1
|
Zhou X, Li Q, Luo Q, Wang L, Chen J, Xiong Y, Wu G, Chang L, Liu P, Shu H. A single dose of ketamine relieves fentanyl-induced-hyperalgesia by reducing inflammation initiated by the TLR4/NF-κB pathway in rat spinal cord neurons. Drug Discov Ther 2023; 17:279-288. [PMID: 37558466 DOI: 10.5582/ddt.2023.01029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
A large amount of clinical evidence has revealed that ketamine can relieve fentanyl-induced hyperalgesia. However, the underlying mechanism is still unclear. In the current study, a single dose of ketamine (5 mg/kg or 10 mg/kg), TAK-242 (3 mg/kg), or saline was intraperitoneally injected into rats 15 min before four subcutaneous injections of fentanyl. Results revealed that pre-administration of ketamine alleviated fentanyl-induced hyperalgesia according to hind paw-pressure and paw-withdrawal tests. High-dose ketamine can reverse the expression of toll-like receptor-dimer (d-TLR4), phospho- nuclear factor kappa-B (p-NF-κB, p-p65), cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) 1 d after fentanyl injection in the spinal cord. Moreover, fentany-linduced-hyperalgesia and changes in the expression of the aforementioned proteins can be attenuated by TAK-242, an inhibitor of TLR4, as well as ketamine. Importantly, TLR4, p-p65, COX-2, and IL-1β were expressed in neurons but not in glial cells in the spinal cord 1 d after fentanyl injection. In conclusion, results suggested that a single dose of ketamine can relieve fentanyl-induced-hyperalgesia via the TLR4/NF-κB pathway in spinal cord neurons.
Collapse
Affiliation(s)
- Xin Zhou
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Department of Anesthesiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Qianyi Li
- Guangzhou Kingmylab Pharmaceutical Research Co., Ltd., Guangzhou, Guangdong, China
- Guangzhou KingMed Diagnostics Group Co., Ltd., Guangzhou, Guangdong, China
| | - Quehua Luo
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Department of Anesthesiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Le Wang
- Department of Anesthesiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiaxin Chen
- Department of Anesthesiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- School of Medicine South China University of Technology, Guangzhou, Guangdong, China
| | - Ying Xiong
- Department of Anesthesiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Guiyun Wu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Lu Chang
- Department of Anesthesiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Pingping Liu
- Department of Anesthesiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Haihua Shu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Department of Anesthesiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Chelakkot VS, Thomas K, Romigh T, Fong A, Li L, Ronen S, Chen S, Funchain P, Ni Y, Arbesman J. MC1R signaling through the cAMP-CREB/ATF-1 and ERK-NFκB pathways accelerates G1/S transition promoting breast cancer progression. NPJ Precis Oncol 2023; 7:85. [PMID: 37679505 PMCID: PMC10485002 DOI: 10.1038/s41698-023-00437-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023] Open
Abstract
MC1R, a G-protein coupled receptor, triggers ultraviolet light-induced melanin synthesis and DNA repair in melanocytes and is implicated in the pathogenesis of melanoma. Although widely expressed in different tissue types, its function in non-cutaneous tissue is relatively unknown. Herein, we demonstrate that disruptive MC1R variants associated with melanomagenesis are less frequently found in patients with several cancers. Further exploration revealed that breast cancer tissue shows a significantly higher MC1R expression than normal breast tissue, and knocking down MC1R significantly reduced cell proliferation in vitro and in vivo. Mechanistically, MC1R signaling through the MC1R-cAMP-CREB/ATF-1 and MC1R-ERK-NFκB axes accelerated the G1-S transition in breast cancer cells. Our results revealed a new association between MC1R and breast cancer, which could be potentially targeted therapeutically. Moreover, our results suggest that MC1R-enhancing/activating therapies should be used cautiously, as they might be pro-tumorigenic in certain contexts.
Collapse
Affiliation(s)
- Vipin Shankar Chelakkot
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Kiara Thomas
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Todd Romigh
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Andrew Fong
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Lin Li
- Center for Immunotherapy & Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Shira Ronen
- Department of Anatomic Pathology, Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Shuyang Chen
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Pauline Funchain
- Department of Hematology & Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Ying Ni
- Center for Immunotherapy & Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Joshua Arbesman
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Department of Dermatology, Dermatology and Plastic Surgery Institute, Cleveland Clinic, Cleveland, OH, USA.
- Department of Dermatology, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
3
|
Reddy D, Wickman JR, Ajit SK. Epigenetic regulation in opioid induced hyperalgesia. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 14:100146. [PMID: 38099284 PMCID: PMC10719581 DOI: 10.1016/j.ynpai.2023.100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023]
Abstract
About 25 million American adults experience pain daily and one of the most commonly prescribed drugs to treat pain are opioids. Prolonged opioid usage and dose escalations can cause a paradoxical response where patients experience enhanced pain sensitivity. This opioid induced hyperalgesia (OIH) is a major hurdle when treating pain in the clinic because its underlying mechanisms are still not fully understood. OIH is also commonly overlooked and lacks guidelines to prevent its onset. Research on pain disorders and opioid usage have recognized potential epigenetic drivers of disease including DNA methylation, histone modifications, miRNA regulation, but their involvement in OIH has not been well studied. This article discusses epigenetic changes that may contribute to pathogenesis, with an emphasis on miRNA alterations in OIH. There is a crucial gap in knowledge including how multiple epigenetic modulators contribute to OIH. Elucidating the epigenetic changes underlying OIH and the crosstalk among these mechanisms could lead to the development of novel targets for the prevention and treatment of this painful phenomena.
Collapse
Affiliation(s)
- Deepa Reddy
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Jason R. Wickman
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Seena K. Ajit
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| |
Collapse
|
4
|
Xie WJ, Hong JS, Feng CF, Chen HF, Li W, Li YC. Pharmacological interventions for preventing opioid-induced hyperalgesia in adults after opioid-based anesthesia: a systematic review and network meta-analysis. Front Pharmacol 2023; 14:1199794. [PMID: 37426819 PMCID: PMC10324676 DOI: 10.3389/fphar.2023.1199794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
Background: Opioid-induced hyperalgesia (OIH) is an adverse event of prolonged opioid use that increases pain intensity. The optimal drug to prevent these adverse effects is still unknown. We aimed to conduct a network meta-analysis to compare different pharmacological interventions for preventing the increase in postoperative pain intensity caused by OIH. Methods: Several databases were searched independently for randomized controlled trials (RCTs) comparing various pharmacological interventions to prevent OIH. The primary outcomes were postoperative pain intensity at rest after 24 h and the incidence of postoperative nausea and vomiting (PONV). Secondary outcomes included pain threshold at 24 h after surgery, total morphine consumption over 24 h, time to first postoperative analgesic requirement, and shivering incidence. Results: In total, 33 RCTs with 1711 patients were identified. In terms of postoperative pain intensity, amantadine, magnesium sulphate, pregabalin, dexmedetomidine, ibuprofen, flurbiprofen plus dexmedetomidine, parecoxib, parecoxib plus dexmedetomidine, and S (+)-ketamine plus methadone were all associated with milder pain intensity than placebo, with amantadine being the most effective (SUCRA values = 96.2). Regarding PONV incidence, intervention with dexmedetomidine or flurbiprofen plus dexmedetomidine resulted in a lower incidence than placebo, with dexmedetomidine showing the best result (SUCRA values = 90.3). Conclusion: Amantadine was identified as the best in controlling postoperative pain intensity and non-inferior to placebo in the incidence of PONV. Dexmedetomidine was the only intervention that outperformed placebo in all indicators. Clinical Trial Registration: https://www.crd.york.ac. uk/prospero/display_record.php?, CRD42021225361.
Collapse
Affiliation(s)
- Wei-Ji Xie
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ji-Shuang Hong
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Cheng-Fei Feng
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hao-Feng Chen
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Li
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yong-Chun Li
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
5
|
Presto P, Mazzitelli M, Junell R, Griffin Z, Neugebauer V. Sex differences in pain along the neuraxis. Neuropharmacology 2022; 210:109030. [DOI: 10.1016/j.neuropharm.2022.109030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/24/2022] [Accepted: 03/12/2022] [Indexed: 12/30/2022]
|
6
|
Shikdar N, Alghamdi F. Influence of Selective Melanocortin-4 Receptor Antagonist HS014 on Hypersensitivity After Nervous System Injuries in a Model of Rat Neuropathic Pain: A Narrative Review of the Literature. Cureus 2021; 13:e17681. [PMID: 34584810 PMCID: PMC8457013 DOI: 10.7759/cureus.17681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2021] [Indexed: 11/22/2022] Open
Abstract
Background and Objective: The melanocortin-4 (MC4) receptor has been evaluated as a possible new therapeutic for neuropathic pain treatment. The purpose of this review article was to review and evaluate all recent in vivo studies on the effect of the MC4 receptor antagonist HS014 on rat hypersensitivity caused by neuropathic pain. Methods: An electronic search was carried out using Scopus, Web of Science, PubMed, and Google Scholar. The following inclusion criteria were used: rat models of neuropathic pain-induced hypersensitivity, with investigated effects of the selective antagonist HS014. The included duration of the search was within the last ten years. Data regarding HS014, neuropathic pain model, post-treatment administration time and dose (days post-injury), behavior assessment assays, treatment frequency, and route of delivery were collected and subjected descriptively as complementary data in this narrative review. Results: This narrative review included four papers that fulfilled the eligibility criteria. The findings demonstrate that as compared to vehicle-treated rats, administration of the MC4 receptor antagonist HS014 remarkably raised paw withdrawal threshold (PWT) in three studies and heat withdrawal latency in four studies among rat models subjected to neuropathic pain. Conclusions: In rat neuropathic pain models, the MC4 receptor antagonist HS014 is helpful in reducing hypersensitivity. However, further studies are needed to determine the ideal treatment dosage and timing. In addition, further investigations are required for the role of this selective receptor antagonist (HS014) and compared with other types of MC4 receptors in neuropathic pain in humans.
Collapse
Affiliation(s)
- Narmeen Shikdar
- General Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, SAU
| | - Faisal Alghamdi
- Oral Biology, Faculty of Dentistry, King Abdulaziz University, Jeddah, SAU
| |
Collapse
|
7
|
Borrelli KN, Yao EJ, Yen WW, Phadke RA, Ruan QT, Chen MM, Kelliher JC, Langan CR, Scotellaro JL, Babbs RK, Beierle JC, Logan RW, Johnson WE, Wachman EM, Cruz-Martín A, Bryant CD. Sex Differences in Behavioral and Brainstem Transcriptomic Neuroadaptations following Neonatal Opioid Exposure in Outbred Mice. eNeuro 2021; 8:ENEURO.0143-21.2021. [PMID: 34479978 PMCID: PMC8454922 DOI: 10.1523/eneuro.0143-21.2021] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/02/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
The opioid epidemic led to an increase in the number of neonatal opioid withdrawal syndrome (NOWS) cases in infants born to opioid-dependent mothers. Hallmark features of NOWS include weight loss, severe irritability, respiratory problems, and sleep fragmentation. Mouse models provide an opportunity to identify brain mechanisms that contribute to NOWS. Neonatal outbred Swiss Webster Cartworth Farms White (CFW) mice were administered morphine (15 mg/kg, s.c.) twice daily from postnatal day 1 (P1) to P14, an approximation of the third trimester of human gestation. Female and male mice underwent behavioral testing on P7 and P14 to determine the impact of opioid exposure on anxiety and pain sensitivity. Ultrasonic vocalizations (USVs) and daily body weights were also recorded. Brainstems containing pons and medulla were collected during morphine withdrawal on P14 for RNA sequencing. Morphine induced weight loss from P2 to P14, which persisted during adolescence (P21) and adulthood (P50). USVs markedly increased at P7 in females, emerging earlier than males. On P7 and P14, both morphine-exposed female and male mice displayed hyperalgesia on the hot plate and tail-flick assays, with females showing greater hyperalgesia than males. Morphine-exposed mice exhibited increased anxiety-like behavior in the open-field arena on P21. Transcriptome analysis of the brainstem, an area implicated in opioid withdrawal and NOWS, identified pathways enriched for noradrenergic signaling in females and males. We also found sex-specific pathways related to mitochondrial function and neurodevelopment in females and circadian entrainment in males. Sex-specific transcriptomic neuroadaptations implicate unique neurobiological mechanisms underlying NOWS-like behaviors.
Collapse
Affiliation(s)
- Kristyn N Borrelli
- Laboratory of Addiction Genetics, Departments of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, Massachusetts 02118
- Graduate Program for Neuroscience, Boston University, Boston, Massachusetts 02118
- Transformative Training Program in Addiction Science, Boston University, Boston, Massachusetts 02118
- NIGMS Training Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Emily J Yao
- Laboratory of Addiction Genetics, Departments of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - William W Yen
- Neurobiology Section, Department of Biology, Boston University, Boston, Massachusetts 02215
| | - Rhushikesh A Phadke
- Neurobiology Section, Department of Biology, Boston University, Boston, Massachusetts 02215
- Molecular Biology, Cell Biology, and Biochemistry (MCBB), Boston University, Boston, Massachusetts 02215
| | - Qiu T Ruan
- Laboratory of Addiction Genetics, Departments of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, Massachusetts 02118
- Transformative Training Program in Addiction Science, Boston University, Boston, Massachusetts 02118
- NIGMS Training Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Melanie M Chen
- Laboratory of Addiction Genetics, Departments of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Julia C Kelliher
- Laboratory of Addiction Genetics, Departments of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Carly R Langan
- Laboratory of Addiction Genetics, Departments of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Julia L Scotellaro
- Laboratory of Addiction Genetics, Departments of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, Massachusetts 02118
- Undergraduate Research Opportunity Program, Boston University, Boston, Massachusetts 02118
| | - Richard K Babbs
- Laboratory of Addiction Genetics, Departments of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Jacob C Beierle
- Laboratory of Addiction Genetics, Departments of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, Massachusetts 02118
- Transformative Training Program in Addiction Science, Boston University, Boston, Massachusetts 02118
- NIGMS Training Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Ryan W Logan
- Laboratory of Sleep, Rhythms, and Addiction, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts 02118
- Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, Bar Harbor, Maine 04609
| | - William Evan Johnson
- Department of Medicine, Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Elisha M Wachman
- Department of Pediatrics, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts 02118
| | - Alberto Cruz-Martín
- Neurobiology Section, Department of Biology, Boston University, Boston, Massachusetts 02215
| | - Camron D Bryant
- Laboratory of Addiction Genetics, Departments of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, Massachusetts 02118
| |
Collapse
|
8
|
Marchette RCN, Gregory-Flores A, Tunstall BJ, Carlson ER, Jackson SN, Sulima A, Rice KC, Koob GF, Vendruscolo LF. κ-Opioid receptor antagonism reverses heroin withdrawal-induced hyperalgesia in male and female rats. Neurobiol Stress 2021; 14:100325. [PMID: 33997152 PMCID: PMC8095052 DOI: 10.1016/j.ynstr.2021.100325] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 03/18/2021] [Accepted: 04/06/2021] [Indexed: 10/29/2022] Open
Abstract
Although opioids are potent analgesics, a consequence of chronic opioid use is hyperalgesia during withdrawal, which may contribute to opioid misuse. Dynorphin, the endogenous ligand of κ-opioid receptors (KORs), is upregulated in opioid-dependent rats and in animal models of chronic pain. However, the role of KORs in opioid withdrawal-induced hyperalgesia remains to be determined. We hypothesized that KOR antagonism would reverse opioid withdrawal-induced hyperalgesia in opioid-dependent rats. Male and female Wistar rats received daily injections of heroin (2-6 mg/kg, SC) and were tested for mechanical sensitivity in the electronic von Frey test 4-6 h into withdrawal. Female rats required significantly more heroin than male rats to reach comparable levels of both heroin-induced analgesia and hyperalgesia (6 mg/kg vs. 2 mg/kg). Once hyperalgesia was established, we tested the effects of the KOR antagonists nor-binaltorphimine (norBNI; 30 mg/kg, SC) and 5'-guanidinonaltrindole (5'GNTI; 30 mg/kg, SC). When the animals continued to receive their daily heroin treatment (or saline treatment in the repeated saline group) five times per week throughout the experiment, both KOR antagonists reversed heroin withdrawal-induced hyperalgesia. The anti-hyperalgesia effect of norBNI was more prolonged in males than in females (14 days vs. 7 days), whereas 5'GNTI had more prolonged effects in females than in males (14 days vs. 4 days). The behavioral effects of 5'GNTI coincided with higher 5'GNTI levels in the brain than in plasma when measured at 24 h, whereas 5'GNTI did not reverse hyperalgesia at 30 min posttreatment when 5'GNTI levels were higher in plasma than in the brain. Finally, we tested the effects of 5'GNTI on naloxone-induced and spontaneous signs of opioid withdrawal and found no effect in either male or female rats. These findings indicate a functional role for KORs in heroin withdrawal-induced hyperalgesia that is observed in rats of both sexes.
Collapse
Affiliation(s)
- Renata C N Marchette
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | - Adriana Gregory-Flores
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | - Brendan J Tunstall
- Department of Pharmacology, Addiction Science, and Toxicology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Erika R Carlson
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | - Shelley N Jackson
- Structural Biology Core, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | - Agnieszka Sulima
- Drug Design and Synthesis Section, National Institute on Drug Abuse, Intramural Research Program, Bethesda, MD, USA
| | - Kenner C Rice
- Drug Design and Synthesis Section, National Institute on Drug Abuse, Intramural Research Program, Bethesda, MD, USA
| | - George F Koob
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | - Leandro F Vendruscolo
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| |
Collapse
|
9
|
Korczeniewska OA, Kohli D, Katzmann Rider G, Zaror C, Iturriaga V, Benoliel R. Effects of melanocortin-4 receptor (MC4R) antagonist on neuropathic pain hypersensitivity in rats - A systematic review and meta-analysis. Eur J Oral Sci 2021; 129:e12786. [PMID: 33786877 DOI: 10.1111/eos.12786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 12/09/2022]
Abstract
Melanocortin-4 receptor (MC4R) has been investigated as a potential drug target for the treatment of neuropathic pain. The objective of the study was to systematically identify the effects of MC4R antagonists on hypersensitivity in rat models of neuropathic pain. A systematic search was conducted using the following databases: WoS, PubMed, SCOPUS, and MEDLINE. Inclusion criteria were: rat hypersensitivity induced by models of neuropathic pain with reported effects of MC4R antagonist. Two researchers performed the selection process and data extraction. SYRCLE risk of bias tool was used. Standard mean differences (SMD) were calculated and pooled by meta-analysis using random effect models. Ten articles met the eligibility criteria and were included in the systematic review and meta-analysis. The results reveal that, in animals exposed to neuropathic pain, administration of MC4R antagonists significantly increased paw withdrawal threshold (SHU9119 SMD = 1.67, 95% CI: [0.91, 2.44], I2 = 0%; HS014 SMD = 2.2, 95% CI: [0.53, 3.87], I2 = 71%) and heat withdrawal latency (HS014 SMD = 3.35, 95% CI: [0.56, 6.14], I2 = 83%) compared to vehicle-treated animals. MC4R antagonists are effective in the alleviation of hypersensitivity in rodent neuropathic pain models. SHU9119 and HS014 antagonists showed the most prominent results. However, further investigation is needed to determine the optimal dose and time of treatment.
Collapse
Affiliation(s)
- Olga A Korczeniewska
- Department of Diagnostic Sciences, Center for Orofacial Pain and Temporomandibular Disorders, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Divya Kohli
- Department of Diagnostic Sciences, Center for Orofacial Pain and Temporomandibular Disorders, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Giannina Katzmann Rider
- Department of Diagnostic Sciences, Center for Orofacial Pain and Temporomandibular Disorders, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Carlos Zaror
- Center for Research in Epidemiology, Economics and Oral Public Health (CIEESPO), Faculty of Dentistry, Universidad de La Frontera, Temuco, Chile.,Faculty of Dentistry, Universidad San Sebastian, Puerto Montt, Chile
| | - Veronica Iturriaga
- Department of Integral Adult Care Dentistry, Temporomandibular Disorder and Orofacial Pain Program, Sleep & Pain Research Group, Faculty of Dentistry, Universidad de La Frontera, Temuco, Chile
| | - Rafael Benoliel
- Department of Diagnostic Sciences, Center for Orofacial Pain and Temporomandibular Disorders, Rutgers School of Dental Medicine, Newark, NJ, USA
| |
Collapse
|
10
|
Fundamental sex differences in morphine withdrawal-induced neuronal plasticity. Pain 2020; 161:2022-2034. [PMID: 32345917 DOI: 10.1097/j.pain.0000000000001901] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/21/2020] [Indexed: 12/25/2022]
Abstract
ABSTRACT Withdrawal from systemic opioids can induce long-term potentiation (LTP) at spinal C-fibre synapses ("opioid-withdrawal-LTP"). This is considered to be a cellular mechanism underlying opioid withdrawal-induced hyperalgesia, which is a major symptom of the opioid withdrawal syndrome. Opioids can activate glial cells leading to the release of proinflammatory mediators. These may influence synaptic plasticity and could thus contribute to opioid-withdrawal-LTP. Here, we report a sexual dimorphism in the mechanisms of morphine-withdrawal-LTP in adult rats. We recorded C-fibre-evoked field potentials in the spinal cord dorsal horn from deeply anaesthetised male and female rats. In both sexes, we induced a robust LTP through withdrawal from systemic morphine infusion (8 mg·kg-1 bolus, followed by a 1-hour infusion at a rate of 14 mg·kg-1·h-1). This paradigm also induced mechanical hypersensitivity of similar magnitude in both sexes. In male rats, systemic but not spinal application of (-)naloxone blocked the induction of morphine-withdrawal-LTP, suggesting the involvement of descending pronociceptive pathways. Furthermore, we showed that in male rats, the induction of morphine-withdrawal-LTP required the activation of spinal astrocytes and the release of the proinflammatory cytokines tumour necrosis factor and interleukin-1. In striking contrast, in female rats, the induction of morphine-withdrawal-LTP was independent of spinal glial cells. Instead, blocking µ-opioid receptors in the spinal cord was sufficient to prevent a facilitation of synaptic strength. Our study revealed fundamental sex differences in the mechanisms underlying morphine-withdrawal-LTP at C-fibre synapses: supraspinal and gliogenic mechanisms in males and a spinal, glial cell-independent mechanism in females.
Collapse
|
11
|
Qualitative sex differences in pain processing: emerging evidence of a biased literature. Nat Rev Neurosci 2020; 21:353-365. [PMID: 32440016 DOI: 10.1038/s41583-020-0310-6] [Citation(s) in RCA: 398] [Impact Index Per Article: 79.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
Although most patients with chronic pain are women, the preclinical literature regarding pain processing and the pathophysiology of chronic pain has historically been derived overwhelmingly from the study of male rodents. This Review describes how the recent adoption by a number of funding agencies of policies mandating the incorporation of sex as a biological variable into preclinical research has correlated with an increase in the number of studies investigating sex differences in pain and analgesia. Trends in the field are analysed, with a focus on newly published findings of qualitative sex differences: that is, those findings that are suggestive of differential processing mechanisms in each sex. It is becoming increasingly clear that robust differences exist in the genetic, molecular, cellular and systems-level mechanisms of acute and chronic pain processing in male and female rodents and humans.
Collapse
|
12
|
Willeford A, Atayee RS, Winters KD, Mesarwi P. The Enigma of Low-Dose Ketamine for Treatment of Opioid-Induced Hyperalgesia in the Setting of Psychosocial Suffering and Cancer-Associated Pain. J Pain Palliat Care Pharmacother 2019; 32:248-255. [DOI: 10.1080/15360288.2019.1615028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Lira FE, Podlipnik S, Potrony M, Tell-Martí G, Calbet-Llopart N, Barreiro A, Carrera C, Malvehy J, Puig S. Inherited MC1R variants in patients with melanoma are associated with better survival in women. Br J Dermatol 2019; 182:138-146. [PMID: 31016712 PMCID: PMC6973087 DOI: 10.1111/bjd.18024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2019] [Indexed: 01/01/2023]
Abstract
Background Women have a better melanoma prognosis, and fairer skin/hair colour. The presence of inherited MC1R variants has been associated with a better melanoma prognosis, but its interaction with sex is unknown. Objectives To evaluate the relationship between germline MC1R status and survival, and determine any association with sex. Methods This was a cohort study including 1341 patients with melanoma from the Melanoma Unit of the Hospital Clinic of Barcelona, between January 1996 and April 2018. We examined known sex‐related prognosis factors as they relate to features of melanoma and evaluated the sex‐specific role of MC1R in overall and melanoma‐specific survival. Hazard ratios (HRs) were calculated using univariate and multivariate Cox logistic regression. Results Men showed lower overall survival than women (P < 0·001) and the presence of inherited MC1R variants was not associated with better survival in our cohort. However, in women the presence of MC1R variants was associated with better overall survival in the multivariate analysis [HR 0·57, 95% confidence interval (CI) 0·38–0·85; P = 0·006] but not in men [HR 1·26, 95% CI 0·89–1·79; P = 0·185 (P‐value for interaction 0·004)]. Analysis performed for melanoma‐specific survival showed the same level of significance. Conclusions Inherited MC1R variants are associated with improved overall survival in women with melanoma but not in men. Intrinsic sex‐dependent features can modify the role of specific genes in melanoma prognosis. We believe that survival studies of patients with melanoma should include analysis by sex and MC1R genotype. What's already known about this topic? Inherited MC1R variants have been associated with a better melanoma prognosis, but their interaction with sex is unknown.
What does this study add? MC1R variants are related to better overall survival and melanoma‐specific survival in women but not in men.
What is the translational message? These differences between the sexes could imply future changes in melanoma follow‐up and treatment strategies. This provides a basis for understanding the interaction between sex‐related genes and germline variants in cancer.
https://www.bjdonline.com/article/ Linked Editorial:https://doi.org/10.1111/bjd.18555
Collapse
Affiliation(s)
- F E Lira
- Dermatology Department, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
| | - S Podlipnik
- Dermatology Department, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - M Potrony
- Dermatology Department, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Biomedical Research Networking Center on Rare Diseases (CIBERER), ISCIII, Barcelona, Spain
| | - G Tell-Martí
- Dermatology Department, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Biomedical Research Networking Center on Rare Diseases (CIBERER), ISCIII, Barcelona, Spain
| | - N Calbet-Llopart
- Dermatology Department, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - A Barreiro
- Dermatology Department, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - C Carrera
- Dermatology Department, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Biomedical Research Networking Center on Rare Diseases (CIBERER), ISCIII, Barcelona, Spain
| | - J Malvehy
- Dermatology Department, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Biomedical Research Networking Center on Rare Diseases (CIBERER), ISCIII, Barcelona, Spain
| | - S Puig
- Dermatology Department, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Biomedical Research Networking Center on Rare Diseases (CIBERER), ISCIII, Barcelona, Spain
| |
Collapse
|
14
|
|
15
|
Opioid-induced hyperalgesia in clinical anesthesia practice: what has remained from theoretical concepts and experimental studies? Curr Opin Anaesthesiol 2018; 30:458-465. [PMID: 28590258 DOI: 10.1097/aco.0000000000000485] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This article reviews the phenomenon of opioid-induced hyperalgesia (OIH) and its implications for clinical anesthesia. The goal of this review is to give an update on perioperative prevention and treatment strategies, based on findings in preclinical and clinical research. RECENT FINDINGS Several systems have been suggested to be involved in the pathophysiology of OIH with a focus on the glutaminergic system. Very recently preclinical data revealed that peripheral μ-opioid receptors (MORs) are key players in the development of OIH and acute opioid tolerance (AOT). Peripheral MOR antagonists could, thus, become a new prevention/treatment option of OIH in the perioperative setting. Although the impact of OIH on postoperative pain seems to be moderate, recent evidence suggests that increased hyperalgesia following opioid treatment correlates with the risk of developing persistent pain after surgery. In clinical practice, distinction among OIH, AOT and acute opioid withdrawal remains difficult, especially because a specific quantitative sensory test to diagnose OIH has not been validated yet. SUMMARY Since the immediate postoperative period is not ideal to initiate long-term treatment for OIH, the best strategy is to prevent its occurrence. A multimodal approach, including choice of opioid, dose limitations and addition of nonopioid analgesics, is recommended.
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW In this review, we assess the benefit of ketamine in the treatment of terminal cancer pain that is refractory to opioid treatment and/or complicated by neuropathy. RECENT FINDINGS While randomized controlled trials consistently show lack of clinical efficacy of ketamine in treating cancer pain, a large number of open-label studies and case series show benefit. SUMMARY Ketamine is an N-methyl-D-aspartate receptor antagonist that at low-dose has effective analgesic properties. In cancer pain, ketamine is usually prescribed as adjuvant to opioid therapy when pain becomes opioid resistant or when neuropathic pain symptoms dominate the clinical picture. A literature search revealed four randomized controlled trials that examined the benefit of oral, subcutaneous or intravenous ketamine in opioid refractory cancer pain. None showed clinically relevant benefit in relieving pain or reducing opioid consumption. This suggests absence of evidence of benefit for ketamine as adjuvant analgesic in cancer pain. These findings contrast the benefit from ketamine observed in a large number of open-label studies and (retrospective) case series. We relate the opposite outcomes to methodological issues. The complete picture is such that there is still insufficient evidence to state with certainty that ketamine is not effective in cancer pain.
Collapse
|
17
|
Doyle HH, Murphy AZ. Sex differences in innate immunity and its impact on opioid pharmacology. J Neurosci Res 2017; 95:487-499. [PMID: 27870418 DOI: 10.1002/jnr.23852] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/22/2016] [Accepted: 07/06/2016] [Indexed: 12/30/2022]
Abstract
Morphine has been and continues to be one of the most potent and widely used drugs for the treatment of pain. Clinical and animal models investigating sex differences in pain and analgesia demonstrate that morphine is a more potent analgesic in males than in females. In addition to binding to the neuronal μ-opioid receptor, morphine binds to the innate immune receptor toll-like receptor 4 (TLR4), located on glial cells. Activation of glial TLR4 initiates a neuroinflammatory response that directly opposes morphine analgesia. Females of many species have a more active immune system than males; however, few studies have investigated glial cells as a potential mechanism driving sexually dimorphic responses to morphine. This Mini-Review illustrates the involvement of glial cells in key processes underlying observed sex differences in morphine analgesia and suggests that targeting glia may improve current treatment strategies for pain. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hillary H Doyle
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| | - Anne Z Murphy
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| |
Collapse
|
18
|
Ericson MD, Lensing CJ, Fleming KA, Schlasner KN, Doering SR, Haskell-Luevano C. Bench-top to clinical therapies: A review of melanocortin ligands from 1954 to 2016. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2414-2435. [PMID: 28363699 PMCID: PMC5600687 DOI: 10.1016/j.bbadis.2017.03.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/21/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
Abstract
The discovery of the endogenous melanocortin agonists in the 1950s have resulted in sixty years of melanocortin ligand research. Early efforts involved truncations or select modifications of the naturally occurring agonists leading to the development of many potent and selective ligands. With the identification and cloning of the five known melanocortin receptors, many ligands were improved upon through bench-top in vitro assays. Optimization of select properties resulted in ligands adopted as clinical candidates. A summary of every melanocortin ligand is outside the scope of this review. Instead, this review will focus on the following topics: classic melanocortin ligands, selective ligands, small molecule (non-peptide) ligands, ligands with sex-specific effects, bivalent and multivalent ligands, and ligands advanced to clinical trials. Each topic area will be summarized with current references to update the melanocortin field on recent progress. This article is part of a Special Issue entitled: Melanocortin Receptors - edited by Ya-Xiong Tao.
Collapse
Affiliation(s)
- Mark D Ericson
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Cody J Lensing
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Katlyn A Fleming
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Katherine N Schlasner
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Skye R Doering
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
19
|
Melanocortin-4 receptor regulation of pain. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2515-2522. [DOI: 10.1016/j.bbadis.2017.05.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 05/18/2017] [Accepted: 05/18/2017] [Indexed: 11/17/2022]
|
20
|
Roeckel LA, Utard V, Reiss D, Mouheiche J, Maurin H, Robé A, Audouard E, Wood JN, Goumon Y, Simonin F, Gaveriaux-Ruff C. Morphine-induced hyperalgesia involves mu opioid receptors and the metabolite morphine-3-glucuronide. Sci Rep 2017; 7:10406. [PMID: 28871199 PMCID: PMC5583172 DOI: 10.1038/s41598-017-11120-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/21/2017] [Indexed: 12/14/2022] Open
Abstract
Opiates are potent analgesics but their clinical use is limited by side effects including analgesic tolerance and opioid-induced hyperalgesia (OIH). The Opiates produce analgesia and other adverse effects through activation of the mu opioid receptor (MOR) encoded by the Oprm1 gene. However, MOR and morphine metabolism involvement in OIH have been little explored. Hence, we examined MOR contribution to OIH by comparing morphine-induced hyperalgesia in wild type (WT) and MOR knockout (KO) mice. We found that repeated morphine administration led to analgesic tolerance and hyperalgesia in WT mice but not in MOR KO mice. The absence of OIH in MOR KO mice was found in both sexes, in two KO global mutant lines, and for mechanical, heat and cold pain modalities. In addition, the morphine metabolite morphine-3beta-D-glucuronide (M3G) elicited hyperalgesia in WT but not in MOR KO animals, as well as in both MOR flox and MOR-Nav1.8 sensory neuron conditional KO mice. M3G displayed significant binding to MOR and G-protein activation when using membranes from MOR-transfected cells or WT mice but not from MOR KO mice. Collectively our results show that MOR is involved in hyperalgesia induced by chronic morphine and its metabolite M3G.
Collapse
Affiliation(s)
- Laurie-Anne Roeckel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
| | - Valérie Utard
- Université de Strasbourg, Illkirch, France.,Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Illkirch, France
| | - David Reiss
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
| | - Jinane Mouheiche
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Hervé Maurin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
| | - Anne Robé
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
| | - Emilie Audouard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
| | - John N Wood
- Molecular Nociception group, Wolson Institute for Biomedical Research, University College London, WCIE 6BT, London, UK
| | - Yannick Goumon
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Frédéric Simonin
- Université de Strasbourg, Illkirch, France.,Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Illkirch, France
| | - Claire Gaveriaux-Ruff
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France. .,Université de Strasbourg, Illkirch, France. .,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France. .,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.
| |
Collapse
|
21
|
Alavian F, Ghiasvand S. GABA B receptors within the central nucleus of amygdala may involve in the morphine-induced incentive tolerance in female rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2017; 20:822-828. [PMID: 28852448 PMCID: PMC5569599 DOI: 10.22038/ijbms.2017.9018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Objective(s): Central nucleus of amygdala (CeA) is the most important region for morphine-induced reward, and GABAergic system plays an important role on morphine reinforcement. The influence of CeA administration of GABAB receptor agonist and antagonist on the expression and acquisition of morphine-induced incentive tolerance using conditioned place preference (CPP) paradigm was investigated in the present study. Our purpose was to evaluate the role of CeA GABAB receptors in morphine tolerance. Materials and Methods: Seven days after surgery and cannulation, the experiments were begun. Subcutaneous (SC) injections of morphine induced CPP. Administration of one daily dose of morphine (12.5 mg/kg) for 3 days in order to develop tolerance to the drug reduced the conditioning induced by morphine (7.5 mg/kg, SC). GABAB receptor agonist, baclofen (1.5, 6 and 12 µg/rat) or GABAB receptor antagonist, CGP35348 (1.5, 6 and 12 µg/rat) were injected into the CeA 5 min before the experiments in the test day (expression of tolerance) or 5 min before each injection of morphine (12.5 mg/kg) (acquisition of tolerance). Results: It was shown that injections of baclofen (1.5 and 12 µg/rat) reduced acquisition, whereas the dose of 6 µg/rat of the drug exacerbated the acquisition of morphine tolerance. Baclofen at all doses significantly increased the expression of tolerance to morphine. Administration of CGP35348 (1.5, 6 and 12 µg/rat) reduced the acquisition and expression of morphine tolerance. Conclusion: These results confirmed the importance of GABAB receptors with in the CeA in morphine tolerance in female rats.
Collapse
Affiliation(s)
- Firoozeh Alavian
- Department of Basic Sciences, Farhangian University, Tehran, Iran
| | - Saeedeh Ghiasvand
- Departments of Biology, Faculty of Science, Malayer University, Malayer, Iran
| |
Collapse
|
22
|
The Development of Translational Biomarkers as a Tool for Improving the Understanding, Diagnosis and Treatment of Chronic Neuropathic Pain. Mol Neurobiol 2017; 55:2420-2430. [PMID: 28361271 PMCID: PMC5840239 DOI: 10.1007/s12035-017-0492-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/14/2017] [Indexed: 12/13/2022]
Abstract
Chronic neuropathic pain (CNP) is one of the most significant unmet clinical needs in modern medicine. Alongside the lack of effective treatments, there is a great deficit in the availability of objective diagnostic methods to reliably facilitate an accurate diagnosis. We therefore aimed to determine the feasibility of a simple diagnostic test by analysing differentially expressed genes in the blood of patients diagnosed with CNP of the lower back and compared to healthy human controls. Refinement of microarray expression data was performed using correlation analysis with 3900 human 2-colour microarray experiments. Selected genes were analysed in the dorsal horn of Sprague-Dawley rats after L5 spinal nerve ligation (SNL), using qRT-PCR and ddPCR, to determine possible associations with pathophysiological mechanisms underpinning CNP and whether they represent translational biomarkers of CNP. We found that of the 15 potential biomarkers identified, tissue inhibitor of matrix metalloproteinase-1 (TIMP1) gene expression was upregulated in chronic neuropathic lower back pain (CNBP) (p = 0.0049) which positively correlated (R = 0.68, p = ≤0.05) with increased plasma TIMP1 levels in this group (p = 0.0433). Moreover, plasma TIMP1 was also significantly upregulated in CNBP than chronic inflammatory lower back pain (p = 0.0272). In the SNL model, upregulation of the Timp1 gene was also observed (p = 0.0058) alongside a strong trend for the upregulation of melanocortin 1 receptor (p = 0.0847). Our data therefore highlights several genes that warrant further investigation, and of these, TIMP1 shows the greatest potential as an accessible and translational CNP biomarker.
Collapse
|
23
|
Abstract
This paper is the thirty-eighth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2015 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
24
|
Melchior M, Poisbeau P, Gaumond I, Marchand S. Insights into the mechanisms and the emergence of sex-differences in pain. Neuroscience 2016; 338:63-80. [DOI: 10.1016/j.neuroscience.2016.05.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 05/01/2016] [Accepted: 05/05/2016] [Indexed: 12/19/2022]
|
25
|
Roeckel LA, Le Coz GM, Gavériaux-Ruff C, Simonin F. Opioid-induced hyperalgesia: Cellular and molecular mechanisms. Neuroscience 2016; 338:160-182. [PMID: 27346146 DOI: 10.1016/j.neuroscience.2016.06.029] [Citation(s) in RCA: 273] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/10/2016] [Accepted: 06/16/2016] [Indexed: 12/18/2022]
Abstract
Opioids produce strong analgesia but their use is limited by a paradoxical hypersensitivity named opioid-induced hyperalgesia (OIH) that may be associated to analgesic tolerance. In the last decades, a significant number of preclinical studies have investigated the factors that modulate OIH development as well as the cellular and molecular mechanisms underlying OIH. Several factors have been shown to influence OIH including the genetic background and sex differences of experimental animals as well as the opioid regimen. Mu opioid receptor (MOR) variants and interactions of MOR with different proteins were shown important. Furthermore, at the cellular level, both neurons and glia play a major role in OIH development. Several neuronal processes contribute to OIH, like activation of neuroexcitatory mechanisms, long-term potentiation (LTP) and descending pain facilitation. Increased nociception is also mediated by neuroinflammation induced by the activation of microglia and astrocytes. Neurons and glial cells exert synergistic effects, which contribute to OIH. The molecular actors identified include the Toll-like receptor 4 and the anti-opioid systems as well as some other excitatory molecules, receptors, channels, chemokines, pro-inflammatory cytokines or lipids. This review summarizes the intracellular and intercellular pathways involved in OIH and highlights some mechanisms that may be challenged to limit OIH in the future.
Collapse
Affiliation(s)
- Laurie-Anne Roeckel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Université de Strasbourg, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
| | - Glenn-Marie Le Coz
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Claire Gavériaux-Ruff
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Université de Strasbourg, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Ecole Supérieure de Biotechnologie de Strasbourg, Université de Strasbourg, France
| | - Frédéric Simonin
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France.
| |
Collapse
|
26
|
Oladosu FA, Conrad MS, O’Buckley SC, Rashid NU, Slade GD, Nackley AG. Mu Opioid Splice Variant MOR-1K Contributes to the Development of Opioid-Induced Hyperalgesia. PLoS One 2015; 10:e0135711. [PMID: 26270813 PMCID: PMC4535978 DOI: 10.1371/journal.pone.0135711] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/26/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND A subset of the population receiving opioids for the treatment of acute and chronic clinical pain develops a paradoxical increase in pain sensitivity known as opioid-induced hyperalgesia. Given that opioid analgesics are one of few treatments available against clinical pain, it is critical to determine the key molecular mechanisms that drive opioid-induced hyperalgesia in order to reduce its prevalence. Recent evidence implicates a splice variant of the mu opioid receptor known as MOR-1K in the emergence of opioid-induced hyperalgesia. Results from human genetic association and cell signaling studies demonstrate that MOR-1K contributes to decreased opioid analgesic responses and produces increased cellular activity via Gs signaling. Here, we conducted the first study to directly test the role of MOR-1K in opioid-induced hyperalgesia. METHODS AND RESULTS In order to examine the role of MOR-1K in opioid-induced hyperalgesia, we first assessed pain responses to mechanical and thermal stimuli prior to, during, and following chronic morphine administration. Results show that genetically diverse mouse strains (C57BL/6J, 129S6, and CXB7/ByJ) exhibited different morphine response profiles with corresponding changes in MOR-1K gene expression patterns. The 129S6 mice exhibited an analgesic response correlating to a measured decrease in MOR-1K gene expression levels, while CXB7/ByJ mice exhibited a hyperalgesic response correlating to a measured increase in MOR-1K gene expression levels. Furthermore, knockdown of MOR-1K in CXB7/ByJ mice via chronic intrathecal siRNA administration not only prevented the development of opioid-induced hyperalgesia, but also unmasked morphine analgesia. CONCLUSIONS These findings suggest that MOR-1K is likely a necessary contributor to the development of opioid-induced hyperalgesia. With further research, MOR-1K could be exploited as a target for antagonists that reduce or prevent opioid-induced hyperalgesia.
Collapse
Affiliation(s)
- Folabomi A. Oladosu
- Center of Pain Research and Innovation, University of North Carolina–Chapel Hill, Chapel Hill, NC, United States of America
| | - Matthew S. Conrad
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Sandra C. O’Buckley
- Center of Pain Research and Innovation, University of North Carolina–Chapel Hill, Chapel Hill, NC, United States of America
| | - Naim U. Rashid
- Department of Biostatistics, University of North Carolina–Chapel Hill, Chapel Hill, NC United States of America
| | - Gary D. Slade
- Center of Pain Research and Innovation, University of North Carolina–Chapel Hill, Chapel Hill, NC, United States of America
| | - Andrea G. Nackley
- Center of Pain Research and Innovation, University of North Carolina–Chapel Hill, Chapel Hill, NC, United States of America
- * E-mail:
| |
Collapse
|