1
|
Martinat M, Varvarais A, Heraud C, Surget A, Lanuque A, Terrier F, Roy J. Effects of a Plant-Based Diet During the First Month of Feeding on Alevin Rainbow Trout ( Oncorhynchus mykiss) in the Development of Tongue Sensory System Regulating Feeding Behavior. AQUACULTURE NUTRITION 2025; 2025:6690967. [PMID: 40321318 PMCID: PMC12049252 DOI: 10.1155/anu/6690967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/12/2025] [Indexed: 05/08/2025]
Abstract
Taste perception is essential for animals to detect nutrients, providing critical dietary information necessary for growth and survival. Since the early growth performance of alevin rainbow trout (Oncorhynchus mykiss) can be affected by food intake influenced by terrestrial ingredients without fish meal and fish oil, our study aimed to evaluate the role of taste receptors in nutrient detection and the associated signaling pathways leading to central nervous system activation in the regulation of feeding behavior. We conducted a nutritional experiment from the first feeding to 30 days, comparing the performance of fish fed a commercial-like diet (C diet: a blend of fish meal, fish oil, and plant ingredients) with those on a totally plant-based diet (V diet). After 5 and 30 days of feeding, fish were fasted for 16 h and then fed either the C or V diet, with sampling conducted at 20 min and 6 h post-meal. We evaluated the expression of nutrient-sensing genes related to fatty acids, amino acids, and sweetness, and taste receptor genes for flavors. Additionally, we examined calcium signaling pathways in the tongue, focusing on indolamine and catecholamine pathways, alongside appetite-regulating neuropeptides in the brain and intestinal hormones in the gut of alevins. Results indicated that fish on the V diet experienced a decrease in body weight gain starting 10 days after feeding to 30 days, along with changes in feed intake during the periods of 0-10 days and 21-30 days after the first meal. In tongue tissue, after 5 days of feeding, fish on the C diet showed a slight upregulation of nutrient taste receptors, but not those related to flavor, along with an upregulation of the calcium signaling pathway. By 30 days, there was a general upregulation of nutrient and flavor taste receptors, although the calcium signaling pathway showed less clear evidence of regulation. A significant dysregulation of the serotonin pathway, along with its degradation, was observed in the tongues of fish fed the V diet at both 5 and 30 days. For the first time in fish, catecholamine quantification levels in the tongue emerged as a potential marker for nutrient detection, with high quantification of L-DOPA after 5 days on the V diet, but much lower after 30 days. This impaired monoamine and catecholamine turnover in the tongue could be linked to a failure in activating the tongue-brain axis, potentially contributing to reduced food intake, as indicated by poorly regulated brain neuropeptides but also intestinal hormones in fish fed the V diet after 30 days. Overall, these findings demonstrate that the V diet disrupts the feeding response at an early stage, underscoring the heightened sensitivity of rainbow trout alevins' tongue sensing systems to novel food sources during critical early development.
Collapse
Affiliation(s)
- Maud Martinat
- Université de Pau et des Pays de l'Adour, INRAE, Aquapôle, NUMEA 64310, Saint-Pée-sur-Nivelle, France
| | - Amelle Varvarais
- Université de Pau et des Pays de l'Adour, INRAE, Aquapôle, NUMEA 64310, Saint-Pée-sur-Nivelle, France
| | - Cécile Heraud
- Université de Pau et des Pays de l'Adour, INRAE, Aquapôle, NUMEA 64310, Saint-Pée-sur-Nivelle, France
| | - Anne Surget
- Université de Pau et des Pays de l'Adour, INRAE, Aquapôle, NUMEA 64310, Saint-Pée-sur-Nivelle, France
| | - Anthony Lanuque
- Université de Pau et des Pays de l'Adour, INRAE, Aquapôle, NUMEA 64310, Saint-Pée-sur-Nivelle, France
| | - Frederic Terrier
- Université de Pau et des Pays de l'Adour, INRAE, Aquapôle, NUMEA 64310, Saint-Pée-sur-Nivelle, France
| | - Jérôme Roy
- Université de Pau et des Pays de l'Adour, INRAE, Aquapôle, NUMEA 64310, Saint-Pée-sur-Nivelle, France
| |
Collapse
|
2
|
Polat H, Grande G, Aurangzeb Z, Zhang H, Daghfous G, Dubuc R, Zielinski B. The distribution and chemosensory responses of pharyngeal taste buds in the sea lamprey Petromyzon marinus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2025; 211:1-17. [PMID: 39078515 PMCID: PMC11846773 DOI: 10.1007/s00359-024-01708-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/31/2024]
Abstract
Little is known about the chemosensory system of gustation in sea lampreys, basal jawless vertebrates that feed voraciously on live prey. The objective of this study was to investigate taste bud distribution and chemosensory responses along the length of the pharynx in the sea lamprey. Scanning electron microscopy and immunocytochemistry revealed taste buds and associated axons at all six lateral pharyngeal locations between the seven pairs of internal gill pores. The most rostral pharyngeal region contained more and larger taste buds than the most caudal region. Taste receptor cell responses were recorded to sweet, bitter, amino acids and the bile acid taurocholic acid, as well as to adenosine triphosphate. Similar chemosensory responses were observed at all six pharyngeal locations with taste buds. Overall, this study shows prominent taste buds and taste receptor cell activity in the seven pharyngeal regions of the sea lamprey.
Collapse
Affiliation(s)
- Hasan Polat
- Department of Integrative Biology, University of Windsor, Windsor, ON, Canada
| | - Gianfranco Grande
- Department of Integrative Biology, University of Windsor, Windsor, ON, Canada
| | - Zeenat Aurangzeb
- Department of Integrative Biology, University of Windsor, Windsor, ON, Canada
| | - Huiming Zhang
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, Canada
| | - Gheylen Daghfous
- Groupe de Recherche en Activité Physique Adaptée, Département des Sciences de l'activité physique, Université du Québec à Montréal, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Réjean Dubuc
- Groupe de Recherche en Activité Physique Adaptée, Département des Sciences de l'activité physique, Université du Québec à Montréal, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Barbara Zielinski
- Department of Integrative Biology, University of Windsor, Windsor, ON, Canada.
| |
Collapse
|
3
|
Levina AD, Mikhailova ES, Kasumyan AO. Taste preferences and feeding behaviour in the facultative herbivorous fish, Nile tilapia Oreochromis niloticus. JOURNAL OF FISH BIOLOGY 2021; 98:1385-1400. [PMID: 33448377 DOI: 10.1111/jfb.14675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Taste preferences in fishes are known mainly for carnivorous species, whereas herbivorous consumers were rarely used in such studies. The main goal of the present study was to evaluate the taste preferences in the herbivorous African cichlid fish, Nile tilapia Oreochromis niloticus. In laboratory settings, the palatability of widely used taste substances (four taste substances that are considered to be sweet, sour, bitter and salty for humans - sucrose, citric acid, calcium chloride and sodium chloride; 21 free L-amino acids; 12 sugars and artificial sweetener Na-saccharin; 0.1-0.0001 M) was evaluated. In each trial, a standard agar pellet flavoured with a substance was offered for fish individually. The consumption of pellet, the number of grasps and the retention time before the pellet was finally ingested or rejected were registered. Overall, 21 of 38 substances were palatable, whereas other substances did not shift consumption of pellets in relation to blank pellets. Pellets containing citric acid, L-cysteine, L-norvaline, L-isoleucine, L-valine, Na-saccharin and D-sorbitol were consumed in >85% of trials. Taste attractiveness of amino acids was highly species-specific and was not associated with the trophic category of the 19 species compared. Moreover, it did not correlate with dietary quantitative requirements of Nile tilapia (rs = 0.27; P > 0.05). Palatability of sugars for O. niloticus and their sweetness for humans did not correlate as well (rs = 0.21; P > 0.05); nonetheless, Na-saccharin has the most attractive taste for both O. niloticus and humans. The most palatable amino acids lost their effect if the concentration was lowered to 0.01 M for L-cysteine and 0.001 M for L-norvaline (lower than 242.3 μg and 23.4 μg per a pellet, respectively). Single pellet grasp was characteristic of O. niloticus feeding behaviour (>95% of trials), and this pattern may be related to the social lifestyle of this species. Fish spent 4-8 s on average for orosensory evaluation of pellet edibility. The retention time correlated with the palatability of substances and was significantly longer in trials that ended up with pellet swallowing. It is suggested that prolonged orosensory evaluation of food before swallowing provides a reliable and accurate sensory evaluation, which, in turn, can reduce the probability that inadequate food will be consumed.
Collapse
Affiliation(s)
- Aleksandra D Levina
- Department of Ichthyology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Elena S Mikhailova
- Department of Ichthyology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander O Kasumyan
- Department of Ichthyology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Laboratory for Behaviour of Lower Vertebrates, Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
4
|
Vendrell-Llopis N, Yaksi E. Evolutionary conserved brainstem circuits encode category, concentration and mixtures of taste. Sci Rep 2015; 5:17825. [PMID: 26639368 PMCID: PMC4671064 DOI: 10.1038/srep17825] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/06/2015] [Indexed: 11/23/2022] Open
Abstract
Evolutionary conserved brainstem circuits are the first relay for gustatory information in the vertebrate brain. While the brainstem circuits act as our life support system and they mediate vital taste related behaviors, the principles of gustatory computations in these circuits are poorly understood. By a combination of two-photon calcium imaging and quantitative animal behavior in juvenile zebrafish, we showed that taste categories are represented by dissimilar brainstem responses and generate different behaviors. We also showed that the concentration of sour and bitter tastes are encoded by different principles and with different levels of sensitivity. Moreover, we observed that the taste mixtures lead to synergistic and suppressive interactions. Our results suggest that these interactions in early brainstem circuits can result in non-linear computations, such as dynamic gain modulation and discrete representation of taste mixtures, which can be utilized for detecting food items at broad range of concentrations of tastes and rejecting inedible substances.
Collapse
Affiliation(s)
| | - Emre Yaksi
- NERF, Leuven, Belgium.,KU Leuven, Leuven, Belgium.,VIB, Leuven, Belgium.,Kavli Institute for Systems Neuroscience and Centre for the Biology of Memory, Norwegian Brain Centre, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|