1
|
Boratyński JS, Iwińska K, Wirowska M, Borowski Z, Zub K. Predation can shape the cascade interplay between heterothermy, exploration and maintenance metabolism under high food availability. Ecol Evol 2024; 14:e11579. [PMID: 38932950 PMCID: PMC11199196 DOI: 10.1002/ece3.11579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/26/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Maintenance metabolism as the minimum energy expenditure needed to maintain homeothermy (a high and stable body temperature, T b), reflects the magnitude of metabolic machinery and the associated costs of self-maintenance in endotherms (organisms able to produce heat endogenously). Therefore, it can interact with most, if not all, organismal functions, including the behavior-fitness linkage. Many endothermic animals can avoid the costs of maintaining homeothermy and temporally reduce T b and metabolism by entering heterothermic states like torpor, the most effective energy-saving strategy. Variations in BMR, behavior, and torpor use are considered to be shaped by food resources, but those conclusions are based on research studying these traits in isolation. We tested the effect of ecological contexts (food availability and predation risk) on the interplay between the maintenance costs of homeothermy, heterothermy, and exploration in a wild mammal-the yellow-necked mouse. We measured maintenance metabolism as basal metabolic rate (BMR) using respirometry, distance moved (exploration) in the open-field test, and variation in T b (heterothermy) during short-term fasting in animals captured at different locations of known natural food availability and predator presence, and with or without supplementary food resources. We found that in winter, heterothermy and exploration (but not BMR) negatively correlated with natural food availability (determined in autumn). Supplementary feeding increased mouse density, predation risk and finally had a positive effect on heterothermy (but not on BMR or exploration). The path analysis testing plausible causal relationships between the studied traits indicated that elevated predation risk increased heterothermy, which in turn negatively affected exploration, which positively correlated with BMR. Our study indicates that adaptive heterothermy is a compensation strategy for balancing the energy budget in endothermic animals experiencing low natural food availability. This study also suggests that under environmental challenges like increased predation risk, the use of an effective energy-saving strategy predicts behavioral expression better than self-maintenance costs under homeothermy.
Collapse
Affiliation(s)
| | - Karolina Iwińska
- University of Białystok Doctoral School in Exact and Natural SciencesBiałystokPoland
| | - Martyna Wirowska
- Department of Systematic ZoologyAdam Mickiewicz UniversityPoznańPoland
| | - Zbigniew Borowski
- Department of Forest EcologyForest Research InstituteSękocin StaryPoland
| | - Karol Zub
- Mammal Research InstitutePolish Academy of SciencesBiałowieżaPoland
| |
Collapse
|
2
|
Kuroyanagi A, Ukyo R, Kodama Y, Eto T, Okubo Y, Kobayashi I, Ieiri S, Morita T, Sakamoto SH. Body Temperature Measurement Reveals the Reproductive Profile of Female Apodemus speciosus under Laboratory and Field Conditions. MAMMAL STUDY 2022. [DOI: 10.3106/ms2021-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Akira Kuroyanagi
- Graduate School of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Rina Ukyo
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Yoshinobu Kodama
- Graduate School of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Takeshi Eto
- Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Yoshinobu Okubo
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Ikuo Kobayashi
- Sumiyoshi Livestock Science Station, Field Science Education Research Center, Faculty of Agriculture, University of Miyazaki, Miyazaki 880-0121, Japan
| | - Seiji Ieiri
- Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Tetsuo Morita
- Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | | |
Collapse
|
3
|
Eto T, Hidaka S, Shichijo H, Nagura-Kato GA, Morita T. Dietary Protein Deficiency Affects Food Consumption and Torpor in the African Woodland Dormouse (Graphiurus murinus). MAMMAL STUDY 2021. [DOI: 10.3106/ms2020-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Takeshi Eto
- Interdisciplinary Graduate School of Agriculture and Engineering, Kibana Campus, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Sayako Hidaka
- Faculty of Agriculture, Kibana Campus, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Hiroki Shichijo
- Division of Bio-Resources, Frontier Science Research Center, Kiyotake Campus, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Goro A. Nagura-Kato
- Division of Bio-Resources, Frontier Science Research Center, Kiyotake Campus, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Tetsuo Morita
- Faculty of Agriculture, Kibana Campus, University of Miyazaki, Miyazaki 889-2192, Japan
| |
Collapse
|
4
|
Eto T, Sakamoto SH, Okubo Y, Tsuzuki Y, Koshimoto C, Morita T. Individual variation of daily torpor and body mass change during winter in the large Japanese field mouse (Apodemus speciosus). J Comp Physiol B 2018; 188:1005-1014. [PMID: 30194463 DOI: 10.1007/s00360-018-1179-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/12/2018] [Accepted: 09/03/2018] [Indexed: 11/24/2022]
Abstract
Daily torpor is a strategy used by some overwintering small endotherms to aid in energy conservation. However, the pattern of torpor varies among individuals within species and populations, even under the same environmental conditions, with significant implications for survival rate and reproductive success. Body mass is one factor that may influence this variation, especially in some small mammals that accumulate fat stores prior to overwintering. However, to our knowledge there has been no previous study examining the detailed relationships between torpor expression and body mass change in small mammals that hoard food as an energy resource during winter. The large Japanese field mouse, Apodemus speciosus, whose winter survival strategy depends on food caches instead of fat stores, displays daily torpor under artificial winter conditions (short-day photoperiod and cold). The present study clarifies the characteristics and patterns of daily torpor and body mass change in this species in the laboratory. Although expression of daily torpor was facilitated progressively as in other species, the observed patterns of torpor expression and body mass change showed considerable individual variation. Moreover, there was no obvious correlation between body mass and daily torpor expression. Therefore, it is suggested that in A. speciosus body mass may not contribute to individual variation of daily torpor during winter. Daily torpor during winter may be adjusted by not only mechanisms common to other small mammals, but also species-specific factors relating to the external or internal reserves of energy in small mammals.
Collapse
Affiliation(s)
- Takeshi Eto
- Interdisciplinary Graduate School of Agriculture and Engineering, Kibana Campus, University of Miyazaki, Miyazaki, 889-2192, Japan.,Center for Toki and Ecological Restoration, Niigata University, Niigata, 952-0103, Japan
| | - Shinsuke H Sakamoto
- Faculty of Agriculture, Kibana Campus, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Yoshinobu Okubo
- Interdisciplinary Graduate School of Agriculture and Engineering, Kibana Campus, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Yasuhiro Tsuzuki
- Faculty of Agriculture, Kibana Campus, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Chihiro Koshimoto
- Division of Bio-Resources, Frontier Science Research Center, Kiyotake Campus, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Tetsuo Morita
- Faculty of Agriculture, Kibana Campus, University of Miyazaki, Miyazaki, 889-2192, Japan. .,Division of Bio-Resources, Frontier Science Research Center, Kiyotake Campus, University of Miyazaki, Miyazaki, 889-1692, Japan.
| |
Collapse
|
5
|
Zhang B, Chen X, Steele MA, Li J, Chang G. Effects of insect infestation on rodent-mediated dispersal of Quercus aliena: results from field and enclosure experiments. Integr Zool 2018; 14:104-113. [PMID: 30019845 DOI: 10.1111/1749-4877.12350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Rodents influence plant establishment and regeneration by functioning as both seed predators and dispersers. However, these rodent-plant interactions can vary significantly due to various environmental conditions and the activity of other insect seed predators. Here, we use a combination of both field and enclosure (i.e. individual cage and semi-natural enclosure) experiments, to determine whether rodents can distinguish sound seeds from those infested with insects. We also demonstrate how such responses to insects are influenced by food abundance and other environmental factors. We presented rodents with 2 kinds of Quercus aliena seeds (sound and insect-infested seeds) in a subtropical forest in the Qinling Mountains, central China, from September to November of 2011 to 2013. The results showed that rodents preferred to hoard and eat sound seeds than infested seeds in the field and semi-natural enclosure, while they preferred to eat infested seeds over sound seeds in the individual cages. In addition, both hoarding and eating decisions were influenced by food abundance. Rodents hoarded more sound seeds in years of high food abundance while they consumed more acorns in years of food shortage. Compared with field results, rodents reduced scatter-hoarding behavior in semi-natural enclosures and ate more insect-infested seeds in smaller individual cages. These results further confirm that rodents distinguish infested seeds from non-infested seeds but demonstrate that this behavior varies with conditions (i.e. environment and food abundance). We suggest that such interactions will influence the dispersal and natural regeneration of seeds as well as predation rates on insect larvae.
Collapse
Affiliation(s)
- Bo Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | | | - Michael A Steele
- Department of Biology, Wilkes University, Wilkes-Barre, Pennsylvania, USA
| | - Jingang Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Gang Chang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.,Shaanxi Institute of Zoology, Xi'an, China
| |
Collapse
|
6
|
Kato GA, Sakamoto SH, Eto T, Okubo Y, Shinohara A, Morita T, Koshimoto C. Individual differences in torpor expression in adult mice are related to relative birth mass. ACTA ACUST UNITED AC 2018; 221:jeb.171983. [PMID: 29678821 DOI: 10.1242/jeb.171983] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 04/16/2018] [Indexed: 01/31/2023]
Abstract
Daily torpor is a physiological adaptation in small mammals and birds, characterised by drastic reductions in metabolism and body temperature. Energy-constraining conditions, such as cold and starvation, are known to cause the expression of daily torpor. However, the reason for high degrees of inter- and intra-individual variation in torpor expression (TE) in similar situations is not clear. As littermates of altricial animals are exposed to an uneven allocation of maternal resources from conception to weaning, we tested whether early nutritional experiences have long-term effects on TE in adults. We used full-sibling littermates of laboratory mice that as adults were starved overnight to induce torpor. We measured body mass from birth until adulthood as an indicator of nutritional status, and calculated the relative body mass (RBM) as an indicator of the difference in nutritional status within a litter. After maturation, we subjected mice to five repeated torpor induction trials involving 24 h of fasting and 5 days of recovery. Half of the female mice displayed great individual variation in TE whereas male mice rarely exhibited daily torpor. In females, RBM at birth influenced TE, irrespective of body mass in adulthood; thus, female mice born with low RBMs displayed high TE in adulthood. In conclusion, we provide evidence that TE in mice differs among littermates, and that this variation is linked closely to heterogeneous nutritional experiences during the fetal period.
Collapse
Affiliation(s)
- Goro A Kato
- Division of Bio-resources, Department of Biotechnology, Frontier Science Research Center, University of Miyazaki, Kihara 5200, Kiyotake, Miyazaki, Miyazaki 889-1692, Japan.,Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, University of Kyushu, Maidashi 3-1-1, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Shinsuke H Sakamoto
- Department of Animal and Grassland Sciences, Faculty of Agriculture, Kibana Campus, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Takeshi Eto
- Center for Toki and Ecological Restoration, Niigata University, Niigata 952-0103, Japan
| | - Yoshinobu Okubo
- Japan Wildlife Research Center, 3-3-7 Kotobashi, Sumida-ku, Tokyo 130-8606, Japan
| | - Akio Shinohara
- Division of Bio-resources, Department of Biotechnology, Frontier Science Research Center, University of Miyazaki, Kihara 5200, Kiyotake, Miyazaki, Miyazaki 889-1692, Japan
| | - Tetsuo Morita
- Department of Animal and Grassland Sciences, Faculty of Agriculture, Kibana Campus, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Chihiro Koshimoto
- Division of Bio-resources, Department of Biotechnology, Frontier Science Research Center, University of Miyazaki, Kihara 5200, Kiyotake, Miyazaki, Miyazaki 889-1692, Japan
| |
Collapse
|
7
|
Kato GA, Shichijo H, Takahashi T, Shinohara A, Morita T, Koshimoto C. Protein restriction does not affect body temperature pattern in female mice. Exp Anim 2017. [PMID: 28626157 PMCID: PMC5682344 DOI: 10.1538/expanim.17-0035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Daily torpor is a physiological adaptation in mammals and birds characterized by a
controlled reduction of metabolic rate and body temperature during the resting phase of
circadian rhythms. In laboratory mice, daily torpor is induced by dietary caloric
restriction. However, it is not known which nutrients are related to daily torpor
expression. To determine whether dietary protein is a key factor in inducing daily torpor
in mice, we fed mice a protein-restricted (PR) diet that included only one-quarter of the
amount of protein but the same caloric level as a control (C) diet. We assigned six
non-pregnant female ICR mice to each group and recorded their body weights and core body
temperatures for 4 weeks. Body weights in the C group increased, but those in the PR group
remained steady or decreased. Mice in both groups did not show daily torpor, but most mice
in a food-restricted group (n=6) supplied with 80% of the calories given to the C group
exhibited decreased body weights and frequently displayed daily torpor. This suggests that
protein restriction is not a trigger of daily torpor; torpid animals can conserve their
internal energy, but torpor may not play a significant role in conserving internal
protein. Thus, opportunistic daily torpor in mice may function in energy conservation
rather than protein saving.
Collapse
Affiliation(s)
- Goro A Kato
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, Miyazaki 889-1692, Japan.,Division of Bio-resources, Department of Biotechnology, Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, Miyazaki 889-1692, Japan.,Present address: Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, University of Kyushu, 3-1-1 Maidashi, Fukuoka, Fukuoka 812-8582, Japan
| | - Hiroki Shichijo
- Division of Bio-resources, Department of Biotechnology, Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, Miyazaki 889-1692, Japan
| | - Toshihiro Takahashi
- Department of Animal and Grassland Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, Miyazaki, Miyazaki 889-2192, Japan
| | - Akio Shinohara
- Division of Bio-resources, Department of Biotechnology, Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, Miyazaki 889-1692, Japan
| | - Tetsuo Morita
- Department of Animal and Grassland Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, Miyazaki, Miyazaki 889-2192, Japan
| | - Chihiro Koshimoto
- Division of Bio-resources, Department of Biotechnology, Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, Miyazaki 889-1692, Japan
| |
Collapse
|
8
|
Eto T, Ozaki R, Kato GA, Sakamoto SH, Koshimoto C, Morita T. Flexibility of Digestive Tract Morphology in Response to Environmental Conditions in the Large Japanese Field MouseApodemus speciosus. MAMMAL STUDY 2016. [DOI: 10.3106/041.041.0204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|