1
|
Effects of early-life voluntary exercise and fructose on adult activity levels, body composition, aerobic capacity, and organ masses in mice bred for high voluntary wheel-running behavior. J Dev Orig Health Dis 2023; 14:249-260. [PMID: 36193024 DOI: 10.1017/s204017442200054x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Fructose (C6H12O6) is acutely obesogenic and is a risk factor for hypertension, cardiovascular disease, and nonalcoholic fatty liver disease. However, the possible long-lasting effects of early-life fructose consumption have not been studied. We tested for effects of early-life fructose and/or wheel access (voluntary exercise) in a line of selectively bred High Runner (HR) mice and a non-selected Control (C) line. Exposures began at weaning and continued for 3 weeks to sexual maturity, followed by a 23-week "washout" period (equivalent to ∼17 human years). Fructose increased total caloric intake, body mass, and body fat during juvenile exposure, but had no effect on juvenile wheel running and no important lasting effects on adult physical activity or body weight/composition. Interestingly, adult maximal aerobic capacity (VO2max) was reduced in mice that had early-life fructose and wheel access. Consistent with previous studies, early-life exercise promoted adult wheel running. In a 3-way interaction, C mice that had early-life fructose and no wheel access gained body mass in response to 2 weeks of adult wheel access, while all other groups lost mass. Overall, we found some long-lasting positive effects of early-life exercise, but minimal effects of early-life fructose, regardless of the mouse line.
Collapse
|
2
|
Derue H, Ribeiro-da-Silva A. Therapeutic exercise interventions in rat models of arthritis. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 13:100130. [PMID: 37179770 PMCID: PMC10172998 DOI: 10.1016/j.ynpai.2023.100130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
Arthritis is the leading cause of musculoskeletal pain and disability worldwide. Nearly 50% of individuals over the age of 65 have arthritis, which contributes to limited function, articular pain, physical inactivity, and diminished quality of life. Therapeutic exercise is often recommended in clinical settings for patients experiencing arthritic pain, however, there is little practical guidance regarding the use of therapeutic exercise to alleviate arthritic musculoskeletal pain. Rodent models of arthritis allow researchers to control experimental variables, which cannot be done with human participants, providing an opportunity to test therapeutic approaches in preclinical models. This literature review provides a summary of published findings in therapeutic exercise interventions in rat models of arthritis as well as gaps in the existing literature. We reveal that preclinical research in this field has yet to adequately investigate the impact of experimental variables in therapeutic exercise including their modality, intensity, duration, and frequency on joint pathophysiology and pain outcomes.
Collapse
Affiliation(s)
- Hannah Derue
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Alfredo Ribeiro-da-Silva
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
- Corresponding author at: Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada.
| |
Collapse
|
3
|
Rosenfeld CS. Sex-dependent differences in voluntary physical activity. J Neurosci Res 2017; 95:279-290. [PMID: 27870424 DOI: 10.1002/jnr.23896] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 07/25/2016] [Accepted: 08/01/2016] [Indexed: 12/12/2022]
Abstract
Numbers of overweight and obese individuals are increasing in the United States and globally, and, correspondingly, the associated health care costs are rising dramatically. More than one-third of children are currently considered obese with a predisposition to type 2 diabetes, and it is likely that their metabolic conditions will worsen with age. Physical inactivity has also risen to be the leading cause of many chronic, noncommunicable diseases (NCD). Children are more physically inactive now than they were in past decades, which may be due to intrinsic and extrinsic factors. In rodents, the amount of time engaged in spontaneous activity within the home cage is a strong predictor of later adiposity and weight gain. Thus, it is important to understand primary motivators stimulating physical activity (PA). There are normal sex differences in PA levels in rodents and humans. The perinatal environment can induce sex-dependent differences in PA disturbances. This Review considers the current evidence for sex differences in PA in rodents and humans. The rodent studies showing that early exposure to environmental chemicals can shape later adult PA responses are discussed. Next, whether there are different motivators stimulating exercise in male vs. female humans are examined. Finally, the brain regions, genes, and pathways that modulate PA in rodents, and possibly by translation in humans, are described. A better understanding of why each sex remains physically active through the life span could open new avenues for preventing and treating obesity in children and adults. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Cheryl S Rosenfeld
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri.,Bond Life Sciences Center University of Missouri, Columbia, Missouri.,Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, Missouri.,Genetics Area Program, University of Missouri, Columbia, Missouri
| |
Collapse
|
4
|
Hiramatsu L, Kay JC, Thompson Z, Singleton JM, Claghorn GC, Albuquerque RL, Ho B, Ho B, Sanchez G, Garland T. Maternal exposure to Western diet affects adult body composition and voluntary wheel running in a genotype-specific manner in mice. Physiol Behav 2017. [PMID: 28625550 DOI: 10.1016/j.physbeh.2017.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Some human diseases, including obesity, Type II diabetes, and numerous cancers, are thought to be influenced by environments experienced in early life, including in utero. Maternal diet during the perinatal period may be especially important for adult offspring energy balance, potentially affecting both body composition and physical activity. This effect may be mediated by the genetic background of individuals, including, for example, potential "protective" mechanisms for individuals with inherently high levels of physical activity or high basal metabolic rates. To examine some of the genetic and environmental factors that influence adult activity levels, we used an ongoing selection experiment with 4 replicate lines of mice bred for high voluntary wheel running (HR) and 4 replicate, non-selected control lines (C). Dams (half HR and half C) were fed a "Western" diet (WD, high in fat and sucrose) or a standard diet (SD) from 2weeks prior to mating until their pups could feed on solid food (14days of age). We analyzed dam and litter characteristics from birth to weaning, and offspring mass and physical activity into adulthood. One male offspring from each litter received additional metabolic and behavioral tests. Maternal WD caused pups to eat solid food significantly earlier for C litters, but not for HR litters (interaction of maternal environment and genotype). With dam mass as a covariate, mean pup mass was increased by maternal WD but litter size was unaffected. HR dams had larger litters and tended to have smaller pups than C dams. Home-cage activity of juvenile focal males was increased by maternal WD. Juvenile lean mass, fat mass, and fat percent were also increased by maternal WD, but food consumption (with body mass as a covariate) was unaffected (measured only for focal males). Behavior in an elevated plus maze, often used to indicate anxiety, was unaffected by maternal WD. Maximal aerobic capacity (VO2max) was also unaffected by maternal WD, but HR had higher VO2max than C mice. Adult lean, fat, and total body masses were significantly increased by maternal WD, with greater increase for fat than for lean mass. Overall, no aspect of adult wheel running (total distance, duration, average running speed, maximum speed) or home-cage activity was statistically affected by maternal WD. However, analysis of the 8 individual lines revealed that maternal WD significantly increased wheel running in one of the 4 HR lines. On average, all groups lost fat mass after 6days of voluntary wheel running, but the absolute amount lost was greater for mice with maternal WD resulting in no effect of maternal WD on absolute or % body fat after wheel access. All groups gained lean and total body mass during wheel access, regardless of maternal WD or linetype. Measured after wheel access, circulating leptin, adiponectin, and corticosterone concentrations were unaffected by maternal WD and did not differ between HR and C mice. With body mass as a covariate, heart ventricle mass was increased by maternal WD in both HR and C mice, but fat pads, liver, spleen, and brain masses were unaffected. As found previously, HR mice had larger brains than C mice. Body mass of grand-offspring was unaffected by grand-maternal WD, but grand-offspring wheel running was significantly increased for one HR line and decreased for another HR line by grand-maternal WD. In summary, maternal Western diet had long-lasting and general effects on offspring adult morphology, but effects on adult behavior were limited and contingent on sex and genetic background.
Collapse
Affiliation(s)
- Layla Hiramatsu
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Jarren C Kay
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Zoe Thompson
- Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA
| | | | - Gerald C Claghorn
- Department of Biology, University of California, Riverside, CA 92521, USA
| | | | - Brittany Ho
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Brett Ho
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Gabriela Sanchez
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Theodore Garland
- Department of Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
5
|
Sadowska J, Gębczyński AK, Konarzewski M. Selection for high aerobic capacity has no protective effect against obesity in laboratory mice. Physiol Behav 2017; 175:130-136. [PMID: 28363839 DOI: 10.1016/j.physbeh.2017.03.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/11/2017] [Accepted: 03/23/2017] [Indexed: 12/17/2022]
Abstract
Aerobic capacity (VO2max measured during intensive physical exercise) both trained and intrinsic (i.e. genetically determined) has recently been deemed a good predictor of cardiometabolic risks. However, the underlying mechanisms linking VO2max and health risk factors are not entirely clear, as it seems that not VO2max per se, but rather some correlated traits, like spontaneous physical activity (SPA) are responsible for sustaining the lean phenotype. Here we investigated the link between genetically determined aerobic capacity, SPA and resistance to diet-induced health risks using replicated lines of mice selected for high aerobic capacity during swimming in mid-cold water (25°C) and Randomly Bred control mice. After four months of consumption of the western type HFat and HCarb diets and no forced nor voluntary training, we found no evidence of protective effects of intrinsic high VO2max. The Selected mice displayed similar levels of blood glucose, cholesterol, triglycerides and body fat as the Random Bred control animals. Most notably we found no correlation between VO2max and SPA levels. Our results therefore call into question the ubiquity of VO2max as a predictor of metabolic health and leanness, at least in animal models.
Collapse
Affiliation(s)
- Julita Sadowska
- Institute of Biology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland.
| | - Andrzej K Gębczyński
- Institute of Biology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland
| | - Marek Konarzewski
- Institute of Biology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland
| |
Collapse
|
6
|
Garland T, Zhao M, Saltzman W. Hormones and the Evolution of Complex Traits: Insights from Artificial Selection on Behavior. Integr Comp Biol 2016; 56:207-24. [PMID: 27252193 PMCID: PMC5964798 DOI: 10.1093/icb/icw040] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although behavior may often be a fairly direct target of natural or sexual selection, it cannot evolve without changes in subordinate traits that cause or permit its expression. In principle, changes in endocrine function could be a common mechanism underlying behavioral evolution because they are well positioned to mediate integrated responses to behavioral selection. More specifically, hormones can influence both motivational (e.g., brain) and performance (e.g., muscles) components of behavior simultaneously and in a coordinated fashion. If the endocrine system is often "used" as a general mechanism to effect responses to selection, then correlated responses in other aspects of behavior, life history, and organismal performance (e.g., locomotor abilities) should commonly occur because any cell with appropriate receptors could be affected. Ways in which behavior coadapts with other aspects of the phenotype can be studied directly through artificial selection and experimental evolution. Several studies have targeted rodent behavior for selective breeding and reported changes in other aspects of behavior, life history, and lower-level effectors of these organismal traits, including endocrine function. One example involves selection for high levels of voluntary wheel running, one aspect of physical activity, in four replicate High Runner (HR) lines of mice. Circulating levels of several hormones (including insulin, testosterone, thyroxine, triiodothyronine) have been characterized, three of which-corticosterone, leptin, and adiponectin-differ between HR and control lines, depending on sex, age, and generation. Potential changes in circulating levels of other behaviorally and metabolically relevant hormones, as well as in other components of the endocrine system (e.g., receptors), have yet to be examined. Overall, results to date identify promising avenues for further studies on the endocrine basis of activity levels.
Collapse
Affiliation(s)
- Theodore Garland
- *Department of Biology, University of California, Riverside, Riverside, CA 92506, USA
| | - Meng Zhao
- *Department of Biology, University of California, Riverside, Riverside, CA 92506, USA
| | - Wendy Saltzman
- *Department of Biology, University of California, Riverside, Riverside, CA 92506, USA
| |
Collapse
|