1
|
Sun H, Li C, Shi Y, Wang Y, Li J, Fan L, Yu Y, Ji X, Gao X, Hou K, Li Y. Investigating the L-Glu-NMDA receptor-H 2S-NMDA receptor pathway that regulates gastric function in rats' nucleus ambiguus. Front Pharmacol 2024; 15:1389873. [PMID: 38751777 PMCID: PMC11094298 DOI: 10.3389/fphar.2024.1389873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Background In previous investigations, we explored the regulation of gastric function by hydrogen sulfide (H2S) and L-glutamate (L-Glu) injections in the nucleus ambiguus (NA). We also determined that both H2S and L-Glu have roles to play in the physiological activities of the body, and that NA is an important nucleus for receiving visceral sensations. The purpose of this study was to explore the potential pathway link between L-Glu and H2S, resulting in the regulation of gastric function. Methods Physiological saline (PS), L-glutamate (L-Glu, 2 nmol), NaHS (2 nmol), D-2-amino-5-phopho-novalerate (D-AP5, 2 nmol) + L-Glu (2 nmol), aminooxyacetic acid (AOAA, 2 nmol) + L-Glu (2 nmol), D-AP5 (2 nmol) + NaHS (2 nmol) were injected into the NA. A balloon was inserted into the stomach to observe gastric pressure and for recording the changes of gastric smooth muscle contraction curve. The gastric fluid was collected by esophageal perfusion and for recording the change of gastric pH value. Results Injecting L-Glu in NA was found to significantly inhibit gastric motility and promote gastric acid secretion in rats (p < 0.01). On the other hand, injecting the PS, pre-injection N-methyl-D-aspartate (NMDA) receptor blocker D-AP5, cystathionine beta-synthase (CBS) inhibitor AOAA and re-injection L-Glu did not result in significant changes (p > 0.05). The same injection NaHS significantly inhibit gastric motility and promote gastric acid secretion in rats (p < 0.01), but is eliminated by injection D-AP5 (p > 0.05). Conclusion The results indicate that both exogenous L-Glu and H2S injected in NA regulate gastric motility and gastric acid secretion through NMDA receptors. This suggests that NA has an L-Glu-NMDA receptor-CBS-H2S pathway that regulates gastric function.
Collapse
|
2
|
Zhang Y, Duan C, Wu S, Ma J, Liu Y, Li W, Wang T, Yang L, Cheng K, Zhuang R. Knockout of IL-6 mitigates cold water-immersion restraint stress-induced intestinal epithelial injury and apoptosis. Front Immunol 2022; 13:936689. [PMID: 36505466 PMCID: PMC9732082 DOI: 10.3389/fimmu.2022.936689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
Background Interleukin-6 (IL-6) is essential for maintaining intestinal epithelial homeostasis. Although cold water-immersion restraint (CWIR) stress is commonly used to induce in vivo gastric injury, it also affects intestinal epithelial permeability. Although IL-6 is increased in response to acute physiological and psychological stress, its exact effects on the pathophysiology of the intestinal epithelium in response to acute CWIR stress remain unknown. Methods We used IL-6 knockout (KO) mice with acute CWIR modeling to investigate the effect of IL-6 deficiency on intestinal epithelial morphology and pathological damage using histological staining assays under the acute stress. We detected jejunal epithelial apoptosis using TUNEL and standard molecular experiments. Results CWIR caused intestinal epithelial damage, which was alleviated by the absence of IL-6, as evidenced by morphological changes and goblet cell and intestinal permeability alteration. IL-6 KO also reduced CWIR-mediated inflammatory levels and improved stress defense. Meanwhile, IL-6 deficiency decreased the intestinal epithelial apoptosis induced by CWIR administration. This IL-6 KO-led effect depended more on mitochondrial AIF signaling rather than the traditional caspase pathway. Conclusion As a result, we concluded that acute CWIR-induced severe intestinal damage and jejunal epithelium apoptosis could be alleviated by IL-6 deficiency, implying a protective effect of IL-6 deficiency on the intestines under acute stress. The findings shed new light on treating CWIR-induced intestinal disorders by inhibiting IL-6 signaling.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Chujun Duan
- Department of Immunology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Shuwen Wu
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Jingchang Ma
- Department of Immunology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yongming Liu
- Orthopedic Department of Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Wenpeng Li
- Orthopedic Department of Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Tingting Wang
- Department of Immunology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Lu Yang
- Department of Immunology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Kun Cheng
- Department of Immunology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Ran Zhuang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, Shaanxi, China,Department of Immunology, Fourth Military Medical University, Xi’an, Shaanxi, China,*Correspondence: Ran Zhuang,
| |
Collapse
|
3
|
Zhang Y, Wu S, Liu Y, Ma J, Li W, Xu X, Wang Y, Luo Y, Cheng K, Zhuang R. Acute Cold Water-Immersion Restraint Stress Induces Intestinal Injury and Reduces the Diversity of Gut Microbiota in Mice. Front Cell Infect Microbiol 2021; 11:706849. [PMID: 34722327 PMCID: PMC8551804 DOI: 10.3389/fcimb.2021.706849] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/28/2021] [Indexed: 02/04/2023] Open
Abstract
Growing evidence has demonstrated that stress triggers gastrointestinal (GI) disorders. This study aimed to investigate how the acute cold water-immersion restraint (CWIR) stress affects intestinal injury and gut microbiota (GM) distribution. Male C57BL/6 mice were used to establish a CWIR animal model. Hematoxylin–eosin and periodic acid–Schiff staining were performed to assess intestinal histopathological changes. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis and immunofluorescence staining were used to evaluate the expression of inflammatory cytokines and immune cell infiltration in the intestinal tissues. The gut permeability and intestinal occludin protein expression were determined through fluorescein isothiocyanate-dextran detection and western blot, respectively. GM profiles were analyzed via high-throughput sequencing of the fecal bacterial 16S rRNA genes. Results showed that CWIR induced more severe intestinal mucosal injury compared to the control, leading to a significant increase in tumor necrosis factor-α expression, but no infiltration of neutrophil and T cells. CWIR also resulted in GI disruption and increased the permeability of the intestinal mucosa. GM profiles showed that CWIR reduced GM diversity of mice compared with the control group. Specifically, aerobic and gram-negative bacteria significantly increased after CWIR, which was associated with the severity of gut injury under stress. Therefore, acute CWIR leads to severe intestinal damage with inflammation and disrupts the GM homeostasis, contributing to decreased GM diversity. Our findings provide the theoretical basis for the further treatment of intestinal disorders induced by CWIR.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Shuwen Wu
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Yongming Liu
- Orthopedic Department of Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jingchang Ma
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Wenpeng Li
- Orthopedic Department of Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xuexue Xu
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Yuling Wang
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Yanling Luo
- Library of Fourth Military Medical University, Xi'an, China
| | - Kun Cheng
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Ran Zhuang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China.,Department of Immunology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
4
|
Di Cerbo A, Carnevale G, Avallone R, Zavatti M, Corsi L. Protective Effects of Borago officinalis (Borago) on Cold Restraint Stress-Induced Gastric Ulcers in Rats: A Pilot Study. Front Vet Sci 2020; 7:427. [PMID: 32984407 PMCID: PMC7492383 DOI: 10.3389/fvets.2020.00427] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/15/2020] [Indexed: 01/23/2023] Open
Abstract
Stress is a typical body's natural defense to a generic physical or psychic change. A specific linking mechanism between ulcer onset and psycho-physical stress prolonged exposure has been reported. We decided to investigate the possible effects of Borago officinalis L. (Borago) in preventing physical (stress)-induced gastric ulcers in a rat model. Eighty male Sprague-Dawley rats were randomly divided into 16 groups, pretreated with a control solution, omeprazole (20 mg/kg), Borago methanolic extract (25, 50, 100, 250, and 500 mg/kg), Borago organic extract (50, 100, 250, and 500 mg/kg), Borago aqueous extract (5, 10, 20, 30, and 40 mg/kg), and D(-)-2-Amino-5-phosphonovaleric acid (AP5) (25 mg/kg) and kept in stressful conditions such as water immersion and restraint-induced stress ulcers. The animals were sacrificed and their stomach scored for the severity and the number of gastric ulcers. Methanolic extract (500 mg/kg) significantly reduced both ulcer parameters (***p < 0.001 and **p < 0.01, respectively). Aqueous and organic extract significantly decreased severity score at 5 and 10 mg/kg (**p < 0.01 and ***p < 0.001, respectively), and at 250 and 500 mg/kg (***p < 0.001), respectively, while gastric ulcers' resulted number significantly reduced only at 10 mg/kg (*p < 0.05) and at 500 mg/kg (**p < 0.01), respectively. On the other hand, aqueous extract significantly increased the mucosal gastric content of cAMP (*p < 0.05) and NR2A and NR2B subunits (*p < 0.05 and **p < 0.01, respectively) at 5 mg/kg. Organic extract showed also a significant cytotoxic effect at 500 and 1,000 mg/kg with a 3T3 cell viability reduction of 43.6% (**p < 0.01) and 92.1% (***p < 0.001), respectively. Borago aqueous extract at 10 mg/kg could be considered as a potential protective agent against stress-induced ulcers, and it is reasonable to possibly ascribe such protective activity to a modulation of the NR2A and NR2B subunit expression.
Collapse
Affiliation(s)
- Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Gianluca Carnevale
- Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Rossella Avallone
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Manuela Zavatti
- Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Lorenzo Corsi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
5
|
Bures J, Kvetina J, Radochova V, Tacheci I, Peterova E, Herman D, Dolezal R, Kopacova M, Rejchrt S, Douda T, Sestak V, Douda L, Karasova JZ. The pharmacokinetic parameters and the effect of a single and repeated doses of memantine on gastric myoelectric activity in experimental pigs. PLoS One 2020; 15:e0227781. [PMID: 31978146 PMCID: PMC6980640 DOI: 10.1371/journal.pone.0227781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/28/2019] [Indexed: 12/31/2022] Open
Abstract
Background Memantine, currently available for the treatment of Alzheimer's disease, is an uncompetitive antagonist of the N-methyl-D-aspartate type of glutamate receptors. Under normal physiologic conditions, these unstimulated receptor ion channels are blocked by magnesium ions, which are displaced after agonist-induced depolarization. In humans, memantine administration is associated with different gastrointestinal dysmotility side effects (vomiting, diarrhoea, constipation, motor-mediated abdominal pain), thus limiting its clinical use. Mechanism of these motility disorders has not been clarified yet. Pigs can be used in various preclinical experiments due to their relatively very similar gastrointestinal functions compared to humans. The aim of this study was to evaluate the impact of a single and repeated doses of memantine on porcine gastric myoelectric activity evaluated by means of electrogastrography (EGG). Methods Six adult female experimental pigs (Sus scrofa f. domestica, mean weight 41.7±5.0 kg) entered the study for two times. The first EGG was recorded after a single intragastric dose of memantine (20 mg). In the second part, EGG was accomplished after 7-day intragastric administration (20 mg per day). All EGG recordings were performed under general anaesthesia. Basal (15 minutes) and study recordings (120 minutes) were accomplished using an EGG stand (MMS, Enschede, the Netherlands). Running spectral analysis based on Fourier transform was used. Results were expressed as dominant frequency of gastric slow waves (DF) and power analysis (areas of amplitudes). Results Single dose of memantine significantly increased DF, from basic values (1.65±1.05 cycles per min.) to 2.86 cpm after 30 min. (p = 0.008), lasting till 75 min. (p = 0.014). Basal power (median 452; inter-quartile range 280–1312 μV^2) raised after 15 min. (median 827; IQR 224–2769; p = 0.386; NS), lasting next 30 min. Repetitively administrated memantine caused important gastric arrhythmia. Basal DF after single and repeated administration was not different, however, a DF increase in the second part was more prominent (up to 3.18±2.16 after 15 and 30 min., p<0.001). In comparison with a single dose, basal power was significantly higher after repetitively administrated memantine (median 3940; IQR 695–15023 μV^2; p<0.001). Next dose of 20 mg memantine in the second part induced a prominent drop of power after 15 min. (median 541; IQR 328–2280 μV^2; p<0.001), lasting till 120 min. (p<0.001). Conclusions Both single and repeated doses of memantine increased DF. Severe gastric arrhythmia and long-lasting low power after repeated administration might explain possible gastric dysmotility side effects in the chronic use of memantine.
Collapse
Affiliation(s)
- Jan Bures
- 2nd Department of Internal Medicine—Gastroenterology, Charles University, Faculty of Medicine in Hradec Kralove and University Hospital, Hradec Kralove, Czech Republic
- * E-mail:
| | - Jaroslav Kvetina
- 2nd Department of Internal Medicine—Gastroenterology, Charles University, Faculty of Medicine in Hradec Kralove and University Hospital, Hradec Kralove, Czech Republic
| | - Vera Radochova
- Animal Laboratory, University of Defence, Faculty of Military Health Sciences, Hradec Kralove, Czech Republic
| | - Ilja Tacheci
- 2nd Department of Internal Medicine—Gastroenterology, Charles University, Faculty of Medicine in Hradec Kralove and University Hospital, Hradec Kralove, Czech Republic
| | - Eva Peterova
- 2nd Department of Internal Medicine—Gastroenterology, Charles University, Faculty of Medicine in Hradec Kralove and University Hospital, Hradec Kralove, Czech Republic
| | - David Herman
- Department of Toxicology and Military Pharmacy, University of Defence, Faculty of Military Health Sciences, Hradec Kralove, Czech Republic
- Centre of Biomedical Research, University Hospital, Hradec Kralove, Czech Republic
| | - Rafael Dolezal
- Centre of Biomedical Research, University Hospital, Hradec Kralove, Czech Republic
| | - Marcela Kopacova
- 2nd Department of Internal Medicine—Gastroenterology, Charles University, Faculty of Medicine in Hradec Kralove and University Hospital, Hradec Kralove, Czech Republic
| | - Stanislav Rejchrt
- 2nd Department of Internal Medicine—Gastroenterology, Charles University, Faculty of Medicine in Hradec Kralove and University Hospital, Hradec Kralove, Czech Republic
| | - Tomas Douda
- 2nd Department of Internal Medicine—Gastroenterology, Charles University, Faculty of Medicine in Hradec Kralove and University Hospital, Hradec Kralove, Czech Republic
| | - Vit Sestak
- Institute of Clinical Biochemistry and Diagnostics, Charles University, Faculty of Medicine in Hradec Kralove and University Hospital, Hradec Kralove, Czech Republic
| | - Ladislav Douda
- 2nd Department of Internal Medicine—Gastroenterology, Charles University, Faculty of Medicine in Hradec Kralove and University Hospital, Hradec Kralove, Czech Republic
| | - Jana Zdarova Karasova
- Department of Toxicology and Military Pharmacy, University of Defence, Faculty of Military Health Sciences, Hradec Kralove, Czech Republic
- Centre of Biomedical Research, University Hospital, Hradec Kralove, Czech Republic
| |
Collapse
|