1
|
Argenbright CM, Bertlesman AM, Russell IM, Greer TL, Peng YB, Fuchs PN. The Fibromyalgia Pain Experience: A Scoping Review of the Preclinical Evidence for Replication and Treatment of the Affective and Cognitive Pain Dimensions. Biomedicines 2024; 12:778. [PMID: 38672134 PMCID: PMC11048409 DOI: 10.3390/biomedicines12040778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Fibromyalgia is a chronic, widespread pain disorder that is strongly represented across the affective and cognitive dimensions of pain, given that the underlying pathophysiology of the disorder is yet to be identified. These affective and cognitive deficits are crucial to understanding and treating the fibromyalgia pain experience as a whole but replicating this multidimensionality on a preclinical level is challenging. To understand the underlying mechanisms, animal models are used. In this scoping review, we evaluate the current primary animal models of fibromyalgia regarding their translational relevance within the affective and cognitive pain realms, as well as summarize treatments that have been identified preclinically for attenuating these deficits.
Collapse
Affiliation(s)
- Cassie M. Argenbright
- Department of Psychology and Biobehavioral Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Alysia M. Bertlesman
- Department of Psychology, The University of Texas at Arlington, Arlington, TX 76019, USA; (A.M.B.); (I.M.R.); (T.L.G.); (Y.B.P.)
| | - Izabella M. Russell
- Department of Psychology, The University of Texas at Arlington, Arlington, TX 76019, USA; (A.M.B.); (I.M.R.); (T.L.G.); (Y.B.P.)
| | - Tracy L. Greer
- Department of Psychology, The University of Texas at Arlington, Arlington, TX 76019, USA; (A.M.B.); (I.M.R.); (T.L.G.); (Y.B.P.)
| | - Yuan B. Peng
- Department of Psychology, The University of Texas at Arlington, Arlington, TX 76019, USA; (A.M.B.); (I.M.R.); (T.L.G.); (Y.B.P.)
| | - Perry N. Fuchs
- Department of Psychological Science, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| |
Collapse
|
2
|
Shabani M, Ranjbar H, Soti M, Naderi R. Central injection of abscisic acid attenuates mood disorders induced by subchronic stress in male mice. Brain Behav 2022; 12:e2796. [PMID: 36355391 PMCID: PMC9759152 DOI: 10.1002/brb3.2796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/10/2022] [Accepted: 10/08/2022] [Indexed: 11/12/2022] Open
Abstract
Stressful life increases the risk of mental and psychological disorders and cognitive deficits. Abscisic acid (ABA) is a plant hormone that has been recently discovered in mammalians. ABA is produced in response to stressful stimuli and it can reduce anxiety-like behaviors and depression and improve cognitive function. This study was designed to evaluate the effects of microinjection of ABA on depression, anxiety, passive avoidance learning and memory deficits induced by subchronic stress. ABA (10 and 15 μ $\umu $ g/mouse, i.c.v.) was administered one week after recovery period for 4 consecutive days. A three-session forced swimming test (FST) protocol for induction of subchronic stress was administered to the mice. Exploratory, anxiety-like behavior, depression and cognitive function were assessed 24 h after the last swim stress session. The results indicated that ABA (15 μ $\umu $ g/mouse) could ameliorate anxiety and depression induced by FST. In addition, ABA had no effect on the subchronic stress-induced cognitive impairments. Taken together, the results suggest that ABA could improve anxiety and depression induced by subchronic stress.
Collapse
Affiliation(s)
- Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Hoda Ranjbar
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Monavareh Soti
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Reyhaneh Naderi
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
3
|
Baskin V, Eroglu E, Harmanci N, Erol K. Antinociceptive, anxiolytic, and depression‐like effects of hydrogen sulfide, nitric oxide, and carbon monoxide in rats and the role of opioidergic and serotonergic systems in antinociceptive activity. Fundam Clin Pharmacol 2022; 36:674-686. [DOI: 10.1111/fcp.12763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 01/13/2022] [Accepted: 01/25/2022] [Indexed: 01/02/2023]
Affiliation(s)
- Veysel Baskin
- Faculty of Medicine, Department of Medical Pharmacology Eskişehir Osmangazi University Eskisehir Turkey
- Faculty of Medicine, Department of Medical Pharmacology Hitit University Corum Turkey
| | - Ezgi Eroglu
- Faculty of Medicine, Department of Medical Pharmacology Eskişehir Osmangazi University Eskisehir Turkey
- Faculty of Pharmacy, Department of Pharmacology Lokman Hekim University Ankara Turkey
| | - Nusin Harmanci
- Faculty of Medicine, Department of Medical Pharmacology Eskişehir Osmangazi University Eskisehir Turkey
| | - Kevser Erol
- Faculty of Medicine, Department of Medical Pharmacology Eskişehir Osmangazi University Eskisehir Turkey
- Faculty of Medicine, Department of Medical Pharmacology Bahçeşehir University Istanbul Turkey
| |
Collapse
|
4
|
Shabani M, Naderi R. Phytohormone abscisic acid elicits positive effects on harmaline-induced cognitive and motor disturbances in a rat model of essential tremor. Brain Behav 2022; 12:e2564. [PMID: 35591769 PMCID: PMC9120731 DOI: 10.1002/brb3.2564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 01/13/2022] [Accepted: 01/28/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Essential tremor (ET) as a neurological disorder is accompanied by cognitive and motor disturbances. Despite the high incidence of ET, the drug treatment of ET remains unsatisfactory. Recently, abscisic acid (ABA) has been reported to have positive neurophysiological effects in mammals. Here, the effects of ABA on harmaline-induced motor and cognitive impairments were investigated in rats. METHODS Male Wistar rats weighing 120-140 g were divided into control, harmaline (30 mg/kg, ip), ABA vehicle (DMSO+normal saline), and ABA (10 μg/rat, icv, 30 min before harmaline injection) groups. Exploratory, balance and motor performance, anxiety, and cognitive function were assessed using footprint, open field, wire grip, rotarod, and shuttle box tests. RESULTS The results indicated that ABA (10 μg/rat) can improve harmaline-induced tremor in rats. The administration of ABA significantly increased time spent on wire grip and rotarod. In addition, ABA had a promising effect against the cognitive impairments induced by harmaline. CONCLUSION Taken together, ABA has positive effects on locomotor and cognitive impairments induced by tremor. However, further studies are required to determine the exact mechanisms of ABA on the ET.
Collapse
Affiliation(s)
- Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Reyhaneh Naderi
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
5
|
Razavinasab M, Parsania S, Nikootalab M, Khaleghi M, Saleki K, Banazadeh M, Shabani M. Early environmental enrichment prevents cognitive impairments and developing addictive behaviours in a mouse model of prenatal psychological and physical stress. Int J Dev Neurosci 2022; 82:72-84. [PMID: 34845740 DOI: 10.1002/jdn.10161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/05/2021] [Accepted: 11/19/2021] [Indexed: 11/12/2022] Open
Abstract
Environmental enrichment (EE) has shown remarkable effects in improving cognition and addictive behaviour. We tested whether EE could help recover from prenatal stress exposure. Mature Swiss Webster male and virgin female mice were placed together until vaginal plugs were detectable. Next, pregnant rodents were randomized into the control, physically and psychologically stressed groups. The application of stress was initiated on the 10th day of pregnancy and persisted for a week to induce stress in the mice. Open field and elevated plus-maze (EPM) tests were utilized as explorative and anxiety assays, respectively. A passive avoidance shuttle-box test was carried out to check anxiety-modulated behaviour. Morris water maze (MWM) test was undertaken to evaluate spatial learning and memory. Conditioned place preference (CPP) test was selected for evaluation of tendency to morphine consumption. Our results showed that prenatal stress elevated anxiety-like behaviour in the offspring which EE could significantly alleviate after weaning. We also found a higher preference for morphine use in the physical stress and psychological stress offspring group. However, no difference was observed among the genders. Application of EE for the stress group improved several parameters of the cognitive behaviour significantly. Although prenatal stress can lead to detrimental behavioural and cognitive outcomes, it can in part be relieved by early exposure to EE. However, some outcomes linked to prenatal stress exposure may not be diminished by EE therapy. In light of such irreversible effects, large-scale preventive actions promoting avoidance from stress during pregnancy should be advised.
Collapse
Affiliation(s)
- Moazamehosadat Razavinasab
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahnaz Parsania
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahdi Nikootalab
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mina Khaleghi
- Department of Physiology, Kerman University of Medical Sciences, Kerman, Iran
| | - Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Banazadeh
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
6
|
Brum ES, Becker G, Fialho MFP, Oliveira SM. Animal models of fibromyalgia: What is the best choice? Pharmacol Ther 2021; 230:107959. [PMID: 34265360 DOI: 10.1016/j.pharmthera.2021.107959] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/11/2022]
Abstract
Fibromyalgia (FM) is a complex syndrome, with an indefinite aetiology and intricate pathophysiology that affects 2 - 3% of the world population. From the beginning of the 2000s, experimental animal models have been developed to mimic clinical FM and help obtain a better understanding of the relevant neurobiology. These animal models have enabled a broad study of FM symptoms and mechanisms, as well as new treatment strategies. Current experimental FM models include the reserpine-induced systemic depletion of biogenic amines, muscle application of acid saline, and stress-based (cold, sound, or swim) approaches, among other emerging models. FM models should: (i) mimic the cardinal symptoms and complaints reported by FM patients (e.g., spontaneous nociception, muscle pain, hypersensitivity); (ii) mimic primary comorbidities that can aggravate quality of life and lead to worse outcomes (e.g., fatigue, sleep disturbance, depression, anxiety); (iii) mimic the prevalent pathological mechanisms (e.g., peripheral and central sensitization, inflammation/neuroinflammation, change in the levels of the excitatory and inhibitory neurotransmitters); and (iv) demonstrate a pharmacological profile similar to the clinical treatment of FM. However, it is difficult for any one of these models to include the entire spectrum of clinical FM features once even FM patients are highly heterogeneous. In the past six years (2015 - 2020), a wide range of experimental FM studies has amounted to the literature reinforcing the need for an updated review. Here we have described, in detail, several approaches used to experimentally study FM, with a focus on recent studies in the field and in previously less discussed mechanisms. We highlight each model's challenges, limitations, and future directions, intending to help preclinical researchers establish the correct experimental FM model to use depending on their goals.
Collapse
Affiliation(s)
- Evelyne Silva Brum
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Gabriela Becker
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Maria Fernanda Pessano Fialho
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil; Department of Biochemistry and Molecular Biology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
7
|
Yao L, Cai K, Mei F, Wang X, Fan C, Jiang H, Xie F, Li Y, Bai L, Peng K, Deng W, Lai S, Wang J. Urine Nitric Oxide Is Lower in Parents of Autistic Children. Front Psychiatry 2021; 12:607191. [PMID: 34093255 PMCID: PMC8175662 DOI: 10.3389/fpsyt.2021.607191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 04/16/2021] [Indexed: 01/15/2023] Open
Abstract
Parents raising children with autism spectrum disorder (ASD) usually carry on their daily life under tremendous stress, but limited empirical research has been devoted to this population. It is known that parents' health status directly impacts therapeutic outcome of ASD children. As an important regulator in cardiovascular, nervous and immune systems, nitric oxide (NO) levels haven't been reported in parents of ASD children yet. In this study, we measured urine nitrite and nitrate from 43 ASD parents (ASD-P), and 43 healthy adults in the same range of age (Control) who didn't have any ASD descendants. Comparison between the ASD-P and Control groups showed that NO 2 - , NO 3 - , and NO 2 - / NO 3 - were all significantly lower in the ASD-P group. Analysis on the interaction effect of sex and group indicated that urine NO 3 - of mothers in ASD-P was lower than that in females of the Control group, but no significant difference was observed between males in both groups. It is for the first time that urine nitric oxide metabolites (nitrite, nitrate) levels were precisely reported to differentiate parents of autistic children from other adults without ASD descendants. This phenomenon suggests that parents (especially mothers) of autistic children might have experienced more mental and physical stressors, which led to decreased NO levels during metabolism. Further investigations are necessary to uncover the etiology of low urine NO among parents of autistic children.
Collapse
Affiliation(s)
- Lulu Yao
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China.,Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, China
| | - Kun Cai
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Fanghua Mei
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Xiaohua Wang
- School of Social Development and Public Policy, Beijing Normal University, Beijing, China
| | - Chuangang Fan
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Hong Jiang
- Department of Child Health Care, Huangshi Maternity and Child Health Care Hospital, Wuhan, China
| | - Fang Xie
- Department of Child Health Care, Huangshi Maternity and Child Health Care Hospital, Wuhan, China
| | - Ying Li
- Department of Child Health Care, Huangshi Maternity and Child Health Care Hospital, Wuhan, China
| | - Lu Bai
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China.,Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, China
| | - Kang Peng
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China.,Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, China
| | - Wenwen Deng
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China.,Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, China
| | - Shenghan Lai
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jun Wang
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China.,Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, China
| |
Collapse
|
8
|
Yang CX, Wang Y, Lu Q, Lian YN, Anto EO, Zhang Y, Wang W. Chronic stress influences nociceptive sensitivity of female rats in an estrous cycle-dependent manner. Stress 2020; 23:386-392. [PMID: 31672079 DOI: 10.1080/10253890.2019.1687683] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Exposure to chronic stress can influence nociception and further induce hyperalgesia. Whether stress modulation of pain in female animals occurs in an estrous cycle-specific manner is still unclear. We profiled the changes in nociception (thermal, mechanical, formalin-evoked acute and inflammatory pain) of female Sprague-Dawley rats after treatment with chronic unpredictable mild stress (CUMS) and investigated whether these changes occur in an estrous cycle-dependent manner. The results showed that CUMS female rats exhibited a lower mechanical withdrawal threshold in proestrus and estrus, a longer formalin-evoked licking time in metestrus and diestrus, but no changes in the latency time on the tail-flick test. The present study findings suggest that chronic stress induces mechanical and formalin-evoked acute hyperalgesia of female rats in an estrous cycle-dependent manner.SUMMARYOur studies showed that chronic stress increased nociceptive sensitivity of female rats. Furthermore females had different stress-induced pain responses in different estrous phases: mechanical hyperalgesia in proestrus and estrus, formalin-evoked acute hyperalgesia in metestrus and diestrus.
Collapse
Affiliation(s)
- Chun-Xiao Yang
- Department of Neurology of second Affiliated Hospital, Harbin Medical University, Harbin, P. R. China
| | - Yi Wang
- Biotechnology Experimental Teaching Center, Harbin Medical University, Harbin, P. R. China
| | - Qi Lu
- Department of Physiology, Harbin Medical University, Harbin, P. R. China
| | - Yan-Na Lian
- Medical College, Zhejiang University, Hangzhou, P. R. China
| | - Enoch Odame Anto
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Ying Zhang
- Department of Physiology, Harbin Medical University, Harbin, P. R. China
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Wei Wang
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| |
Collapse
|
9
|
Nikbakhtzadeh M, Borzadaran FM, Zamani E, Shabani M. Protagonist Role of Opioidergic System on Post-Traumatic Stress Disorder and Associated Pain. Psychiatry Investig 2020; 17:506-516. [PMID: 32492768 PMCID: PMC7324730 DOI: 10.30773/pi.2020.0002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Post-traumatic stress disorder (PTSD) and chronic pain often co-occur. Studies have shown an interaction between pain and PTSD. In this narrative review, we aim to support conducting comprehensive studies by describing PTSD, pain and determining whether opioidergic system, its agonist and antagonist manipulation could positively or negatively affect PTSD symptoms and concurrent pain. METHODS Term searches was done in Google Scholar, Scopus, ScienceDirect, Web of Science and PubMed databases as well as hand searching in key resource journals from 1979-2019. RESULTS There are a lot of contradictions and disputes when endogenous opioidergic system and opioidergic antagonist system are studied in PTSD patients. Exogenous morphine administration in PTSD patients can decrease the symptoms of PTSD but it doesn't have a pain reduction effect to an acceptable level. Beta-endorphin as an endogenous opioid is effective in pain reduction in the moment of events but after minutes to hours, the endorphins withdrawal syndrome leads to exaggerated intrusive thoughts and flashbacks of PTSD, which exacerbate the pain. It has also been shown that naloxone, as an opioidergic antagonist, can reduce or increase the PTSD symptoms and its associated pain. CONCLUSION Data suggest different roles of opioidergic system and their antagonist in pain control and mood in PTSD. However, further investigations need to be done in order to reveal the role of endogenous opioidergic system and opioidergic antagonist system as a mediator in PTSD patients suffering from acute or chronic pain.
Collapse
Affiliation(s)
- Marjan Nikbakhtzadeh
- Department of Physiology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Fatemeh Mohtashami Borzadaran
- Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Zamani
- Department of Physiology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Shabani
- Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
10
|
Nazeri M, Nezhadi A, Shabani M. Role of Opioid System in Empathy-like Behaviours in Rats. ADDICTION & HEALTH 2020; 11:216-222. [PMID: 32206214 PMCID: PMC7073811 DOI: 10.22122/ahj.v11i4.243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background Empathy is defined as the ability to simulate the mental states of others. Recent studies have demonstrated empathy-like behaviors in other animals including rats and mice. The objective of the current study was to evaluate the effect of acute administration of morphine and naloxone on cognition and nociception changes following observing conspecifics undergoing nociceptive stimulus. Methods Adult male Wistar rats were used (n = 8 for each group). One cagemate received formalin injection into the hindpaw five times within a nine-day period and the other cagemate observed the pain while being pretreated with saline, morphine, or naloxone [10 mg/kg, intraperitoneal (i.p.)]. Pain behaviors, anxiety-like behaviour, locomotion, balance and muscle strength were evaluated in the observer animals. Findings Observing a cagemate in pain increased anxiety-like behavior and reduced thermal pain threshold in the observer animals. Administration of morphine reversed these effects and naloxone did not affect the responses. Conclusion Results of the current study reveal an important role for opioid receptors (ORs) in empathy for pain, so that activation of this system dampens the empathy-like responses.
Collapse
Affiliation(s)
- Masoud Nazeri
- Department of Neuroscience and Basic Sciences, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Akram Nezhadi
- Department of Neuroscience and Basic Sciences, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mohammad Shabani
- Department of Neuroscience AND Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
11
|
Mohammadi F, Ahmadi-Zeidabadi M, Nazeri M, Ghasemi A, Shabani M. Nitric oxide modulates cognitive, nociceptive and motor functions in a rat model of empathy. Int J Neurosci 2020; 130:865-874. [DOI: 10.1080/00207454.2019.1707823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Fatemeh Mohammadi
- Intracellular Recording Lab, Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Meysam Ahmadi-Zeidabadi
- Intracellular Recording Lab, Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoud Nazeri
- Oral and Dental Diseases Research Center, School of Dentistry, Kerman University of Medical Sciences, Kerman, Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Shabani
- Intracellular Recording Lab, Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
12
|
Nazeri M, Zarei MR, Pourzare AR, Ghahreh-Chahi HR, Abareghi F, Shabani M. Evidence of Altered Trigeminal Nociception in an Animal Model of Fibromyalgia. PAIN MEDICINE 2019; 19:328-335. [PMID: 28505350 DOI: 10.1093/pm/pnx114] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objective Fibromyalgia (FM) is a debilitating chronic condition that significantly affects quality of life. A strong association has been demonstrated between FM and chronic pain in the trigeminal region in clinical studies. This study was performed to evaluate the response to acute and chronic noxious stimuli applied to the facial region. Methods Adult male Wistar rats (250-270 g, N = 10 for each group) were used in the current study. A subchronic swim stress model was used as the animal model of FM. Anxiety-like behaviors and response to acute and chronic noxious stimuli were assayed using the elevated plus maze, eye wiping test, and orofacial formalin test, respectively. Balance and motor function were evaluated using rotarod and wire grip tests. Results An increased anxiety-like behavior was observed in swim stress rats in comparison with control and sham subjects. Response to acute and chronic noxious stimuli in the trigeminal region was increased in the stressed rats. Motor and balance function were not altered following stress. Conclusions Results of the current study demonstrated a hyperalgesic state in the trigeminal region in a possible animal model of FM. This study provides a reliable animal model for further research on the possible mechanisms of orofacial pain in FM.
Collapse
Affiliation(s)
| | | | | | | | | | - Mohammad Shabani
- Neurophysiology and Patch Clamp Laboratory, Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
13
|
Alvarado BA, Lemus M, Montero S, Melnikov V, Luquín S, García-Estrada J, Roces de Álvarez-Buylla E. Nitric oxide in the nucleus of the tractus solitarius is involved in hypoglycemic conditioned response. Brain Res 2017; 1667:19-27. [PMID: 28483509 DOI: 10.1016/j.brainres.2017.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/31/2017] [Accepted: 04/26/2017] [Indexed: 10/19/2022]
Abstract
The repeated injection of insulin (unconditioned stimulus, UCS) immediately followed by exposure to sensory stimulation (e.g. sound or odor; conditioned stimulus, CS) results in a learned conditioned reflex in which the exposure to the CS alone lowers blood glucose. The brain regions participating in this hypoglycemic Pavlovian response remain unknown. Here we investigate if nitric oxide (NO) in the nucleus tractus solitarius (NTS), a nucleus known to be involved in glucose homeostasis, participates in this hypoglycemic reflex. Insulin injections (UCS) were paired with exposure to menthol odor (CS). After 8-10 reinforcements (4-5days training), rats acquire the learned hypoglycemic response. An increase in c-Fos expression was observed in the NTS, the ventrolateral hypothalamic nucleus (VLH) and other brain regions of conditioned rats. Microinjections of 3-(5'-hydroxymethyl-2'furyl)-1-benzyl indazole (YC-1) a stimulator of soluble guanylate cyclase (sGC) into NTS before the UCS accelerated the acquisition of the learned hypoglycemic response; 5-6 reinforcement produced pronounced glucose drop when exposed to the CS. In contrast, an inhibitor of NO synthase (NOS) Nω-Nitro-l-arginine methyl ester (L-NAME) in the NTS prolonged the required training period (11-15 reinforcements) to obtain the hypoglycemic reflex, and reduced the glycemic response. The number of c-Fos expressing cells in the NTS and VLH in rats receiving YC-1was significantly higher than that observed in rats receiving L-NAME. These findings suggest that NO-cGMP-PKG signaling in the NTS can modify the acquisition of conditioned hypoglycemia, and suggests that this nucleus directly participates in this reflex.
Collapse
Affiliation(s)
- Beatriz A Alvarado
- Department of Neuroendocrinology, University Center of Biomedical Research, Colima University, Colima, Mexico
| | - Mónica Lemus
- Department of Neuroendocrinology, University Center of Biomedical Research, Colima University, Colima, Mexico
| | - Sergio Montero
- Department of Neuroendocrinology, University Center of Biomedical Research, Colima University, Colima, Mexico; Faculty of Medicine, Colima University, Colima, Mexico
| | | | - Sonia Luquín
- Department of Neurosciences, University Center of Health Sciences, Guadalajara University, Guadalajara, Mexico
| | - Joaquín García-Estrada
- Department of Neurosciences, University Center of Health Sciences, Guadalajara University, Guadalajara, Mexico
| | | |
Collapse
|
14
|
Nazeri M, Ebrahimi A, Aghaei I, Ghotbi Ravandi S, Shabani M. Psychological stress has a higher rate of developing addictive behaviors compared to physical stress in rat offspring. EXCLI JOURNAL 2017; 16:903-913. [PMID: 28900372 PMCID: PMC5579401 DOI: 10.17179/excli2016-685] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 06/09/2017] [Indexed: 01/01/2023]
Abstract
Prenatal stress could have great influence on development of offspring and might alter cognitive function and other physiological processes of children. The current study was conducted to study the effect of physical or psychological prenatal stress on addictive and anxiety-like behavior of male and female offspring during their adolescence period (postnatal day (PND) 40). Adult female rats were exposed to physical (swimming) or psychological (observing another female rat swimming) stress from day six of gestation for 10 days. Male and female offspring were assayed for anxiety-like behavior, motor and balance function and morphine conditioned place preference using the open field, elevated plus maze (EPM), rotarod and wire grip assay and conditioned place preference. Offspring in both physical and psychological prenatal stress groups demonstrated significant increase in anxiety-like behavior in EPM paradigm, but no alterations were observed in motor and balance function of animals. Offspring in the psychological prenatal stress group had an increased preference for morphine in comparison to control and physical prenatal stress groups. Results of the current study demonstrated that animals exposed to psychological stress during fetal development are at a higher risk of developing addictive behaviors. Further research might elucidate the exact mechanisms involved to provide better preventive and therapeutic interventions.
Collapse
Affiliation(s)
- Masoud Nazeri
- Department of Oral Medicine and Chronic Headache and Facial Pain Clinic, School of Dentistry, Kerman, IranUniversity of Medical Sciences, Kerman, Iran
| | - Arezoo Ebrahimi
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Iraj Aghaei
- Social Determinants of Health Research Center, Gilan University of Medical Sciences, Rasht, Iran
| | - Samaneh Ghotbi Ravandi
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
15
|
Nitric oxide pathway presumably does not contribute to antianxiety and memory retrieval effects of losartan. Behav Pharmacol 2017; 28:420-427. [PMID: 28541956 DOI: 10.1097/fbp.0000000000000311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Nitric oxide (NO) and angiotensin (AT) receptors have demonstrated well-established interactions in various physiological phenomena. AT1 receptors can play a part in stress-induced activation of the hypothalamic-pituitary-adrenal axis; also, angiotensinergic neurotransmission plays a pivotal role in stress-evoked physiological responses. On the basis of the stress-modulating characteristics of NO, AT1, and AT2 receptors, the present study evaluated the roles of NO and AT1 receptors in the attenuation of stress-induced anxiety-like behaviors after administration of losartan, an AT1 antagonist. Male Wistar rats were exposed to the communication stress box, using a novel method to induce physical or emotional stress, and losartan (10 mg/kg), losartan+L-NG-nitroargininemethyl ester (L-NAME), L-NAME (1, 10, and 100 mg/kg), and normal saline-treated groups were compared. Losartan had reduced behavioral changes induced by both types of stressor and enhanced memory retrieval. Anxiety-like behaviors were significantly attenuated by administration of losartan, to a greater extent in the emotional rather than physical stress group. None of the injected dosages of L-NAME reversed the antianxiety and memory retrieval effects of losartan. Our results indicate that losartan probably improves memory retrieval and lessens anxiety-like behaviors through mechanisms other than the NO pathway.
Collapse
|
16
|
Effects of fluoxetine on changes of pain sensitivity in chronic stress model rats. Neurosci Lett 2017; 651:16-20. [PMID: 28461139 DOI: 10.1016/j.neulet.2017.04.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 12/28/2022]
Abstract
Exposure to stress could facilitate or inhibit pain responses (stress-induced hyperalgesia or hypoalgesia, respectively). Fluoxetine is a selective serotonin (5-HT) reuptake inhibitor antidepressant. There have been contradictory reports on whether fluoxetine produces antinociceptive effects. The purpose of this study was to elucidate changes in pain sensitivity after chronic stress exposure, and the effects of fluoxetine on these changes. We measured thermal, mechanical, and formalin-induced acute and inflammatory pain by using the tail-flick, von Frey, and formalin tests respectively. The results showed that rats exposed to chronic stress exhibited thermal and formalin-induced acute and inflammatory hypoalgesia and transient mechanical hyperalgesia. Furthermore, fluoxetine promoted hypoalgesia in thermal and inflammatory pain and induced mechanical hyperalgesia. Our results indicate that the 5-HT system could be involved in hypoalgesia of thermal and inflammatory pain and induce transient mechanical hyperalgesia after stress exposure.
Collapse
|
17
|
Masoumi-Ardakani Y, Mahmoudvand H, Mirzaei A, Esmaeilpour K, Ghazvini H, Khalifeh S, Sepehri G. The effect of Elettaria cardamomum extract on anxiety-like behavior in a rat model of post-traumatic stress disorder. Biomed Pharmacother 2017; 87:489-495. [PMID: 28073098 DOI: 10.1016/j.biopha.2016.12.116] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/17/2016] [Accepted: 12/27/2016] [Indexed: 11/19/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating psychiatric condition which develops in 6-8% of the general population. Current standard pharmacological treatments for PTSD cannot be widely used due to having various side effects. Nowadays, various pharmacological properties have been related to Elettaria cardamomum L. (family of Zingiberaceae). The present study aims to evaluate the efficacy of E. cardamomum methanolic extract on anxiety-like behavior in a rat model of PTSD. Adult male Wistar rats (200-250gr) were used in this study. The rats underwent single prolonged stress (SPS) or control and intraperitoneally received either saline or different dosages (200, 400, and 800mg/kg) of E. cardamomum methanolic extract before and after stress sessions. Moreover, open field, elevated plus-maze, and rotarod tests were used to evaluate locomotion and anxiety-like behavior in the rats. Findings demonstrated that E. Cardamomum methanolic extract, particularly at the dose of 400mg/kg, significantly (P<0.05) improved anxiety-like behavior in a rat model of PTSD, as examined by the open field, elevated plus-maze, and rotarod tests. Administration of E. cardamomum methanolic extract after stress might help to prevent the formation of anxiety-like behavior in the animals. However, further studies are requiredto clarify the exact mechanisms involved.
Collapse
Affiliation(s)
- Yaser Masoumi-Ardakani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Mahmoudvand
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Amin Mirzaei
- Department of Biology, Fars Science and Research Branch, Islamic Azad University, Shiraz, Iran
| | - Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman Univerity of Medical Sciences, Kerman, Iran
| | - Hamed Ghazvini
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman Univerity of Medical Sciences, Kerman, Iran
| | - Solmaz Khalifeh
- Medical Genomics Research Center and School of Advanced, Sciences in Medicine, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Gholamreza Sepehri
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
18
|
Abbassian H, Esmaeili P, Tahamtan M, Aghaei I, Vaziri Z, Sheibani V, Whalley BJ, Shabani M. Cannabinoid receptor agonism suppresses tremor, cognition disturbances and anxiety-like behaviors in a rat model of essential tremor. Physiol Behav 2016; 164:314-20. [DOI: 10.1016/j.physbeh.2016.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 11/25/2022]
|
19
|
Nazeri M, Shabani M, Parsania S, Golchin L, Razavinasab M, Abareghi F, Kermani M. Simultaneous impairment of passive avoidance learning and nociception in rats following chronic swim stress. Adv Biomed Res 2016; 5:93. [PMID: 27308265 PMCID: PMC4908791 DOI: 10.4103/2277-9175.183141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/23/2014] [Indexed: 01/05/2023] Open
Abstract
Background: Stress can alter response to nociception. Under certain circumstances stress enhances nociception, a phenomenon which is called stress-induced hyperalgesia (SIH). While nociception has been studied in this paradigm, possible alterations occurring in passive avoidance (PA) learning after exposing rats to this type of stress has not been studied before. Materials and Methods: In the current study, we evaluated the effect of chronic swim stress (FS) or sham swim (SS) on nociception in both spinal (tail-flick) and supraspinal (53.5°C hot-pate) levels. Furthermore, PA task was performed to see whether chronic swim stress changes PA learning or not. Mobility of rats and anxiety-like behavior were assessed using open-field test (OFT). Results: Supraspinal pain response was altered by swim stress (hot-plate test). PA learning was impaired by swim stress, rats in SS group did not show such impairments. Rats in the FS group showed increased mobility (rearing, velocity, total distant moved (TDM) and decreased anxiety-like behavior (time spent in center and grooming) compared to SS rats. Conclusions: This study demonstrated the simultaneous impairment of PA and nociception under chronic swim stress, whether this is simply a co-occurrence or not is of special interest. This finding may implicate a possible role for limbic structures, though this hypothesis should be studied by experimental lesions in different areas of rat brain to assess their possible role in the pathophysiology of SIH.
Collapse
Affiliation(s)
- Masoud Nazeri
- Department of Neuroscience, Neuroscience Research Center, Institute of Neuropharmacology, Kerman, Iran; Department of Neuroscience, Medical Students Research Committee, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Shabani
- Department of Neuroscience, Neuroscience Research Center, Institute of Neuropharmacology, Kerman, Iran
| | - Shahrnaz Parsania
- Department of Neuroscience, Neuroscience Research Center, Institute of Neuropharmacology, Kerman, Iran
| | - Leila Golchin
- Department of Neuroscience, Neuroscience Research Center, Institute of Neuropharmacology, Kerman, Iran
| | | | - Fatemeh Abareghi
- Department of Neuroscience, Medical Students Research Committee, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Moein Kermani
- Department of Neuroscience, Medical Students Research Committee, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
20
|
Psychological or physical prenatal stress differentially affects cognition behaviors. Physiol Behav 2015; 142:155-60. [PMID: 25668515 DOI: 10.1016/j.physbeh.2015.02.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 01/21/2015] [Accepted: 02/06/2015] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Prenatal stress is proposed as a major risk factor in the development of cognitive impairments in the offspring. The objective of the current study was to evaluate the effect of prenatal physical or psychological stress on the motor and cognitive functions of male and female offspring. METHODS Adult female rats were stressed during their conception using a novel method to induced whether physical or psychological stress. Animal offspring were then kept until adulthood. Elevated plus maze (EPM) was used to evaluate their anxiety-like behavior. Rotarod and wire grip were used to evaluate muscle strength and balance function. Morris water maze (MWM) and passive avoidance (PA) learning and memory paradigm were used to evaluate the cognitive function of the offspring. RESULTS Female offspring of both physical and psychological stress had an increased anxiety-like behavior in the EPM test in comparison to female control rats. Balance function was impaired in physical stressed female offspring in comparison to the control and male offspring. Muscle strength was reduced in physical male and female offspring. Both male and female offspring groups that underwent prenatal physical and psychological stress had an impaired spatial learning and memory. PA learning and memory were impaired in both male and female offspring except for the psychological stress female offspring in PA learning. CONCLUSION Results of our study revealed that prenatal physical or psychological stress have different effects on motor and cognitive functions of the offspring. Male and female offspring were differentially affected by prenatal stress. We suggest more studies to evaluate the role of sex hormones on the effects of prenatal physical or psychological stress on cognitive and motor functions of the offspring.
Collapse
|
21
|
Chen HJC, Spiers JG, Sernia C, Lavidis NA. Response of the nitrergic system to activation of the neuroendocrine stress axis. Front Neurosci 2015; 9:3. [PMID: 25653586 PMCID: PMC4300918 DOI: 10.3389/fnins.2015.00003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/05/2015] [Indexed: 12/19/2022] Open
Abstract
Exposure to stressful stimuli causes activation of the hypothalamic-pituitary-adrenal axis which rapidly releases high concentrations of glucocorticoid stress hormones, resulting in increased cellular metabolism and spontaneous oxygen and nitrogen radical formation. High concentrations of nitrogen radicals, including nitric oxide, cause damage to cellular proteins in addition to inhibiting components of the mitochondrial transport chain, leading to cellular energy deficiency. During stress exposure, pharmacological inhibition of nitric oxide production reduces indicators of anxiety- and depressive-like behavior in animal models. Therefore, the purpose of this review is to present an overview of the current literature on stress-evoked changes in the nitrergic system, particularly within neural tissue.
Collapse
Affiliation(s)
| | - Jereme G Spiers
- School of Biomedical Sciences, The University of Queensland Brisbane, QLD, Australia
| | - Conrad Sernia
- School of Biomedical Sciences, The University of Queensland Brisbane, QLD, Australia
| | - Nickolas A Lavidis
- School of Biomedical Sciences, The University of Queensland Brisbane, QLD, Australia
| |
Collapse
|