1
|
Haubrich J, Bernabo M, Baker AG, Nader K. Impairments to Consolidation, Reconsolidation, and Long-Term Memory Maintenance Lead to Memory Erasure. Annu Rev Neurosci 2020; 43:297-314. [PMID: 32097575 DOI: 10.1146/annurev-neuro-091319-024636] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An enduring problem in neuroscience is determining whether cases of amnesia result from eradication of the memory trace (storage impairment) or if the trace is present but inaccessible (retrieval impairment). The most direct approach to resolving this question is to quantify changes in the brain mechanisms of long-term memory (BM-LTM). This approach argues that if the amnesia is due to a retrieval failure, BM-LTM should remain at levels comparable to trained, unimpaired animals. Conversely, if memories are erased, BM-LTM should be reduced to resemble untrained levels. Here we review the use of BM-LTM in a number of studies that induced amnesia by targeting memory maintenance or reconsolidation. The literature strongly suggests that such amnesia is due to storage rather than retrieval impairments. We also describe the shortcomings of the purely behavioral protocol that purports to show recovery from amnesia as a method of understanding the nature of amnesia.
Collapse
Affiliation(s)
- Josué Haubrich
- Department of Psychology, McGill University, Montreal, Quebec H3A 1B1, Canada;
| | - Matteo Bernabo
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Andrew G Baker
- Department of Psychology, McGill University, Montreal, Quebec H3A 1B1, Canada;
| | - Karim Nader
- Department of Psychology, McGill University, Montreal, Quebec H3A 1B1, Canada;
| |
Collapse
|
2
|
Cuevas K, Sheya A. Ontogenesis of learning and memory: Biopsychosocial and dynamical systems perspectives. Dev Psychobiol 2018; 61:402-415. [PMID: 30575962 DOI: 10.1002/dev.21817] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 10/12/2018] [Accepted: 10/31/2018] [Indexed: 12/16/2022]
Abstract
In this article, we review recent empirical and theoretical work on infant memory development, highlighting future directions for the field. We consider the state of the field since Carolyn Rovee-Collier's call for developmental scientists to "shift the focus from what to why," emphasizing the function of infant behavior and the value of integrating fractionized, highly specialized subfields. We discuss functional approaches of early learning and memory, including ecological models of memory development and relevant empirical work in human and non-human organisms. Ontogenetic changes in learning and memory occur in developing biological systems, which are embedded in broader socio-cultural contexts with shifting ecological demands that are in part determined by the infants themselves. We incorporate biopsychosocial and dynamical systems perspectives as we analyze the state of the field's integration of multiple areas of specialization to provide more holistic understanding of the contributing factors and underlying mechanisms of the development of memory.
Collapse
Affiliation(s)
- Kimberly Cuevas
- Department of Psychological Sciences, University of Connecticut, Waterbury, Connecticut
| | - Adam Sheya
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
3
|
Adolescent conditioning affects rate of adult fear, safety and reward learning during discriminative conditioning. Sci Rep 2018; 8:17315. [PMID: 30470766 PMCID: PMC6251908 DOI: 10.1038/s41598-018-35678-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/08/2018] [Indexed: 12/21/2022] Open
Abstract
Fear and reward memories formed in adulthood are influenced by prior experiences. Experiences that occur during sensitive periods, such as adolescence, can have an especially high impact on later learning. Fear and reward memories form when aversive or appetitive events co-occur with initially neutral stimuli, that then gain negative or positive emotional load. Fear and reward seeking behaviours are influenced by safety cues, signalling the non-occurrence of a threat. It is unclear how adolescent fear or reward pre-conditioning influences later dynamics of these conditioned emotions, and conditioned safety. In this study, we presented male rats with adolescent fear or reward pre-conditioning, followed by discriminative conditioning in adulthood. In this discriminative task, rats are simultaneously conditioned to reward, fear and safety cues. We show that adolescent reward pre-conditioning did not affect the rate of adult reward conditioning, but instead accelerated adult safety conditioning. Adolescent fear pre-conditioning accelerated adult fear and reward seeking behaviours but delayed adult safety expression. Together, our results suggest that the dynamics of safety conditioning can be influenced by adolescent priming of different valences. Taking adolescent experiences into consideration can have implications on how we approach therapy options for later learned fear disorders where safety learning is compromised.
Collapse
|
4
|
Zhang JJ, Haubrich J, Bernabo M, Finnie PS, Nader K. Limits on lability: Boundaries of reconsolidation and the relationship to metaplasticity. Neurobiol Learn Mem 2018; 154:78-86. [DOI: 10.1016/j.nlm.2018.02.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/08/2018] [Accepted: 02/19/2018] [Indexed: 02/07/2023]
|
5
|
Finnie PSB, Gamache K, Protopoulos M, Sinclair E, Baker AG, Wang SH, Nader K. Cortico-hippocampal Schemas Enable NMDAR-Independent Fear Conditioning in Rats. Curr Biol 2018; 28:2900-2909.e5. [PMID: 30197087 DOI: 10.1016/j.cub.2018.07.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/08/2018] [Accepted: 07/11/2018] [Indexed: 01/28/2023]
Abstract
The neurobiology of memory formation has been studied primarily in experimentally naive animals, but the majority of learning unfolds on a background of prior experience. Considerable evidence now indicates that the brain processes initial and subsequent learning differently. In rodents, a first instance of contextual fear conditioning requires NMDA receptor (NMDAR) activation in the dorsal hippocampus, but subsequent conditioning to another context does not. This shift may result from a change in molecular plasticity mechanisms or in the information required to learn the second task. To clarify how related events are encoded, it is critical to identify which aspect of a first task engages NMDAR-independent learning and the brain regions that maintain this state. Here, we show in rats that the requirement for NMDARs in hippocampus depends neither on prior exposure to context nor footshock alone but rather on the procedural similarity between two conditioning tasks. Importantly, NMDAR-independent learning requires the memory of the first task to remain hippocampus dependent. Furthermore, disrupting memory maintenance in the anterior cingulate cortex after the first task also reinstates NMDAR dependency. These results reveal cortico-hippocampal interactions supporting experience-dependent learning.
Collapse
Affiliation(s)
- Peter S B Finnie
- Psychology Department, McGill University, 1205 Avenue Drive Penfield, Montreal, QC H3A 1B1, Canada
| | - Karine Gamache
- Psychology Department, McGill University, 1205 Avenue Drive Penfield, Montreal, QC H3A 1B1, Canada
| | - Maria Protopoulos
- Psychology Department, McGill University, 1205 Avenue Drive Penfield, Montreal, QC H3A 1B1, Canada
| | - Elizabeth Sinclair
- Psychology Department, McGill University, 1205 Avenue Drive Penfield, Montreal, QC H3A 1B1, Canada
| | - Andrew G Baker
- Psychology Department, McGill University, 1205 Avenue Drive Penfield, Montreal, QC H3A 1B1, Canada
| | - Szu-Han Wang
- Centre for Clinical Brain Sciences, University of Edinburgh, 49 Little France Crescent, Chancellor's Building GU507c, Edinburgh EH16 4SB, UK.
| | - Karim Nader
- Psychology Department, McGill University, 1205 Avenue Drive Penfield, Montreal, QC H3A 1B1, Canada.
| |
Collapse
|
6
|
Bisby MA, Baker KD, Richardson R. Elucidating the mechanisms of fear extinction in developing animals: a special case of NMDA receptor-independent extinction in adolescent rats. ACTA ACUST UNITED AC 2018; 25:158-164. [PMID: 29545387 PMCID: PMC5855527 DOI: 10.1101/lm.047209.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 12/29/2017] [Indexed: 02/02/2023]
Abstract
NMDA receptors (NMDARs) are considered critical for the consolidation of extinction but recent work challenges this assumption. Namely, NMDARs are not required for extinction retention in infant rats as well as when extinction training occurs for a second time (i.e., reextinction) in adult rats. In this study, a possible third instance of NMDAR-independent extinction was tested. Although adolescents typically exhibit impaired extinction retention, rats that are conditioned as juveniles and then given extinction training as adolescents (JuvCond-AdolesExt) have good extinction retention. Unexpectedly, this good extinction retention is not associated with an up-regulation of a synaptic plasticity marker in the medial prefrontal cortex, a region implicated in extinction consolidation. In the current study, rats received either the noncompetitive NMDAR antagonist MK801 (0.1 mg/kg, s.c.) or saline before extinction training. In several experiments, rats conditioned and extinguished as juveniles, adolescents, or adults exhibited impaired extinction retention after MK801 compared to saline, but this effect was not observed in JuvCond-AdolesExt rats. Further experiments ruled out several alternative explanations for why NMDAR antagonism did not affect extinction retention in adolescents extinguishing fear learned as a juvenile. These results illustrate yet another circumstance in which NMDARs are not required for successful extinction retention and highlight the complexity of fear inhibition across development.
Collapse
Affiliation(s)
- Madelyne A Bisby
- School of Psychology, UNSW Sydney, New South Wales, 2052, Australia
| | - Kathryn D Baker
- School of Psychology, UNSW Sydney, New South Wales, 2052, Australia
| | - Rick Richardson
- School of Psychology, UNSW Sydney, New South Wales, 2052, Australia
| |
Collapse
|
7
|
Infantile Amnesia: A Critical Period of Learning to Learn and Remember. J Neurosci 2017; 37:5783-5795. [PMID: 28615475 DOI: 10.1523/jneurosci.0324-17.2017] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/04/2017] [Accepted: 05/15/2017] [Indexed: 12/11/2022] Open
Abstract
Infantile amnesia, the inability of adults to recollect early episodic memories, is associated with the rapid forgetting that occurs in childhood. It has been suggested that infantile amnesia is due to the underdevelopment of the infant brain, which would preclude memory consolidation, or to deficits in memory retrieval. Although early memories are inaccessible to adults, early-life events, such as neglect or aversive experiences, can greatly impact adult behavior and may predispose individuals to various psychopathologies. It remains unclear how a brain that rapidly forgets, or is not yet able to form long-term memories, can exert such a long-lasting and important influence. Here, with a particular focus on the hippocampal memory system, we review the literature and discuss new evidence obtained in rats that illuminates the paradox of infantile amnesia. We propose that infantile amnesia reflects a developmental critical period during which the learning system is learning how to learn and remember.
Collapse
|
8
|
Oliver CF, Kabitzke P, Serrano P, Egan LJ, Barr GA, Shair HN, Wiedenmayer C. Repeated recall and PKMζ maintain fear memories in juvenile rats. Learn Mem 2016; 23:710-713. [PMID: 27918276 PMCID: PMC5110988 DOI: 10.1101/lm.042549.116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 09/20/2016] [Indexed: 11/24/2022]
Abstract
We examined the neural substrates of fear memory formation and maintenance when repeated recall was used to prevent forgetting in young animals. In contrast to adult rats, juveniles failed to show contextual fear responses at 4 d post-fear conditioning. Reconsolidation sessions 3 and 6 d after conditioning restored contextual fear responses in juveniles 7 d after initial training. In juveniles that received reconsolidation sessions, protein kinase M zeta (PKMζ) increased in the amygdala, but not in the hippocampus. These data suggest that repeated reminders and increased PKMζ maintain fear responses in juvenile animals that otherwise would not exhibit this behavior.
Collapse
Affiliation(s)
- Chicora F Oliver
- Department of Psychology, Brain and Cognitive Sciences, Temple University, Philadelphia, Pennsylvania 19122, USA
| | | | - Peter Serrano
- The Graduate Center of CUNY, New York, New York 10016, USA
- Department of Psychology, Hunter College, New York, New York 10065, USA
| | - Laura J Egan
- Department of Psychology, Queens College, New York, New York 11367, USA
| | - Gordon A Barr
- Children's Hospital of Philadelphia and the Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Harry N Shair
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, New York 10032, USA
| | - Christoph Wiedenmayer
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, New York 10032, USA
| |
Collapse
|
9
|
Richardson R, Cowan CSM, Callaghan BL, Kan JM. Effects of early-life stress on fear memory in the developing rat. Curr Opin Behav Sci 2016. [DOI: 10.1016/j.cobeha.2015.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Heroux NA, Robinson-Drummer PA, Rosen JB, Stanton ME. NMDA receptor antagonism disrupts acquisition and retention of the context preexposure facilitation effect in adolescent rats. Behav Brain Res 2015; 301:168-77. [PMID: 26711910 DOI: 10.1016/j.bbr.2015.12.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/06/2015] [Accepted: 12/15/2015] [Indexed: 10/22/2022]
Abstract
The context preexposure facilitation effect (CPFE) is a contextual fear conditioning paradigm in which learning about the context, acquiring the context-shock association, and retrieving/expressing contextual fear are temporally dissociated. The current study investigated the involvement of NMDA receptors in contextual fear acquisition, retention, and expression across all phases of the CPFE in adolescent rats. In Experiment 1 systemic injections of 0.1mg/kg MK-801, a non-competitive NMDA receptor antagonist, given before multiple context preexposure disrupted the acquisition of a context representation. In Experiment 2, pre-training MK-801 disrupted both immediate acquisition of contextual fear measured by postshock freezing, as well as retention test freezing 24h later. Experiment 3 showed that expression of contextual fear via a 24h retention freezing test does not depend on NMDA receptors, indicating that MK-801 disrupts learning rather than performance of freezing behavior. In Experiment 4, consolidation of contextual information was partially disrupted by post-preexposure MK-801 whereas consolidation of contextual fear was not disrupted by post-training MK-801. Finally, Experiment 5 employed a dose-response design and found that a pre-training dose of 0.1mg/kg MK-801 disrupted both postshock and retention test freezing while lower pre-training doses of MK-801 (0.025 or 0.05mg/kg) only disrupted retention freezing. This is the first study to distinguish the role of NMDA receptors in acquisition (post-shock freezing), retention, expression, and consolidation of context vs. context-shock learning using the CPFE paradigm in adolescent rats. The findings provide a foundation for similar developmental studies examining these effects from early ontogeny through adulthood.
Collapse
Affiliation(s)
- Nicholas A Heroux
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | | | - Jeffrey B Rosen
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - Mark E Stanton
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States.
| |
Collapse
|
11
|
Deak T, Hunt PS. Early ontogeny as a unique developmental epoch for learning, memory and consequences of alcohol exposure: A Festschrift to honor the work of Dr. Norman E. Spear. Physiol Behav 2015; 148:1-5. [PMID: 26066730 PMCID: PMC4783627 DOI: 10.1016/j.physbeh.2015.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Terrence Deak
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States.
| | - Pamela S Hunt
- Department of Psychology, College of William and Mary, Williamsburg, VA 23187-8795, United States
| |
Collapse
|