1
|
Oliveira TRDP, Lima-Oliveira DP, de Paula MBM, Brito RVL, Barreto AN, Silva AADN, Dias FCR, Silva-Junior VAD, Santos-Junior OHD, Lagranha CJ, Ferraz-Pereira KN, Antonio-Santos J, Da Silva Aragão R. Consequences of the modulation of gestational resistance training intensity for placental cell composition and nutrient transporter expression. Placenta 2025; 161:55-64. [PMID: 39919452 DOI: 10.1016/j.placenta.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/09/2025]
Abstract
INTRODUCTION Resistance training during pregnancy provides benefits for the mother and fetus, but little is known about the effects of resistance training on placental structure and function or the repercussions of modifying resistance training intensity on the mother-fetus-placenta triad. METHODS Female Wistar rats were submitted to resistance training involving a ladder climb (80 % of maximum load carried (MLC), 5-day/week for 3-weeks) before pregnancy. After confirmation of mating, the rats were randomly divided into three groups, according to resistance training intensity during pregnancy: constant-intensity training (CIT, trained at 80 % of MLC through gestation), decreasing-intensity training (DIT, 80 % of MLC during first and second weeks of gestation and 50 % of MLC in the third week), and undulating-intensity training (UIT, 50 % of MLC in the first and third weeks, and 80 % of MLC in the second week). A control group did not undergo any training. Samples were collected on gestational day 20. RESULTS Resistance training had no impact on maternal body weight, muscle glycogen content, adipocyte morphology, number of fetuses, number of absorptions, placental area, or fetal growth parameters. The CIT group presented lower maternal serum glucose. The UIT group presented increased presence of fetal capillaries in the labyrinth zone and increased Glut1, Glut3, and Snat1 expression in the placenta. Snat2 expression was upregulated in all resistance training groups and higher levels of Mtor expression were found in the DIT group. Il1b expression increased in the CIT group, and higher levels of Il10 expression were found in the DIT and UIT groups. DISCUSSION Resistance training was safe for pregnant rats. Its influence on glucose and amino acid transport was not dependent on changes in Mtor expression and did not impact fetal growth.
Collapse
Affiliation(s)
| | - Débora Priscila Lima-Oliveira
- Graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Academic Center of Vitoria, Federal University of Pernambuco, Vitória de Santo Antão, Brazil
| | | | - Rafael Victor Lira Brito
- Department of Nutrition, Health Sciences Center, Federal University of Pernambuco, Recife, PE, Brazil
| | - Alvaro Nascimento Barreto
- Department of Nutrition, Health Sciences Center, Federal University of Pernambuco, Recife, PE, Brazil
| | | | | | | | - Osmar Henrique Dos Santos-Junior
- Graduate Program in Neuropsychiatry and Behavior Science, Health Sciences Center, Federal University of Pernambuco, Recife, PE, Brazil
| | - Claudia Jacques Lagranha
- Graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Academic Center of Vitoria, Federal University of Pernambuco, Vitória de Santo Antão, Brazil; Graduate Program in Neuropsychiatry and Behavior Science, Health Sciences Center, Federal University of Pernambuco, Recife, PE, Brazil; Physical Education Courses, Academic Center of Vitoria, Federal University of Pernambuco, Vitória de Santo Antão, Brazil
| | - Kelli Nogueira Ferraz-Pereira
- Graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Academic Center of Vitoria, Federal University of Pernambuco, Vitória de Santo Antão, Brazil
| | - José Antonio-Santos
- Physical Education Courses, Academic Center of Vitoria, Federal University of Pernambuco, Vitória de Santo Antão, Brazil
| | - Raquel Da Silva Aragão
- Graduate Program in Nutrition, Health Sciences Center, Federal University of Pernambuco, Recife, PE, Brazil; Graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Academic Center of Vitoria, Federal University of Pernambuco, Vitória de Santo Antão, Brazil; Physical Education Courses, Academic Center of Vitoria, Federal University of Pernambuco, Vitória de Santo Antão, Brazil.
| |
Collapse
|
2
|
Lee VY, Nils AVM, Arruda BP, Xavier GF, Nogueira MI, Motta-Teixeira LC, Takada SH. Spontaneous running wheel exercise during pregnancy prevents later neonatal-anoxia-induced somatic and neurodevelopmental alterations. IBRO Neurosci Rep 2024; 17:263-279. [PMID: 39310269 PMCID: PMC11414703 DOI: 10.1016/j.ibneur.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction About 15-20 % of babies that suffer perinatal asphyxia die and around 25 % of the survivors exhibit permanent neural outcomes. Minimization of this global health problem has been warranted. This study investigated if the offspring of pregnant female rats allowed to spontaneously exercise on running wheels along a 11-day pregnancy period were protected for somatic and neurodevelopmental disturbs that usually follow neonatal anoxia. Methods spontaneous exercise was applied to female rats which were housed in cages allowing free access to running wheels along a 11-day pregnancy period. Their offspring were submitted to anoxia 24-36 h after birth. Somatic and sensory-motor development of the pups were recorded until postnatal day 21 (P21). Myelin basic protein (MBP)-stained areas of sensory and motor cortices were measured at P21. Neuronal nuclei (NeuN)-immunopositive cells and synapsin-I levels in hippocampal formation were estimated at P21 and P75. Results gestational exercise and / or neonatal anoxia increased the weight and the size of the pups. In addition, gestational exercise accelerated somatic and sensory-motor development of the pups and protected them against neonatal-anoxia-induced delay in development. Further, neonatal anoxia reduced MBP stained area in the secondary motor cortex and decreased hippocampal neuronal estimates and synapsin-I levels at P21; gestational exercise prevented these effects. Therefore, spontaneous exercise along pregnancy is a valuable strategy to prevent neonatal-anoxia-induced disturbs in the offspring. Conclusion spontaneous gestational running wheel exercise protects against neonatal anoxia-induced disturbs in the offspring, including (1) physical and neurobehavioral developmental impairments, and (2) hippocampal and cortical changes. Thus, spontaneous exercise during pregnancy may represent a valuable strategy to prevent disturbs which usually follow neonatal anoxia.
Collapse
Affiliation(s)
- Vitor Yonamine Lee
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 2415, Sao Paulo, SP 05508-900, Brazil
| | - Aline Vilar Machado Nils
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, R. do Matão, Travessa 14, 101, Sao Paulo 05508-900, Brazil
| | - Bruna Petrucelli Arruda
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Alameda da Universidade, s/n, Bloco Delta, São Bernardo do Campo, SP 09606-070, Brazil
| | - Gilberto Fernando Xavier
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, R. do Matão, Travessa 14, 101, Sao Paulo 05508-900, Brazil
| | - Maria Inês Nogueira
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 2415, Sao Paulo, SP 05508-900, Brazil
| | - Lívia Clemente Motta-Teixeira
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 2415, Sao Paulo, SP 05508-900, Brazil
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, R. do Matão, Travessa 14, 101, Sao Paulo 05508-900, Brazil
- Departamento de Ciências Fisiológicas, Faculdade de Ciências Médicas da Santa Casa de São Paulo, R. Jaguaribe, 155 - Vila Buarque, Sao Paulo, SP 01224-001, Brazil
| | - Silvia Honda Takada
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 2415, Sao Paulo, SP 05508-900, Brazil
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Alameda da Universidade, s/n, Bloco Delta, São Bernardo do Campo, SP 09606-070, Brazil
| |
Collapse
|
3
|
Vitor-de-Lima SM, Figueira de Oliveira ML, Tavares IDS, Leandro CVG, Guedes RCA. Maternal voluntary physical exercise in the adult rat: evidence of exercise-associated differences in maternal food intake, and in brain effects on the progeny. Nutr Neurosci 2024; 27:120-131. [PMID: 36633889 DOI: 10.1080/1028415x.2023.2166415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Objectives: Maternal physical activity may impact behavioral and electrophysiological aspects of brain function, with short- and long-term effects on pre- and postnatal neurodevelopment of the offspring. This study evaluated in the rat the effects of maternal voluntary physical activity (MVPA) on food intake and weight gain in the dams, as well as anxiety-like behavior, short-term memory and the brain excitability-related phenomenon known as cortical spreading depression (CSD) on the mother-pup dyad.Methods: Female Wistar rats (n=33) were individually housed in cages containing a running wheel for a 30-days adaptation period before mating. Rats were classified as inactive (I); active (A) or very active (VA) according to the distance spontaneously travelled daily. During gestation, the dams continued to have access to the running wheel. Mothers and their respective pups (1 pup per mother) were evaluated in the open field test (OFT), object recognition test (ORT), elevated plus maze test (EPMT) and the CSD propagation features.Results: MVPA was directly associated with increased food intake and weight gain during gestation, and maternal anxiolytic-like behavioral responses in the OFT. Pups from VA mothers showed a high discrimination index for shape recognition memory (ORT) and decreased propagation velocities of CSD, when compared with the inactive group.Discussion: The data suggest that MVPA during the gestational period induces neuroplasticity and may modulate the brain functions in the mother-infant dyad in the rat.
Collapse
Affiliation(s)
| | | | | | - Carol Virgínia Góis Leandro
- Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
- Department of Nutrition, CAV, Federal University of Pernambuco, Vitória de Santo Antão, Brazil
| | | |
Collapse
|
4
|
Visco DB, Manhães-de-Castro R, da Silva MM, Costa-de-Santana BJR, Pereira Dos Santos Junior J, Saavedra LM, de Lemos MDTB, Valdéz-Alarcón JJ, Lagranha CJ, Guzman-Quevedo O, Torner L, Toscano AE. Neonatal kaempferol exposure attenuates impact of cerebral palsy model on neuromotor development, cell proliferation, microglia activation, and antioxidant enzyme expression in the hippocampus of rats. Nutr Neurosci 2024; 27:20-41. [PMID: 36576161 DOI: 10.1080/1028415x.2022.2156034] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVES This study aims to assess the effect of neonatal treatment with kaempferol on neuromotor development, proliferation of neural precursor cells, the microglia profile, and antioxidant enzyme gene expression in the hippocampus. METHODS A rat model of cerebral palsy was established using perinatal anoxia and sensorimotor restriction of hindlimbs during infancy. Kaempferol (1 mg/ kg) was intraperitoneally administered during the neonatal period. RESULTS Neonatal treatment with kaempferol reduces the impact of the cerebral palsy model on reflex ontogeny and on the maturation of physical features. Impairment of locomotor activity development and motor coordination was found to be attenuated by kaempferol treatment during the neonatal period in rats exposed to cerebral palsy. Neonatal treatment of kaempferol in cerebral palsy rats prevents a substantial reduction in the number of neural precursor cells in the dentate gyrus of the hippocampus, an activated microglia profile, and increased proliferation of microglia in the sub-granular zone and in the granular cell layer. Neonatal treatment with kaempferol increases gene expression of superoxide dismutase and catalase in the hippocampus of rats submitted to the cerebral palsy model. DISCUSSION Kaempferol attenuates the impact of cerebral palsy on neuromotor behavior development, preventing altered hippocampal microglia activation and mitigating impaired cell proliferation in a neurogenic niche in these rats. Neonatal treatment with kaempferol also increases antioxidant defense gene expression in the hippocampus of rats submitted to the cerebral palsy model.
Collapse
Affiliation(s)
- Diego Bulcão Visco
- Laboratory of Neurofunctional, Department of Biological Sciences and Health, Federal University of Amapá, Macapá, Brazil
- Graduate Program in Nutrition (Posnutri), Health Sciences Center, Federal University of Pernambuco, Recife, Brazil
- Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
| | - Raul Manhães-de-Castro
- Graduate Program in Nutrition (Posnutri), Health Sciences Center, Federal University of Pernambuco, Recife, Brazil
- Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
| | - Márcia Maria da Silva
- Graduate Program in Nutrition (Posnutri), Health Sciences Center, Federal University of Pernambuco, Recife, Brazil
- Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
| | - Bárbara J R Costa-de-Santana
- Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
- Graduate Program in Neuropsychiatry and Behavioral Sciences (Posneuro), Federal University of Pernambuco, Recife, Brazil
| | - Joaci Pereira Dos Santos Junior
- Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
| | - Luís Miguel Saavedra
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Mexico
| | | | - Juan José Valdéz-Alarcón
- Centro Multidisciplinario de Estudios en Biotecnología - Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro, Mexico
| | - Claudia Jacques Lagranha
- Graduate Program in Biochemistry and Physiology (PGBqF), Federal University of Pernambuco, Recife, Brazil
- Graduate Program in Neuropsychiatry and Behavioral Sciences (Posneuro), Federal University of Pernambuco, Recife, Brazil
| | - Omar Guzman-Quevedo
- Instituto Tecnológico Superior de Tacámbaro, Tacámbaro, Mexico
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Mexico
- Graduate Program in Neuropsychiatry and Behavioral Sciences (Posneuro), Federal University of Pernambuco, Recife, Brazil
| | - Luz Torner
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Mexico
| | - Ana Elisa Toscano
- Graduate Program in Nutrition (Posnutri), Health Sciences Center, Federal University of Pernambuco, Recife, Brazil
- Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
- Graduate Program in Neuropsychiatry and Behavioral Sciences (Posneuro), Federal University of Pernambuco, Recife, Brazil
- Nursing Unit, Vitória Academic Center, Federal University of Pernambuco, Vitória de Santo Antão, Brazil
| |
Collapse
|
5
|
Visco DB, Manhães de Castro R, da Silva MM, Costa de Santana BJR, Bezerra Gouveia HJC, de Moura Ferraz MLR, de Albuquerque GL, Lacerda DC, de Vasconcelos DAA, Guzman Quevedo O, Toscano AE. Neonatal kaempferol exposure attenuates gait and strength deficits and prevents altered muscle phenotype in a rat model of cerebral palsy. Int J Dev Neurosci 2023; 83:80-97. [PMID: 36342836 DOI: 10.1002/jdn.10239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/09/2022] Open
Abstract
Cerebral palsy (CP) is characterized by brain damage at a critical period of development of the central nervous system, and, as a result, motor, behavioural and learning deficits are observed in those affected. Flavonoids such as kaempferol have demonstrated potential anti-inflammatory and neuroprotective properties for neurological disorders. This study aimed to assess the effects of neonatal treatment with kaempferol on the body development, grip strength, gait performance and morphological and biochemical phenotype of skeletal muscle in rats subjected to a model of CP. The groups were formed by randomly allocating male Wistar rats after birth to four groups as follows: C = control treated with vehicle, K = control treated with kaempferol, CP = CP treated with vehicle and CPK = CP treated with kaempferol. The model of CP involved perinatal anoxia and sensorimotor restriction of the hind paws during infancy, from the second to the 28th day of postnatal life. Treatment with kaempferol (1 mg/kg) was performed intraperitoneally during the neonatal period. Body weight and length, muscle strength, gait kinetics and temporal and spatial parameters were evaluated in the offspring. On the 36th day of postnatal life, the animals were euthanized for soleus muscle dissection. The muscle fibre phenotype was assessed using the myofibrillar ATPase technique, and the muscle protein expression was measured using the Western blot technique. A reduction in the impact of CP on body phenotype was observed, and this also attenuated deficits in muscle strength and gait. Treatment also mitigated the impact on muscle phenotype by preventing a reduction in the proportion of oxidative fibres and in the histomorphometric parameters in the soleus muscle of rats in the CP group. The results demonstrate that neonatal treatment with kaempferol attenuated gait deficits and impaired muscle strength and muscle maturation in rats subjected to a model of CP.
Collapse
Affiliation(s)
- Diego Bulcão Visco
- Laboratory of Neurofunctional, Department of Biological Science and Health, Federal University of Amapá, Macapá, Brazil.,Postgraduate Program in Nutrition (Posnutri), Health Sciences Center, Federal University of Pernambuco, Recife, Brazil.,Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
| | - Raul Manhães de Castro
- Postgraduate Program in Nutrition (Posnutri), Health Sciences Center, Federal University of Pernambuco, Recife, Brazil.,Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
| | - Márcia Maria da Silva
- Postgraduate Program in Nutrition (Posnutri), Health Sciences Center, Federal University of Pernambuco, Recife, Brazil.,Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
| | - Bárbara Juacy Rodrigues Costa de Santana
- Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Brazil.,Postgraduate Program in Neuropsychiatry and Behavioral Sciences (Posneuro), Federal University of Pernambuco, Recife, Brazil
| | - Henrique José Cavalcanti Bezerra Gouveia
- Postgraduate Program in Nutrition (Posnutri), Health Sciences Center, Federal University of Pernambuco, Recife, Brazil.,Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
| | | | - Glayciele Leandro de Albuquerque
- Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Brazil.,Postgraduate Program in Neuropsychiatry and Behavioral Sciences (Posneuro), Federal University of Pernambuco, Recife, Brazil
| | - Diego Cabral Lacerda
- Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
| | - Diogo Antonio Alves de Vasconcelos
- Postgraduate Program in Nutrition (Posnutri), Health Sciences Center, Federal University of Pernambuco, Recife, Brazil.,Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
| | - Omar Guzman Quevedo
- Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Brazil.,Instituto Tecnológico Superior de Tacámbaro, Tacámbaro, Mexico.,Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Mexico.,Postgraduate Program in Neuropsychiatry and Behavioral Sciences (Posneuro), Federal University of Pernambuco, Recife, Brazil
| | - Ana Elisa Toscano
- Postgraduate Program in Nutrition (Posnutri), Health Sciences Center, Federal University of Pernambuco, Recife, Brazil.,Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Brazil.,Nursing Unit, Vitória Academic Center, Federal University of Pernambuco, Vitória de Santo Antão, Brazil.,Postgraduate Program in Neuropsychiatry and Behavioral Sciences (Posneuro), Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
6
|
Fragoso J, Carvalho Jurema Santos G, da Silva HT, Loizon E, de Oliveira Nogueira Souza V, Vidal H, Guedes RCA, Costa-Silva JH, da Silva Aragão R, Pirola L, Leandro CG. Effects of maternal low-protein diet and spontaneous physical activity on the transcription of neurotrophic factors in the placenta and the brains of mothers and offspring rats. J Dev Orig Health Dis 2021; 12:505-512. [PMID: 32799949 DOI: 10.1017/s2040174420000756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Maternal protein restriction and physical activity can affect the interaction mother-placenta-fetus. This study quantified the gene expression of brain-derived neurotrophic factor (BDNF), neurothrophin 4, tyrosine kinase receptor B (TrkB/NTRK2), insulin-like growth factor (IGF-1), and insulin-like growth factor receptor (IGF-1r) in the different areas of mother's brain (hypothalamus, hippocampus, and cortex), placenta, and fetus' brain of rats. Female Wistar rats (n = 20) were housed in cages containing a running wheel for 4 weeks before gestation. According to the distance spontaneously traveled daily, rats were classified as inactive or active. During gestation, on continued access to the running wheel, active and inactive groups were randomized to receive normoprotein diet (18% protein) or a low-protein (LP) diet (8% protein). At day 20 of gestation, gene expression of neurotrophic factors was analyzed by quantitative polymerase chain reaction in different brain areas and the placenta. Dams submitted to a LP diet during gestation showed upregulation of IGF-1r and BDNF messenger RNA in the hypothalamus, IGF-1r and NTRK2 in the hippocampus, and BDNF, NTRK2, IGF-1 and IGF-1r in the cortex. In the placenta, there was a downregulation of IGF-1. In the brain of pups from mothers on LP diet, IGF-1r and NTRK2 were downregulated. Voluntary physical activity attenuated the effects of LP diet on IGF-1r in the hypothalamus, IGF-1r and NTRK2 in the hippocampus, IGF-1 in the placenta, and NTRK2 in the fetus' brain. In conclusion, both maternal protein restriction and spontaneous physical activity influence the gene expression of BDNF, NTRK2, IGF-1, and IGF-1r, with spontaneous physical activity being able to normalize in part the defects caused by protein restriction during pregnancy.
Collapse
Affiliation(s)
- Jéssica Fragoso
- Department of Nutrition, Federal University of Pernambuco, 50670-901Recife, PE, Brazil
- Department of Physical Education and Sports Science, Federal University of Pernambuco, 55608-680Vitória de Santo Antão, PE, Brazil
| | - Gabriela Carvalho Jurema Santos
- Department of Physical Education and Sports Science, Federal University of Pernambuco, 55608-680Vitória de Santo Antão, PE, Brazil
| | | | - Emmanuelle Loizon
- CarMeN (Cardiology, Metabolism and Nutrition) Laboratory, INSERM U1060, Lyon-1 University, South Lyon Medical Faculty, 69921Oullins, France
| | | | - Hubert Vidal
- CarMeN (Cardiology, Metabolism and Nutrition) Laboratory, INSERM U1060, Lyon-1 University, South Lyon Medical Faculty, 69921Oullins, France
| | | | - João Henrique Costa-Silva
- Department of Physical Education and Sports Science, Federal University of Pernambuco, 55608-680Vitória de Santo Antão, PE, Brazil
| | - Raquel da Silva Aragão
- Department of Physical Education and Sports Science, Federal University of Pernambuco, 55608-680Vitória de Santo Antão, PE, Brazil
| | - Luciano Pirola
- Department of Nutrition, Federal University of Pernambuco, 50670-901Recife, PE, Brazil
- CarMeN (Cardiology, Metabolism and Nutrition) Laboratory, INSERM U1060, Lyon-1 University, South Lyon Medical Faculty, 69921Oullins, France
| | - Carol Gois Leandro
- Department of Nutrition, Federal University of Pernambuco, 50670-901Recife, PE, Brazil
| |
Collapse
|
7
|
Yang Y, Lagisz M, Foo YZ, Noble DWA, Anwer H, Nakagawa S. Beneficial intergenerational effects of exercise on brain and cognition: a multilevel meta-analysis of mean and variance. Biol Rev Camb Philos Soc 2021; 96:1504-1527. [PMID: 33783115 DOI: 10.1111/brv.12712] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
Physical exercise not only helps to improve physical health but can also enhance brain development and cognition. Recent reports on parental (both maternal and paternal) effects raise the possibility that parental exercise may provide benefits to offspring through intergenerational inheritance. However, the general magnitude and consistency of parental exercise effects on offspring is still controversial. Additionally, empirical research has long overlooked an important aspect of exercise: its effects on variability in neurodevelopmental and cognitive traits. Here, we compiled data from 52 studies involving 4786 rodents (412 effect sizes) to quantify the intergenerational transmission of exercise effects on brain and cognition. Using a multilevel meta-analytic approach, we found that, overall, parental exercise showed a tendency for increasing their offspring's brain structure by 12.7% (albeit statistically non-significant) probably via significantly facilitating neurogenesis (16.5%). Such changes in neural anatomy go in hand with a significant 20.8% improvement in neurobehaviour (improved learning and memory, and reduced anxiety). Moreover, we found parental exercise significantly reduces inter-individual differences (i.e. reduced variance in the treatment group) in progeny's neurobehaviour by 10.2% (coefficient of variation ratio, lnCVR), suggesting the existence of an individual by intervention interaction. The positive effects of exercise are modulated by several covariates (i.e. moderators), such as the exercised parent's sex, offspring's sex, and age, mode of exercise, and exercise timing. In particular, parental forced exercise is more efficient than voluntary exercise at significantly improving offspring neurobehaviour (26.0%) and reducing its variability (14.2%). We observed larger effects when parental exercise started before pregnancy. However, exercising only during pregnancy also had positive effects. Mechanistically, exercise significantly upregulated brain-derived neurotrophic factor (BDNF) by 28.9%, vascular endothelial growth factor (VEGF) by 35.8%, and significantly decreased hippocampal DNA methylation by 3.5%, suggesting that brain growth factor cascades and epigenetic modifications can moderate the transmission of parental exercise effects. Collectively, by coupling mean with variance effects, our analyses draw a more integrated picture of the benefits that parental exercise has on offspring: not only does it improve offspring brain development and cognitive performance, but it also reduces inter-individual differences in cognition-related traits. We advocate that meta-analysis of variation together with the mean of a trait provides novel insights for old controversies as well as emerging new questions, opening up a new era for generating variance-based hypotheses.
Collapse
Affiliation(s)
- Yefeng Yang
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.,Department of Biosystems Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yong Zhi Foo
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Daniel W A Noble
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.,Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Hamza Anwer
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
8
|
Sanches EF, Dos Santos TM, Odorcyk F, Untertriefallner H, Rezena E, Hoeper E, Avila T, Martini AP, Venturin GT, da Costa JC, Greggio S, Netto CA, Wyse AT. Pregnancy swimming prevents early brain mitochondrial dysfunction and causes sex-related long-term neuroprotection following neonatal hypoxia-ischemia in rats. Exp Neurol 2021; 339:113623. [PMID: 33529673 DOI: 10.1016/j.expneurol.2021.113623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 10/22/2022]
Abstract
Neonatal hypoxia-ischemia (HI) is a major cause of cognitive impairments in infants. Antenatal strategies improving the intrauterine environment can have high impact decreasing pregnancy-derived intercurrences. Physical exercise alters the mother-fetus unity and has been shown to prevent the energetic challenge imposed by HI. This study aimed to reveal neuroprotective mechanisms afforded by pregnancy swimming on early metabolic failure and late cognitive damage, considering animals' sex as a variable. Pregnant Wistar rats were submitted to daily swimming exercise (20' in a tank filled with 32 °C water) during pregnancy. Neonatal HI was performed in male and female pups at postnatal day 7. Electron chain transport, mitochondrial mass and function and ROS formation were assessed in the right brain hemisphere 24 h after HI. From PND45, reference and working spatial memory were tested in the Morris water maze. MicroPET-FDG images were acquired 24 h after injury (PND8) and at PND60, following behavioral analysis. HI induced early energetic failure, decreased enzymatic activity in electron transport chain, increased production of ROS in cortex and hippocampus as well as caused brain glucose metabolism dysfunction and late cognitive impairments. Maternal swimming was able to prevent mitochondrial dysfunction and to improve spatial memory. The intergenerational effects of swimming were sex-specific, since male rats were benefited most. In conclusion, maternal swimming was able to affect the mitochondrial response to HI in the offspring's brains, preserving its function and preventing cognitive damage in a sex-dependent manner, adding relevant information on maternal exercise neuroprotection and highlighting the importance of mitochondria as a therapeutic target for HI neuropathology.
Collapse
Affiliation(s)
- E F Sanches
- Biochemistry Post-graduation Program, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Brazil; Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - T M Dos Santos
- Biochemistry Post-graduation Program, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Brazil; Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - F Odorcyk
- Biochemistry Post-graduation Program, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Brazil; Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - H Untertriefallner
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - E Rezena
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - E Hoeper
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - T Avila
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - A P Martini
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - G T Venturin
- Preclinical Research Center, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - J C da Costa
- Preclinical Research Center, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - S Greggio
- Preclinical Research Center, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - C A Netto
- Biochemistry Post-graduation Program, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Brazil; Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - A T Wyse
- Biochemistry Post-graduation Program, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Brazil; Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
9
|
Previous adaptation triggers distinct molecular pathways and modulates early and long-term neuroprotective effects of pregnancy swimming preventing neonatal hypoxia-ischemia damage in rats. Brain Res 2020; 1733:146722. [DOI: 10.1016/j.brainres.2020.146722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/15/2020] [Accepted: 02/07/2020] [Indexed: 02/08/2023]
|
10
|
Maternal physical activity prevents the overexpression of hypoxia-inducible factor 1-α and cardiorespiratory dysfunction in protein malnourished rats. Sci Rep 2019; 9:14406. [PMID: 31594995 PMCID: PMC6783408 DOI: 10.1038/s41598-019-50967-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022] Open
Abstract
Maternal physical activity attenuates cardiorespiratory dysfunctions and transcriptional alterations presented by the carotid body (CB) of rats. Rats performed physical activity and were classified as inactive/active. During gestation and lactation, mothers received either normoprotein (NP-17% protein) or low-protein diet (LP-8% protein). In offspring, biochemical serum levels, respiratory parameters, cardiovascular parameters and the mRNA expression of hypoxia-inducible factor 1-alpha (HIF-1α), tyrosine hydroxylase (TH) and purinergic receptors were evaluate. LP-inactive pups presented lower RF from 1st to 14th days old, and higher RF at 30 days than did NP-inactive and NP-active pups. LP-inactive pups presented with reduced serum protein, albumin, cholesterol and triglycerides levels and an increased fasting glucose level compared to those of NP-inactive and NP-active groups. LP and LP-inactive animals showed an increase in the cardiac variability at the Low-Frequency bands, suggesting a major influence of sympathetic nervous activity. In mRNA analyses, LP-inactive animals showed increased HIF-1α expression and similar expression of TH and purinergic receptors in the CB compared to those of NP groups. All these changes observed in LP-inactive pups were reversed in the pups of active mothers (LP-active). Maternal physical activity is able to attenuate the metabolic, cardiorespiratory and HIF-1α transcription changes induced by protein malnutrition.
Collapse
|
11
|
Maternal physical activity-induced adaptive transcriptional response in brain and placenta of mothers and rat offspring. J Dev Orig Health Dis 2019; 11:108-117. [PMID: 31203831 DOI: 10.1017/s2040174419000333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Maternal physical activity induces brain functional changes and neuroplasticity, leading to an improvement of cognitive functions, such as learning and memory in the offspring. This study investigated the effects of voluntary maternal physical activity on the gene expression of the neurotrophic factors (NTFs): BDNF, NTF4, NTRK2, IGF-1 and IGF-1r in the different areas of mother's brain, placenta and foetus brain of rats. Female Wistar rats (n = 15) were individually housed in voluntary physical activity cages, containing a running wheel, for 4 weeks (period of adaptation) before gestation. Rats were classified as inactive (I, n = 6); active (A, n = 4) and very active (VA, n = 5) according to daily distance spontaneously travelled. During gestation, the dams continued to have access to the running wheel. At the 20th day of gestation, gene expression of NTFs was analysed in different areas of mother's brain (cerebellum, hypothalamus, hippocampus and cortex), placenta and the offspring's brain. NTFs gene expression was evaluated using quantitative PCR. Very active mothers showed upregulation of IGF-1 mRNA in the cerebellum (36.8%) and NTF4 mRNA expression in the placenta (24.3%). In the cortex, there was a tendency of up-regulation of NTRK2 mRNA (p = 0.06) in the A and VA groups when compared to I group. There were no noticeable changes in the gene expression of NTFs in the offspring's brain. Our findings suggest the existence of a developmental plasticity induced by maternal physical activity in specific areas of the brain and placenta representing the first investment for offspring during development.
Collapse
|
12
|
Fragoso J, Lira ADO, Chagas GS, Lucena Cavalcanti CC, Beserra R, de Santana-Muniz G, Bento-Santos A, Martins G, Pirola L, da Silva Aragão R, Leandro CG. Maternal voluntary physical activity attenuates delayed neurodevelopment in malnourished rats. Exp Physiol 2017; 102:1486-1499. [DOI: 10.1113/ep086400] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 08/17/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Jéssica Fragoso
- Department of Nutrition; Federal University of Pernambuco; 50670-901 Recife PE Brazil
| | | | - Guilherme Souza Chagas
- Department of Physical Education and Sports Science, CAV; Federal University of Pernambuco; 55608-680 Recife PE Brazil
| | | | - Renata Beserra
- Department of Nutrition; Federal University of Pernambuco; 50670-901 Recife PE Brazil
| | | | - Adriano Bento-Santos
- Department of Physical Education and Sports Science, CAV; Federal University of Pernambuco; 55608-680 Recife PE Brazil
| | - Gerffeson Martins
- Department of Physical Education and Sports Science, CAV; Federal University of Pernambuco; 55608-680 Recife PE Brazil
| | - Luciano Pirola
- INSERM U1060, Lyon-1 University; South Lyon Medical Faculty; 69921 Oullins France
| | - Raquel da Silva Aragão
- Department of Physical Education and Sports Science, CAV; Federal University of Pernambuco; 55608-680 Recife PE Brazil
| | - Carol Góis Leandro
- Department of Nutrition; Federal University of Pernambuco; 50670-901 Recife PE Brazil
- Department of Physical Education and Sports Science, CAV; Federal University of Pernambuco; 55608-680 Recife PE Brazil
| |
Collapse
|