense s/n, E-28040 Madrid, Spain.
| |
Collapse
|
6
|
Rock EM, Parker LA. Cannabinoids As Potential Treatment for Chemotherapy-Induced Nausea and Vomiting. Front Pharmacol 2016; 7:221. [PMID: 27507945 PMCID: PMC4960260 DOI: 10.3389/fphar.2016.00221] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/11/2016] [Indexed: 12/20/2022] Open
Abstract
Despite the advent of classic anti-emetics, chemotherapy-induced nausea is still problematic, with vomiting being somewhat better managed in the clinic. If post-treatment nausea and vomiting are not properly controlled, anticipatory nausea—a conditioned response to the contextual cues associated with illness-inducing chemotherapy—can develop. Once it develops, anticipatory nausea is refractive to current anti-emetics, highlighting the need for alternative treatment options. One of the first documented medicinal uses of Δ9-tetrahydrocannabinol (Δ9-THC) was for the treatment of chemotherapy-induced nausea and vomiting (CINV), and recent evidence is accumulating to suggest a role for the endocannabinoid system in modulating CINV. Here, we review studies assessing the therapeutic potential of cannabinoids and manipulations of the endocannabinoid system in human patients and pre-clinical animal models of nausea and vomiting.
Collapse
Affiliation(s)
- Erin M Rock
- Department of Psychology and Collaborative Neuroscience Graduate Program, University of Guelph Guelph, ON, Canada
| | - Linda A Parker
- Department of Psychology and Collaborative Neuroscience Graduate Program, University of Guelph Guelph, ON, Canada
| |
Collapse
|
7
|
Attenuation of anticipatory nausea in a rat model of contextually elicited conditioned gaping by enhancement of the endocannabinoid system. Psychopharmacology (Berl) 2014; 231:603-12. [PMID: 24043345 DOI: 10.1007/s00213-013-3282-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 08/28/2013] [Indexed: 12/28/2022]
Abstract
RATIONALE Enhancement of the endocannabinoid (EC) system may reduce anticipatory nausea (AN). OBJECTIVES The experiments evaluated the potential of the dual fatty acid amide hydrolase (FAAH)/monoacylglycerol lipase (MAGL) inhibitor, JZL195, on its own and combined with anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) to reduce contextually elicited gaping, a measure of AN in rats. METHODS Following four context lithium chloride (LiCl) pairings, rats were injected with vehicle (VEH) or JZL195 (10 mg kg(-1), intraperitoneally) 105 min before an injection of VEH, 2-AG (1.25 mg kg(-1)), or AEA (5.0 mg kg(-1)). Fifteen minutes later, all rats were placed in the LiCl-paired context for 5 min and in a different context for a 15-min locomotor test. Whole brains were extracted for EC analysis. The potential of the CB1 antagonist, SR141716, to reverse the suppression of AN by both JZL195 and AEA and of the CB2 antagonist, AM630, to reverse the suppression of AN by JZL195 was then evaluated. RESULTS JZL195 suppressed gaping and elevated AEA, palmitoylethanolamine, and oleoylethanolamide. As the suppression of gaping was reversed by SR141716, but not by AM630, the effect was CB1 mediated. The suppressive effect of JZL195 on gaping, as well as elevation of AEA and 2-AG, was amplified by pretreatment with either AEA or 2-AG. On its own, AEA, but not 2-AG, also suppressed gaping-an effect that was also prevented by CB1 antagonism. CONCLUSIONS JZL195 reduces AN primarily by acting as a FAAH inhibitor, but MAGL inhibition is also indicated.
Collapse
|