1
|
Sturaro C, Ruzza C, Ferrari F, Pola P, Argentieri M, Frezza A, Marzola E, Bettegazzi B, Cattaneo S, Pietra C, Malfacini D, Calò G. In vitro pharmacological characterization of growth hormone secretagogue receptor ligands using the dynamic mass redistribution and calcium mobilization assays. Eur J Pharmacol 2024; 981:176880. [PMID: 39128804 DOI: 10.1016/j.ejphar.2024.176880] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Ghrelin modulates several biological functions via selective activation of the growth hormone secretagogue receptor (GHSR). GHSR agonists may be useful for the treatment of anorexia and cachexia, while antagonists and inverse agonists may represent new drugs for the treatment of metabolic and substance use disorders. Thus, the identification and pharmacodynamic characterization of new GHSR ligands is of high interest. In the present work the label-free dynamic mass redistribution (DMR) assay has been used to evaluate the pharmacological activity of a panel of GHSR ligands. This includes the endogenous peptides ghrelin, desacyl-ghrelin and LEAP2(1-14). Among synthetic compounds, the agonists anamorelin and HM01, the antagonists HM04 and YIL-781, and the inverse agonist PF-05190457 have been tested, together with HM03, R011, and H1498 from patent literature. The DMR results have been compared to those obtained in parallel experiments with the calcium mobilization assay. Ghrelin, anamorelin, HM01, and HM03 behaved as potent full GHSR agonists. YIL-781 behaved as a partial GHSR agonist and R011 as antagonist in both the assays. LEAP2(1-14) resulted a GHSR inverse agonist in DMR but not in calcium mobilization assay. PF-05190457, HM04, and H1498 behaved as GHSR inverse agonists in DMR experiments, while they acted as antagonists in calcium mobilization studies. In conclusion, this study provided a systematic pharmacodynamic characterization of several GHSR ligands in two different pharmacological assays. It demonstrated that the DMR assay can be successfully used particularly to discriminate between antagonists and inverse agonists. This study may be useful for the selection of the most appropriate compounds to be used in future studies.
Collapse
Affiliation(s)
- Chiara Sturaro
- U.O. Neurological Clinic of the University Hospital of Ferrara, Italy
| | - Chiara Ruzza
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy; LTTA Laboratory for Advanced Therapies, Technopole of Ferrara, Ferrara, Italy.
| | - Federica Ferrari
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Pietro Pola
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Michela Argentieri
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Alessia Frezza
- U.O. Neurological Clinic of the University Hospital of Ferrara, Italy
| | - Erika Marzola
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | | | | | | | - Davide Malfacini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy
| | - Girolamo Calò
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy
| |
Collapse
|
2
|
Wee RWS, Mishchanchuk K, AlSubaie R, Church TW, Gold MG, MacAskill AF. Internal-state-dependent control of feeding behavior via hippocampal ghrelin signaling. Neuron 2024; 112:288-305.e7. [PMID: 37977151 DOI: 10.1016/j.neuron.2023.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/13/2023] [Accepted: 10/12/2023] [Indexed: 11/19/2023]
Abstract
Hunger is an internal state that not only invigorates feeding but also acts as a contextual cue for higher-order control of anticipatory feeding-related behavior. The ventral hippocampus is crucial for differentiating optimal behavior across contexts, but how internal contexts such as hunger influence hippocampal circuitry is unknown. In this study, we investigated the role of the ventral hippocampus during feeding behavior across different states of hunger in mice. We found that activity of a unique subpopulation of neurons that project to the nucleus accumbens (vS-NAc neurons) increased when animals investigated food, and this activity inhibited the transition to begin eating. Increases in the level of the peripheral hunger hormone ghrelin reduced vS-NAc activity during this anticipatory phase of feeding via ghrelin-receptor-dependent increases in postsynaptic inhibition and promoted the initiation of eating. Together, these experiments define a ghrelin-sensitive hippocampal circuit that informs the decision to eat based on internal state.
Collapse
Affiliation(s)
- Ryan W S Wee
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower St., London WC1E 6BT, UK
| | - Karyna Mishchanchuk
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower St., London WC1E 6BT, UK
| | - Rawan AlSubaie
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower St., London WC1E 6BT, UK
| | - Timothy W Church
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower St., London WC1E 6BT, UK
| | - Matthew G Gold
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower St., London WC1E 6BT, UK
| | - Andrew F MacAskill
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower St., London WC1E 6BT, UK.
| |
Collapse
|
3
|
Hosseini E, Ammar A, Josephson JK, Gibson DL, Askari G, Bragazzi NL, Trabelsi K, Schöllhorn WI, Mokhtari Z. Fasting diets: what are the impacts on eating behaviors, sleep, mood, and well-being? Front Nutr 2024; 10:1256101. [PMID: 38264193 PMCID: PMC10803520 DOI: 10.3389/fnut.2023.1256101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024] Open
Abstract
Fasting diets (FDs) have drawn great attention concerning their contribution to health and disease over the last decade. Despite considerable interest in FDs, the effect of fasting diets on eating behaviors, sleep, and mood-essential components of diet satisfaction and mental health- has not been addressed comprehensively. Understanding the critical role that fasting plays in these elements will open up potential treatment avenues that have not yet been explored. The aim of the present paper was to conduct a comprehensive critical review exploring the effects of fasting on eating behaviors, sleep, and mood. There is currently a lack of clarity regarding which fasting option yields the most advantageous effects, and there is also a scarcity of consistent trials that assess the effects of FDs in a comparable manner. Similarly, the effects and/or treatment options for utilizing FDs to modify eating and sleep behaviors and enhance mood are still poorly understood. Further researches aiming at understanding the impacts of various fasting regimes, providing new insights into the gut-brain axis and offering new treatment avenues for those with resistant anxiety and depression, are warranted. Alteration of eating behaviors can have lasting effects on various physiological parameters. The use of fasting cures can underpin ancient knowledge with scientific evidence to form a new approach to the prevention and treatment of problems associated with co-morbidities or challenges pertaining to eating behaviors. Therefore, a thorough examination of the various fasting regimens and how they impact disease patterns is also warranted.
Collapse
Affiliation(s)
- Elham Hosseini
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Achraf Ammar
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
- High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
- Research Laboratory, Molecular Bases of Human Pathology, LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | | | - Deanna L. Gibson
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
- Faculty of Medicine, University of British Columbia, Kelowna, BC, Canada
| | - Gholamreza Askari
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nicola L. Bragazzi
- Human Nutrition Unit (HNU), Department of Food and Drugs, University of Parma, Parma, Italy
| | - Khaled Trabelsi
- High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | - Wolfgang I. Schöllhorn
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Zeinab Mokhtari
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Reed F, Reichenbach A, Dempsey H, Clarke RE, Mequinion M, Stark R, Rawlinson S, Foldi CJ, Lockie SH, Andrews ZB. Acute inhibition of hunger-sensing AgRP neurons promotes context-specific learning in mice. Mol Metab 2023; 77:101803. [PMID: 37690518 PMCID: PMC10523265 DOI: 10.1016/j.molmet.2023.101803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023] Open
Abstract
OBJECTIVE An environmental context, which reliably predicts food availability, can increase the appetitive food drive within the same environment context. However, hunger is required for the development of such a context-induced feeding (CIF) response, suggesting the neural circuits sensitive to hunger link an internal energy state with a particular environment context. Since Agouti related peptide (AgRP) neurons are activated by energy deficit, we hypothesised that AgRP neurons are both necessary and sufficient to drive CIF. METHODS To examine the role of AgRP neurons in the CIF process, we used fibre photometry with GCaMP7f, chemogenetic activation of AgRP neurons, as well as optogenetic control of AgRP neurons to facilitate acute temporal control not permitted with chemogenetics. RESULTS A CIF response at test was only observed when mice were fasted during context training and AgRP population activity at test showed an attenuated inhibitory response to food, suggesting increased food-seeking and/or decreased satiety signalling drives the increased feeding response at test. Intriguingly, chemogenetic activation of AgRP neurons during context training did not increase CIF, suggesting precise temporal firing properties may be required. Indeed, termination of AgRP neuronal photostimulation during context training (ON-OFF in context), in the presence or absence of food, increased CIF. Moreover, photoinhibition of AgRP neurons during context training in fasted mice was sufficient to drive a subsequent CIF in the absence of food. CONCLUSIONS Our results suggest that AgRP neurons regulate the acquisition of CIF when the acute inhibition of AgRP activity is temporally matched to context exposure. These results establish acute AgRP inhibition as a salient neural event underscoring the effect of hunger on associative learning.
Collapse
Affiliation(s)
- Felicia Reed
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, 3800, Victoria, Australia
| | - Alex Reichenbach
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, 3800, Victoria, Australia
| | - Harry Dempsey
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, 3800, Victoria, Australia
| | - Rachel E Clarke
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Mathieu Mequinion
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, 3800, Victoria, Australia
| | - Romana Stark
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, 3800, Victoria, Australia
| | - Sasha Rawlinson
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, 3800, Victoria, Australia
| | - Claire J Foldi
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, 3800, Victoria, Australia
| | - Sarah H Lockie
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, 3800, Victoria, Australia
| | - Zane B Andrews
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, 3800, Victoria, Australia.
| |
Collapse
|
5
|
Furgała A, Ciesielczyk K, Przybylska-Feluś M, Jabłoński K, Gil K, Zwolińska-Wcisło M. Postprandial effect of gastrointestinal hormones and gastric activity in patients with irritable bowel syndrome. Sci Rep 2023; 13:9420. [PMID: 37296188 PMCID: PMC10256731 DOI: 10.1038/s41598-023-36445-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
Altered gut regulation, including motor and secretory mechanisms, is characteristic of irritable bowel syndrome (IBS). The severity of postprandial symptoms in IBS patients is associated with discomfort and pain; gas-related symptoms such as bloating and abdominal distension; and abnormal colonic motility. The aim of this study was to assess the postprandial response, i.e., gut peptide secretion and gastric myoelectric activity, in patients with constipation-predominant IBS. The study was conducted on 42 IBS patients (14 males, 28 females, mean age 45.1 ± 15.3 years) and 42 healthy participants (16 males, 26 females, mean age 41.1 ± 8.7 years). The study assessed plasma gut peptide levels (gastrin, CCK-Cholecystokinin, VIP-Vasoactive Intestinal Peptide, ghrelin, insulin) and gastric myoelectric activity obtained from electrogastrography (EGG) in the preprandial and postprandial period (meal-oral nutritional supplement 300 kcal/300 ml). Mean preprandial gastrin and insulin levels were significantly elevated in IBS patients compared to the control group (gastrin: 72.27 ± 26.89 vs. 12.27 ± 4.91 pg/ml; p < 0.00001 and insulin: 15.31 ± 12.92 vs. 8.04 ± 3.21 IU/ml; p = 0.0001), while VIP and ghrelin levels were decreased in IBS patients (VIP: 6.69 ± 4.68 vs. 27.26 ± 21.51 ng/ml; p = 0.0001 and ghrelin: 176.01 ± 88.47 vs. 250.24 ± 84.55 pg/ml; p < 0.0001). A nonsignificant change in the CCK level was observed. IBS patients showed significant changes in postprandial hormone levels compared to the preprandial state-specifically, there were increases in gastrin (p = 0.000), CCK (p < 0.0001), VIP (p < 0.0001), ghrelin (p = 0.000) and insulin (p < 0.0001). Patients with IBS showed reduced preprandial and postprandial normogastria (59.8 ± 22.0 vs. 66.3 ± 20.2%) compared to control values (83.19 ± 16.7%; p < 0.0001 vs. 86.1 ± 9.4%; p < 0.0001). In response to the meal, we did not observe an increase in the percentage of normogastria or the average percentage slow-wave coupling (APSWC) in IBS patients. The postprandial to preprandial power ratio (PR) indicates alterations in gastric contractions; in controls, PR = 2.7, whereas in IBS patients, PR = 1.7, which was significantly lower (p = 0.00009). This ratio reflects a decrease in gastric contractility. Disturbances in the postprandial concentration of gut peptides (gastrin, insulin and ghrelin) in plasma may contribute to abnormal gastric function and consequently intestinal motility, which are manifested in the intensification of clinical symptoms, such as visceral hypersensitivity or irregular bowel movements in IBS patients.
Collapse
Affiliation(s)
- Agata Furgała
- Department of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18 Str, 31-121, Kraków, Poland.
| | - Katarzyna Ciesielczyk
- Department of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18 Str, 31-121, Kraków, Poland
| | - Magdalena Przybylska-Feluś
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Institute of Clinical Dietetics, Jagiellonian University Medical College, Kraków, Poland
| | - Konrad Jabłoński
- Department of Medical Education, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Krzysztof Gil
- Department of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18 Str, 31-121, Kraków, Poland
| | - Małgorzata Zwolińska-Wcisło
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Institute of Clinical Dietetics, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
6
|
Tian J, Guo L, Wang T, Jia K, Swerdlow RH, Zigman JM, Du H. Liver-expressed antimicrobial peptide 2 elevation contributes to age-associated cognitive decline. JCI Insight 2023; 8:166175. [PMID: 37212281 DOI: 10.1172/jci.insight.166175] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/31/2023] [Indexed: 05/23/2023] Open
Abstract
Elderly individuals frequently report cognitive decline, while various studies indicate hippocampal functional declines with advancing age. Hippocampal function is influenced by ghrelin through hippocampus-expressed growth hormone secretagogue receptor (GHSR). Liver-expressed antimicrobial peptide 2 (LEAP2) is an endogenous GHSR antagonist that attenuates ghrelin signaling. Here, we measured plasma ghrelin and LEAP2 levels in a cohort of cognitively normal individuals older than 60 and found that LEAP2 increased with age while ghrelin (also referred to in literature as "acyl-ghrelin") marginally declined. In this cohort, plasma LEAP2/ghrelin molar ratios were inversely associated with Mini-Mental State Examination scores. Studies in mice showed an age-dependent inverse relationship between plasma LEAP2/ghrelin molar ratio and hippocampal lesions. In aged mice, restoration of the LEAP2/ghrelin balance to youth-associated levels with lentiviral shRNA Leap2 downregulation improved cognitive performance and mitigated various age-related hippocampal deficiencies such as CA1 region synaptic loss, declines in neurogenesis, and neuroinflammation. Our data collectively suggest that LEAP2/ghrelin molar ratio elevation may adversely affect hippocampal function and, consequently, cognitive performance; thus, it may serve as a biomarker of age-related cognitive decline. Moreover, targeting LEAP2 and ghrelin in a manner that lowers the plasma LEAP2/ghrelin molar ratio could benefit cognitive performance in elderly individuals for rejuvenation of memory.
Collapse
Affiliation(s)
- Jing Tian
- Department of Pharmacology and Toxicology and
| | - Lan Guo
- Higuchi Biosciences Center, University of Kansas, Lawrence, Kansas, USA
| | - Tienju Wang
- Department of Pharmacology and Toxicology and
| | - Kun Jia
- Department of Pharmacology and Toxicology and
| | - Russell H Swerdlow
- Alzheimer's Disease Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jeffrey M Zigman
- Departments of Internal Medicine and Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Heng Du
- Department of Pharmacology and Toxicology and
- Higuchi Biosciences Center, University of Kansas, Lawrence, Kansas, USA
- Alzheimer's Disease Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
7
|
Ghrelin/GHS-R1A antagonism in memory test and its effects on central molecular signaling involved in addiction in rats. Pharmacol Biochem Behav 2023; 224:173528. [PMID: 36870422 DOI: 10.1016/j.pbb.2023.173528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/23/2022] [Accepted: 02/12/2023] [Indexed: 03/06/2023]
Abstract
Central ghrelin signaling seems to play important role in addiction as well as memory processing. Antagonism of the growth hormone secretagogue receptor (GHS-R1A) has been recently proposed as a promising tool for the unsatisfactory drug addiction therapy. However, molecular aspects of GHS-R1A involvement in specific brain regions remain unclear. The present study demonstrated for the first time that acute as well as subchronic (4 days) administration of the experimental GHS-R1A antagonist JMV2959 in usual intraperitoneal doses including 3 mg/kg, had no influence on memory functions tested in the Morris Water Maze in rats as well as no significant effects on the molecular markers linked with memory processing in selected brain areas in rats, specifically on the β-actin, c-Fos, two forms of the calcium/calmodulin-dependent protein kinase II (CaMKII, p-CaMKII) and the cAMP-response element binding protein (CREB, p-CREB), within the medial prefrontal cortex (mPFC), nucleus accumbens (NAc), dorsal striatum, and hippocampus (HIPP). Furthermore, following the methamphetamine intravenous self-administration in rats, the 3 mg/kg JMV2959 pretreatment significantly reduced or prevented the methamphetamine-induced significant decrease of hippocampal β-actin and c-Fos as well as it prevented the significant decrease of CREB in the NAC and mPFC. These results imply, that the GHS-R1A antagonist/JMV2959 might reduce/prevent some of the memory-linked molecular changes elicited by methamphetamine addiction within brain structures associated with memory (HIPP), reward (NAc), and motivation (mPFC), which may contribute to the previously observed significant JMV2959-induced reduction of the methamphetamine self-administration and drug-seeking behavior in the same animals. Further research is necessary to corroborate these results.
Collapse
|
8
|
Tian J, Du E, Jia K, Wang T, Guo L, Zigman JM, Du H. Elevated Ghrelin Promotes Hippocampal Ghrelin Receptor Defects in Humanized Amyloid-β Knockin Mice During Aging. J Alzheimers Dis 2023; 96:1579-1592. [PMID: 38007666 PMCID: PMC10841720 DOI: 10.3233/jad-231002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
BACKGROUND Emerging evidence has revealed that dysregulation of the hormone ghrelin and its receptor, growth hormone secretagogue receptor (GHSR), contributes to the pathogenesis of Alzheimer's disease (AD). Specifically, defective GHSR function and resultant hippocampal ghrelin resistance are linked to hippocampal synaptic injury in AD paradigms. Also, AD patients exhibit elevated ghrelin activation. However, the detailed molecular mechanisms of hippocampal GHSR dysfunction and the relevance of ghrelin elevation to hippocampal ghrelin resistance in AD-relevant pathological settings are not fully understood. OBJECTIVE In the current study, we employed a recently established mouse line of AD risk [humanized amyloid beta knockin (hAβ KI mice), also referred to as a mouse model of late-onset AD in previous literature] to further define the role of ghrelin system dysregulation in the development of AD. METHODS We employed multidisciplinary techniques to determine the change of plasma ghrelin and the functional status of GHSR in hAβ KI mice as well as primary neuron cultures. RESULTS We observed concurrent plasma ghrelin elevation and hippocampal GHSR desensitization with disease progression. Further examination excluded the possibility that ghrelin elevation is a compensatory change in response to GHSR dysfunction. In contrast, further in vitro and in vivo results show that agonist-mediated overstimulation potentiates GHSR desensitization through enhanced GHSR internalization. CONCLUSIONS These findings suggest that circulating ghrelin elevation is a pathological event underlying hippocampal GHSR dysfunction, culminating in hippocampal ghrelin resistance and resultant synaptic injury in late-onset AD-related settings.
Collapse
Affiliation(s)
- Jing Tian
- Department of Pharmacology and Toxicology, The University of Kansas, Lawrence, KS, USA
| | - Eric Du
- Department of Pharmacology and Toxicology, The University of Kansas, Lawrence, KS, USA
- Blue Valley West High School, Overland Park, KS, USA
| | - Kun Jia
- Department of Pharmacology and Toxicology, The University of Kansas, Lawrence, KS, USA
| | - Tienju Wang
- Department of Pharmacology and Toxicology, The University of Kansas, Lawrence, KS, USA
| | - Lan Guo
- Department of Pharmacology and Toxicology, The University of Kansas, Lawrence, KS, USA
| | - Jeffrey M. Zigman
- Department of Internal Medicine, Center for Hypothalamic Research, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Heng Du
- Department of Pharmacology and Toxicology, The University of Kansas, Lawrence, KS, USA
- Alzheimer’s disease Research Center (ADRC), Department of Neurology, The University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
9
|
Abstract
In three studies, we examined food as an elicitor of nostalgia. Study 1 participants visualised eating either a nostalgic or regularly consumed food. Study 2 participants visualised consuming 12 foods. Study 3 participants consumed 12 flavour samples. Following their food experiences, all participants responded to questions regarding the profile of food-evoked nostalgia (i.e. autobiographical relevance, arousal, familiarity, positive and negative emotions) and several psychological functions (i.e. positive affect, self-esteem, social connectedness, meaning in life). Study 2 and 3 participants also reported their state nostalgia. Results revealed that food is a powerful elicitor of nostalgia. Food-evoked nostalgia has a similar contextual profile to previously examined elicitors, but is a predominantly positive emotional experience. Food-evoked nostalgia served multiple psychological functions and predicted greater state nostalgia.
Collapse
Affiliation(s)
- Chelsea A. Reid
- Department of Psychology, College of Charleston, Charleston, SC, USA
| | - Jeffrey D. Green
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA
| | - Sophie Buchmaier
- Department of Psychology, College of Charleston, Charleston, SC, USA
| | - Devin K. McSween
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Tim Wildschut
- Department of Psychology, University of Southampton, Southampton, UK
| | | |
Collapse
|
10
|
Reich N, Hölscher C. Beyond Appetite: Acylated Ghrelin As A Learning, Memory and Fear Behavior-modulating Hormone. Neurosci Biobehav Rev 2022; 143:104952. [DOI: 10.1016/j.neubiorev.2022.104952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 04/27/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022]
|
11
|
Abstract
The modern obesogenic environment contains an abundance of food cues (e.g., sight, smell of food) as well cues that are associated with food through learning and memory processes. Food cue exposure can lead to food seeking and excessive consumption in otherwise food-sated individuals, and a high level of food cue responsivity is a risk factor for overweight and obesity. Similar food cue responses are observed in experimental rodent models, and these models are therefore useful for mechanistically identifying the neural circuits mediating food cue responsivity. This review draws from both experimental rodent models and human data to characterize the behavioral and biological processes through which food-associated stimuli contribute to overeating and weight gain. Two rodent models are emphasized - cue-potentiated feeding and Pavlovian-instrumental transfer - that provide insight in the neural circuits and peptide systems underlying food cue responsivity. Data from humans are highlighted that reveal physiological, psychological, and neural mechanisms that connect food cue responsivity with overeating and weight gain. The collective literature identifies connections between heightened food cue responsivity and obesity in both rodents and humans, and identifies underlying brain regions (nucleus accumbens, amygdala, orbitofrontal cortex, hippocampus) and endocrine systems (ghrelin) that regulate food cue responsivity in both species. These species similarities are encouraging for the possibility of mechanistic rodent model research and further human research leading to novel treatments for excessive food cue responsivity in humans.
Collapse
Affiliation(s)
- Scott E Kanoski
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Kerri N Boutelle
- Department of Pediatrics, Herbert Wertheim School of Public Health and Human Longevity Science, and Psychiatry, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
12
|
Watts AG, Kanoski SE, Sanchez-Watts G, Langhans W. The physiological control of eating: signals, neurons, and networks. Physiol Rev 2022; 102:689-813. [PMID: 34486393 PMCID: PMC8759974 DOI: 10.1152/physrev.00028.2020] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
During the past 30 yr, investigating the physiology of eating behaviors has generated a truly vast literature. This is fueled in part by a dramatic increase in obesity and its comorbidities that has coincided with an ever increasing sophistication of genetically based manipulations. These techniques have produced results with a remarkable degree of cell specificity, particularly at the cell signaling level, and have played a lead role in advancing the field. However, putting these findings into a brain-wide context that connects physiological signals and neurons to behavior and somatic physiology requires a thorough consideration of neuronal connections: a field that has also seen an extraordinary technological revolution. Our goal is to present a comprehensive and balanced assessment of how physiological signals associated with energy homeostasis interact at many brain levels to control eating behaviors. A major theme is that these signals engage sets of interacting neural networks throughout the brain that are defined by specific neural connections. We begin by discussing some fundamental concepts, including ones that still engender vigorous debate, that provide the necessary frameworks for understanding how the brain controls meal initiation and termination. These include key word definitions, ATP availability as the pivotal regulated variable in energy homeostasis, neuropeptide signaling, homeostatic and hedonic eating, and meal structure. Within this context, we discuss network models of how key regions in the endbrain (or telencephalon), hypothalamus, hindbrain, medulla, vagus nerve, and spinal cord work together with the gastrointestinal tract to enable the complex motor events that permit animals to eat in diverse situations.
Collapse
Affiliation(s)
- Alan G Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Scott E Kanoski
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Graciela Sanchez-Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, Eidgenössische Technische Hochschule-Zürich, Schwerzenbach, Switzerland
| |
Collapse
|
13
|
Giorgioni G, Del Bello F, Quaglia W, Botticelli L, Cifani C, Micioni Di Bonaventura E, Micioni Di Bonaventura MV, Piergentili A. Advances in the Development of Nonpeptide Small Molecules Targeting Ghrelin Receptor. J Med Chem 2022; 65:3098-3118. [PMID: 35157454 PMCID: PMC8883476 DOI: 10.1021/acs.jmedchem.1c02191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ghrelin is an octanoylated peptide acting by the activation of the growth hormone secretagogue receptor, namely, GHS-R1a. The involvement of ghrelin in several physiological processes, including stimulation of food intake, gastric emptying, body energy balance, glucose homeostasis, reduction of insulin secretion, and lipogenesis validates the considerable interest in GHS-R1a as a promising target for the treatment of numerous disorders. Over the years, several GHS-R1a ligands have been identified and some of them have been extensively studied in clinical trials. The recently resolved structures of GHS-R1a bound to ghrelin or potent ligands have provided useful information for the design of new GHS-R1a drugs. This perspective is focused on the development of recent nonpeptide small molecules acting as GHS-R1a agonists, antagonists, and inverse agonists, bearing classical or new molecular scaffolds, as well as on radiolabeled GHS-R1a ligands developed for imaging. Moreover, the pharmacological effects of the most studied ligands have been discussed.
Collapse
Affiliation(s)
- Gianfabio Giorgioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Luca Botticelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - E Micioni Di Bonaventura
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - M V Micioni Di Bonaventura
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - Alessandro Piergentili
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| |
Collapse
|
14
|
Espinoza-García AS, Hunot-Alexander C, Martínez-Moreno AG, Vázquez-Solorzano R, Porchas-Quijada M, Reyes-Castillo Z. IgG antibodies reacting with ghrelin and leptin are correlated with body composition and appetitive traits in young subjects. Appetite 2022; 168:105685. [PMID: 34506856 DOI: 10.1016/j.appet.2021.105685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/19/2021] [Accepted: 09/04/2021] [Indexed: 12/20/2022]
Abstract
Appetitive traits are important behavioural characteristics affecting eating and body composition. Ghrelin and leptin are two key hormones regulating appetite and metabolism. Recent studies have reported the presence of autoantibodies (autoAbs) directed to ghrelin and leptin in healthy individuals as well as affinity alterations in eating disorders such as anorexia nervosa and hyperphagic obesity. Nevertheless, the relationship of these autoAbs with appetitive traits is unknown. The goals of this exploratory study were to analyze circulating IgG autoAbs reacting to ghrelin and leptin and evaluate their relationship with body composition parameters and appetitive traits. This cross-sectional study included 180 young subjects (20 ± 2 years) that underwent body composition evaluation. Seven appetitive traits were assessed with AEBQ-Esp and were classified as low-score or high-score. A validated in-house ELISA test was performed to measure IgG ghrelin and leptin-reactive autoAbs in its free, total, and immune complexes fractions. Free IgG ghrelin-reactive were significantly higher in women than in men. Immune complexes of IgG-ghrelin were positively correlated with waist-hip ratio in the total cohort. In women, free IgG leptin-reactive were positively correlated with body fat percentage and waist-hip ratio, whereas in men, immune complexes of IgG-leptin were positively correlated with body fat percentage. Women with a low-score for 'enjoyment of food', exhibited higher levels of IgG ghrelin-reactive autoAbs on its free form than the high-score group. Men with a high-score for 'emotional undereating' had higher levels of free IgG leptin-reactive autoAbs than the low-score group. The correlation of these autoAbs with anthropometric parameters and appetitive traits in young subjects support its role as carriers and modulators of the biologic functions of ghrelin and leptin and suggest a novel role in eating behaviour through appetitive traits.
Collapse
Affiliation(s)
- Astrid Selene Espinoza-García
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición, Centro Universitario del Sur, Universidad de Guadalajara, Av. Enrique Arreola Silva No. 883, 49000, Zapotlán el Grande, Jalisco, Mexico; Laboratorio de Biotecnología y Biomedicina para la Salud, Centro Universitario del Sur, Universidad de Guadalajara, Av. Enrique Arreola Silva No. 883, 49000, Zapotlán el Grande, Jalisco, Mexico
| | - Claudia Hunot-Alexander
- Instituto de Nutrición Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Salvador Quevedo y Zubieta No. 750, 44340, Guadalajara, Jalisco, Mexico
| | - Alma G Martínez-Moreno
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición, Centro Universitario del Sur, Universidad de Guadalajara, Av. Enrique Arreola Silva No. 883, 49000, Zapotlán el Grande, Jalisco, Mexico
| | - Rafael Vázquez-Solorzano
- Laboratorio de Biotecnología y Biomedicina para la Salud, Centro Universitario del Sur, Universidad de Guadalajara, Av. Enrique Arreola Silva No. 883, 49000, Zapotlán el Grande, Jalisco, Mexico
| | - Mildren Porchas-Quijada
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición, Centro Universitario del Sur, Universidad de Guadalajara, Av. Enrique Arreola Silva No. 883, 49000, Zapotlán el Grande, Jalisco, Mexico; Laboratorio de Biotecnología y Biomedicina para la Salud, Centro Universitario del Sur, Universidad de Guadalajara, Av. Enrique Arreola Silva No. 883, 49000, Zapotlán el Grande, Jalisco, Mexico
| | - Zyanya Reyes-Castillo
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición, Centro Universitario del Sur, Universidad de Guadalajara, Av. Enrique Arreola Silva No. 883, 49000, Zapotlán el Grande, Jalisco, Mexico; Laboratorio de Biotecnología y Biomedicina para la Salud, Centro Universitario del Sur, Universidad de Guadalajara, Av. Enrique Arreola Silva No. 883, 49000, Zapotlán el Grande, Jalisco, Mexico.
| |
Collapse
|
15
|
Parent MB, Higgs S, Cheke LG, Kanoski SE. Memory and eating: A bidirectional relationship implicated in obesity. Neurosci Biobehav Rev 2022; 132:110-129. [PMID: 34813827 PMCID: PMC8816841 DOI: 10.1016/j.neubiorev.2021.10.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/17/2021] [Accepted: 10/28/2021] [Indexed: 01/03/2023]
Abstract
This paper reviews evidence demonstrating a bidirectional relationship between memory and eating in humans and rodents. In humans, amnesia is associated with impaired processing of hunger and satiety cues, disrupted memory of recent meals, and overconsumption. In healthy participants, meal-related memory limits subsequent ingestive behavior and obesity is associated with impaired memory and disturbances in the hippocampus. Evidence from rodents suggests that dorsal hippocampal neural activity contributes to the ability of meal-related memory to control future intake, that endocrine and neuropeptide systems act in the ventral hippocampus to provide cues regarding energy status and regulate learned aspects of eating, and that consumption of hypercaloric diets and obesity disrupt these processes. Collectively, this evidence indicates that diet-induced obesity may be caused and/or maintained, at least in part, by a vicious cycle wherein excess intake disrupts hippocampal functioning, which further increases intake. This perspective may advance our understanding of how the brain controls eating, the neural mechanisms that contribute to eating-related disorders, and identify how to treat diet-induced obesity.
Collapse
Affiliation(s)
- Marise B Parent
- Neuroscience Institute & Department of Psychology, Georgia State University, Box 5030, Atlanta, GA 30303-5030, United States.
| | - Suzanne Higgs
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, BI5 2TT, United Kingdom.
| | - Lucy G Cheke
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, United Kingdom.
| | - Scott E Kanoski
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, 90089-0371, United States.
| |
Collapse
|
16
|
Food intake precipitates seizures in temporal lobe epilepsy. Sci Rep 2021; 11:16515. [PMID: 34389785 PMCID: PMC8363749 DOI: 10.1038/s41598-021-96106-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/03/2021] [Indexed: 11/09/2022] Open
Abstract
Various factors have been considered as potential seizure precipitants. We here assessed the temporal association of food intake and seizure occurrence, and characteristics of seizures and epilepsy syndromes involved. 596 seizures from 100 consecutive patients undergoing long-term video-EEG monitoring were analyzed. Preictal periods of 60 min were assessed as to the occurrence of food intake, and latencies between food intake and seizure onset were analyzed. Seizures of temporal origin were highly significantly more frequently preceded by food intake compared to those of extratemporal origin; and were associated with shorter food intake-seizure latency. Seizure precipitation by food intake showed male predominance. Shorter food intake-seizure latency was associated with less severe seizures and less frequent contralateral spread of epileptic discharges. We here show for the first time that not only in specific rare reflex epilepsies but in the most frequent form of focal epilepsy, temporal lobe epilepsy, seizures are significantly precipitated by food intake. Seizure occurrence was increased over a period of up to one hour following food intake, and remained more localized in terms of both ictal EEG spread and as reflected by seizure severity. This finding supports the emerging concepts of ictogenesis, implying a continuum between reflex and spontaneous seizures-instead a dichotomy between them.
Collapse
|
17
|
Alireza Halabian, Mehranfard N, Ghasemi M, Radahmadi M, Alaei H. Chronic Standard Scheduled-Diet Improves Memory Performance and Is Associated with Positive Correlation between Plasma Ghrelin and Hippocampal Dopamine Level in Rats. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421020069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Seitz BM, Tomiyama AJ, Blaisdell AP. Eating behavior as a new frontier in memory research. Neurosci Biobehav Rev 2021; 127:795-807. [PMID: 34087276 DOI: 10.1016/j.neubiorev.2021.05.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/15/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023]
Abstract
The study of memory is commonly associated with neuroscience, aging, education, and eyewitness testimony. Here we discuss how eating behavior is also heavily intertwined-and yet considerably understudied in its relation to memory processes. Both are influenced by similar neuroendocrine signals (e.g., leptin and ghrelin) and are dependent on hippocampal functions. While learning processes have long been implicated in influencing eating behavior, recent research has shown how memory of recent eating modulates future consumption. In humans, obesity is associated with impaired memory performance, and in rodents, dietary-induced obesity causes rapid decrements to memory. Lesions to the hippocampus disrupt memory but also induce obesity, highlighting a cyclic relationship between obesity and memory impairment. Enhancing memory of eating has been shown to reduce future eating and yet, little is known about what influences memory of eating or how memory of eating differs from memory for other behaviors. We discuss recent advancements in these areas and highlight fruitful research pursuits afforded by combining the study of memory with the study of eating behavior.
Collapse
|
19
|
Mehranfard N, Halabian A, Alaei H, Radahmadi M, Bahari Z, Ghasemi M. Possible involvement of the dopamine D2 receptors of ventromedial hypothalamus in the control of free- and scheduled-feeding and plasma ghrelin level in rat. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2021; 18:711-717. [PMID: 33979902 DOI: 10.1515/jcim-2020-0250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 01/02/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES We investigated effect of the ventromedial hypothalamus (VMH) dopamine D2 receptor inhibition on food intake and plasma ghrelin following chronic free or scheduled meal with different caloric intakes. METHODS Male Wistar rats (220-250 g) were fed diets containing free (control) or three scheduled diets of standard, restricted and high-fat for 1 month. The animals stereotaxically received an intra VMH single dose of sulpiride (0.005 µg)/or saline (0.5 µL) before meal time. Thirty minutes later, food intake and circulating ghrelin were measured. RESULTS Sulpiride significantly reduced food intake and ghrelin concentration in freely fed and scheduled-standard diet (p<0.05), while increased food intake, with ghrelin level on fasted level in scheduled-restricted group (p<0.01) compared to control. Food intake and ghrelin concentration between scheduled-high fat and freely fed or scheduled-standard diets did not show significant changes. CONCLUSIONS The VMH D2 receptors are possibly involved in controlling scheduled eating behavior, depending on energy balance context.
Collapse
Affiliation(s)
- Nasrin Mehranfard
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Alireza Halabian
- Department of Biology, School of Science, Isfahan University, Isfahan, Iran
| | - Hojatallah Alaei
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Radahmadi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Bahari
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maedeh Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
20
|
Andersen T, Byrne DV, Wang QJ. How Digital Food Affects Our Analog Lives: The Impact of Food Photography on Healthy Eating Behavior. Front Psychol 2021; 12:634261. [PMID: 33889111 PMCID: PMC8056120 DOI: 10.3389/fpsyg.2021.634261] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/05/2021] [Indexed: 01/13/2023] Open
Abstract
Obesity continues to be a global issue. In recent years, researchers have started to question the role of our novel yet ubiquitous use of digital media in the development of obesity. With the recent COVID-19 outbreak affecting almost all aspects of society, many people have moved their social eating activities into the digital space, making the question as relevant as ever. The bombardment of appetizing food images and photography – colloquially referred to as “food porn” – has become a significant aspect of the digital food experience. This review presents an overview of whether and how the (1) viewing, (2) creating, and (3) online sharing of digital food photography can influence consumer eating behavior. Moreover, this review provides an outlook of future research opportunities, both to close the gaps in our scientific understanding of the physiological and psychological interaction between digital food photography and actual eating behavior, and, from a practical viewpoint, to optimize our digital food media habits to support an obesity-preventive lifestyle. We do not want to rest on the idea that food imagery’s current prevalence is a core negative influence per se. Instead, we offer the view that active participation in food photography, in conjunction with a selective use of food-related digital media, might contribute to healthy body weight management and enhanced meal pleasure.
Collapse
Affiliation(s)
- Tjark Andersen
- Food Quality Perception and Society, Department of Food Science, Faculty of Technical Sciences, Aarhus University, Aarhus, Denmark.,Sino-Danish College (SDC), University of Chinese Academy of Sciences, Beijing, China
| | - Derek Victor Byrne
- Food Quality Perception and Society, Department of Food Science, Faculty of Technical Sciences, Aarhus University, Aarhus, Denmark.,Sino-Danish College (SDC), University of Chinese Academy of Sciences, Beijing, China
| | - Qian Janice Wang
- Food Quality Perception and Society, Department of Food Science, Faculty of Technical Sciences, Aarhus University, Aarhus, Denmark.,Sino-Danish College (SDC), University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Kosugi K, Yoshida K, Suzuki T, Kobayashi K, Yoshida K, Mimura M, Tanaka KF. Activation of ventral CA1 hippocampal neurons projecting to the lateral septum during feeding. Hippocampus 2020; 31:294-304. [PMID: 33296119 PMCID: PMC7984357 DOI: 10.1002/hipo.23289] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 01/20/2023]
Abstract
A number of studies have reported the involvement of the ventral hippocampus (vHip) and the lateral septum (LS) in negative emotional responses. Besides these well‐documented functions, they are also thought to control feeding behavior. In particular, optogenetic and pharmacogenetic interventions to LS‐projecting vHip neurons have demonstrated that the vHip→LS neural circuit exerts an inhibition on feeding behavior. However, there have been no reports of vHip neuronal activity during feeding. Here, we focused on LS‐projecting vCA1 neurons (vCA1→LS) and monitored their activity during feeding behaviors in mice. vCA1→LS neurons were retrogradely labeled with adeno‐associated virus carrying a ratiometric Ca2+ indicator and measured compound Ca2+ dynamics by fiber photometry. We first examined vCA1→LS activity in random food‐exploring behavior and found that vCA1→LS activation seemed to coincide with food intake; however, our ability to visually confirm this during freely moving behaviors was not sufficiently reliable. We next examined vCA1→LS activity in a goal‐directed, food‐seeking lever‐press task which temporally divided the mouse state into preparatory, effort, and consummatory phases. We observed vCA1→LS activation in the postprandial period during the consummatory phase. Such timing‐ and pathway‐specific activation was not observed from pan‐vCA1 neurons. In contrast, reward omission eliminated this activity, indicating that vCA1→LS activation is contingent on the food reward. Sated mice pressed the lever significantly fewer times but still ate food; however, vCA1→LS neurons were not activated, suggesting that vCA1→LS neurons did not respond to habitual behavior. Combined, these results suggest that gastrointestinal interoception rather than food‐intake motions or external sensations are likely to coincide with vCA1→LS activity. Accordingly, we propose that vCA1→LS neurons discriminate between matched or unmatched predictive bodily states in which incoming food will satisfy an appetite. We also demonstrate that vCA1→LS neurons are activated in aversive/anxious situations in an elevated plus maze and tail suspension test. Future behavioral tests utilizing anxious conflict and food intake may reconcile the multiple functions of vCA1→LS neurons.
Collapse
Affiliation(s)
- Kenzo Kosugi
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Keitaro Yoshida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Toru Suzuki
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki, Japan
| | - Kazunari Yoshida
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Kenji F Tanaka
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
22
|
Sales da Silva E, Ferreira PM, Castro CH, Pacheco LF, Graziani D, Pontes CNR, Bessa ADSMD, Fernandes E, Naves LM, Ribeiro LCDS, Mendonça MM, Gomes RM, Pedrino GR, Ferreira RN, Xavier CH. Brain and kidney GHS-R1a underexpression is associated with changes in renal function and hemodynamics during neurogenic hypertension. Mol Cell Endocrinol 2020; 518:110984. [PMID: 32814069 DOI: 10.1016/j.mce.2020.110984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 10/23/2022]
Abstract
Ghrelin is a peptide hormone whose effects are mediated by the growth hormone secretagogue receptor subtype 1a (GHS-R1a), mainly expressed in the brain but also in kidneys. The hypothesis herein raised is that GHS-R1a would be player in the renal contribution to the neurogenic hypertension pathophysiology. To investigate GHS-R1a role on renal function and hemodynamics, we used Wistar (WT) and spontaneously hypertensive rats (SHR). First, we assessed the effect of systemically injected vehicle, ghrelin, GHS-R1a antagonist PF04628935, ghrelin plus PF04628935 or GHS-R1a synthetic agonist MK-677 in WT and SHR rats housed in metabolic cages (24 h). Blood and urine samples were also analyzed. Then, we assessed the GHS-R1a contribution to the control of renal vasomotion and hemodynamics in WT and SHR. Finally, we assessed the GHS-R1a levels in brain areas, aorta, renal artery, renal cortex and medulla of WT and SHR rats using western blot. We found that ghrelin and MK-677 changed osmolarity parameters of SHR, in a GHS-R1a-dependent manner. GHS-R1a antagonism reduced the urinary Na+ and K+ and creatinine clearance in WT but not in SHR. Ghrelin reduced arterial pressure and increased renal artery conductance in SHR. GHS-R1a protein levels were decreased in the kidney and brain areas of SHR when compared to WT. Therefore, GHS-R1a role in the control of renal function and hemodynamics during neurogenic hypertension seem to be different, and this may be related to brain and kidney GHS-R1a downregulation.
Collapse
Affiliation(s)
- Elder Sales da Silva
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Patrícia Maria Ferreira
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Carlos Henrique Castro
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Lilian Fernanda Pacheco
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Daniel Graziani
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Carolina Nobre Ribeiro Pontes
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Amanda de Sá Martins de Bessa
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Erika Fernandes
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Lara Marques Naves
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Larissa Cristina Dos Santos Ribeiro
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Michelle Mendanha Mendonça
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Rodrigo Mello Gomes
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Gustavo Rodrigues Pedrino
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Reginaldo Nassar Ferreira
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Carlos Henrique Xavier
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| |
Collapse
|
23
|
Davis EA, Wald HS, Suarez AN, Zubcevic J, Liu CM, Cortella AM, Kamitakahara AK, Polson JW, Arnold M, Grill HJ, de Lartigue G, Kanoski SE. Ghrelin Signaling Affects Feeding Behavior, Metabolism, and Memory through the Vagus Nerve. Curr Biol 2020; 30:4510-4518.e6. [PMID: 32946754 PMCID: PMC7674191 DOI: 10.1016/j.cub.2020.08.069] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/10/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023]
Abstract
Vagal afferent neuron (VAN) signaling sends information from the gut to the brain and is fundamental in the control of feeding behavior and metabolism [1]. Recent findings reveal that VAN signaling also plays a critical role in cognitive processes, including affective motivational behaviors and hippocampus (HPC)-dependent memory [2-5]. VANs, located in nodose ganglia, express receptors for various gut-derived peptide signals; however, the function of these receptors with regard to feeding behavior, metabolism, and memory control is poorly understood. We hypothesized that VAN-mediated processes are influenced by ghrelin, a stomach-derived orexigenic hormone, via communication to its receptor (GHSR) expressed on gut-innervating VANs. To examine this hypothesis, rats received nodose ganglia injections of an adeno-associated virus (AAV) expressing short hairpin RNAs targeting GHSR (or a control AAV) for RNAi-mediated VAN-specific GHSR knockdown. Results reveal that VAN GHSR knockdown induced various feeding and metabolic disturbances, including increased meal frequency, impaired glucose tolerance, delayed gastric emptying, and increased body weight compared to controls. Additionally, VAN-specific GHSR knockdown impaired HPC-dependent contextual episodic memory and reduced HPC brain-derived neurotrophic factor expression, but did not affect anxiety-like behavior or general activity levels. A functional role for endogenous VAN GHSR signaling was further confirmed by results revealing that VAN signaling is required for the hyperphagic effects of ghrelin administered at dark onset, and that gut-restricted ghrelin-induced increases in VAN firing rate require intact VAN GHSR expression. Collective results reveal that VAN GHSR signaling is required for both normal feeding and metabolic function as well as HPC-dependent memory.
Collapse
Affiliation(s)
- Elizabeth A Davis
- Department of Biological Sciences, Human and Evolutionary Biology Section, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Hallie S Wald
- Institute of Diabetes, Obesity and Metabolism, Graduate Groups of Psychology and Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrea N Suarez
- Department of Biological Sciences, Human and Evolutionary Biology Section, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Jasenka Zubcevic
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Clarissa M Liu
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Alyssa M Cortella
- Department of Biological Sciences, Human and Evolutionary Biology Section, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | | | - Jaimie W Polson
- School of Medical Sciences & Bosch Institute, The University of Sydney, Sydney 2006, Australia
| | - Myrtha Arnold
- Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland
| | - Harvey J Grill
- Institute of Diabetes, Obesity and Metabolism, Graduate Groups of Psychology and Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guillaume de Lartigue
- Pharmacodynamics Department, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL 32610, USA.
| | - Scott E Kanoski
- Department of Biological Sciences, Human and Evolutionary Biology Section, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
24
|
Moose JE, Leets KA, Mate NA, Chisholm JD, Hougland JL. An overview of ghrelin O-acyltransferase inhibitors: a literature and patent review for 2010-2019. Expert Opin Ther Pat 2020; 30:581-593. [PMID: 32564644 DOI: 10.1080/13543776.2020.1776263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The peptide hormone ghrelin regulates physiological processes associated with energy homeostasis such as appetite, insulin signaling, glucose metabolism, and adiposity. Ghrelin has also been implicated in a growing number of neurological pathways involved in stress response and addiction behavior. For ghrelin to bind the growth hormone secretagogue receptor 1a (GHS-R1a) and activate signaling, the hormone must first be octanoylated on a specific serine side chain. This key transformation is performed by the enzyme ghrelin O-acyltransferase (GOAT), and therefore GOAT inhibitors may be useful in treating disorders related to ghrelin signaling such as diabetes, obesity, and related metabolic syndromes. AREAS COVERED This report covers ghrelin and GOAT as potential therapeutic targets and summarizes work on GOAT inhibitors through the end of 2019, highlighting recent successes with both peptidomimetics and small molecule GOAT inhibitors as potent modulators of GOAT-catalyzed ghrelin octanoylation. EXPERT OPINION A growing body of biochemical and structural knowledge regarding the ghrelin/GOAT system now enables multiple avenues for identifying and optimizing GOAT inhibitors. We are at the beginning of a new era with increased opportunities for leveraging ghrelin and GOAT in the understanding and treatment of multiple health conditions including diabetes, obesity, and addiction.
Collapse
Affiliation(s)
- Jacob E Moose
- Department of Chemistry and BioInspired Syracuse, Syracuse University , Syracuse, NY, USA
| | - Katelyn A Leets
- Department of Chemistry and BioInspired Syracuse, Syracuse University , Syracuse, NY, USA
| | - Nilamber A Mate
- Department of Chemistry and BioInspired Syracuse, Syracuse University , Syracuse, NY, USA
| | - John D Chisholm
- Department of Chemistry and BioInspired Syracuse, Syracuse University , Syracuse, NY, USA
| | - James L Hougland
- Department of Chemistry and BioInspired Syracuse, Syracuse University , Syracuse, NY, USA
| |
Collapse
|
25
|
Suarez AN, Liu CM, Cortella AM, Noble EE, Kanoski SE. Ghrelin and Orexin Interact to Increase Meal Size Through a Descending Hippocampus to Hindbrain Signaling Pathway. Biol Psychiatry 2020; 87:1001-1011. [PMID: 31836175 PMCID: PMC7188579 DOI: 10.1016/j.biopsych.2019.10.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/01/2019] [Accepted: 10/19/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Memory and cognitive processes influence the amount of food consumed during a meal, yet the neurobiological mechanisms mediating these effects are poorly understood. The hippocampus (HPC) has recently emerged as a brain region that integrates feeding-relevant biological signals with learning and memory processes to regulate feeding. We investigated whether the gut-derived hormone ghrelin acts in the ventral HPC (vHPC) to increase meal size through interactions with gut-derived satiation signaling. METHODS Interactions between vHPC ghrelin signaling, gut-derived satiation signaling, feeding, and interoceptive discrimination learning were assessed via rodent behavioral neuropharmacological approaches. Downstream neural pathways were identified using transsynaptic virus-based tracing strategies. RESULTS vHPC ghrelin signaling counteracted the food intake-reducing effects produced by various peripheral biological satiation signals, including cholecystokinin, exendin-4 (a glucagon-like peptide-1 receptor agonist), amylin, and mechanical distension of the stomach. Furthermore, vHPC ghrelin signaling produced interoceptive cues that generalized to a perceived state of energy deficit, thereby providing a potential mechanism for the attenuation of satiation processing. Neuroanatomical tracing identified a multiorder connection from vHPC neurons to lateral hypothalamic area orexin (hypocretin)-producing neurons that project to the laterodorsal tegmental nucleus in the hindbrain. Lastly, vHPC ghrelin signaling increased spontaneous meal size via downstream orexin receptor signaling in the laterodorsal tegmental nucleus. CONCLUSIONS vHPC ghrelin signaling increases meal size by counteracting the efficacy of various gut-derived satiation signals. These effects occur via downstream orexin signaling to the hindbrain laterodorsal tegmental nucleus, thereby highlighting a novel hippocampus-hypothalamus-hindbrain pathway regulating meal size control.
Collapse
Affiliation(s)
- Andrea N. Suarez
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA.,Neuroscience Graduate Program, University of Southern California, Los Angeles, California, USA
| | - Clarissa M. Liu
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, USA
| | - Alyssa M. Cortella
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Emily E. Noble
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Scott E. Kanoski
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA.,Neuroscience Graduate Program, University of Southern California, Los Angeles, California, USA,Correspondence: Dr. Scott E. Kanoski, Department of Biological Sciences, University of Southern California, 3560 Watt Way, PED 107, Los Angeles, CA 90089-0652, USA, Tel: +1 213 821 5762, Fax: +1 213 740 6159.
| |
Collapse
|
26
|
Serrenho D, Santos SD, Carvalho AL. The Role of Ghrelin in Regulating Synaptic Function and Plasticity of Feeding-Associated Circuits. Front Cell Neurosci 2019; 13:205. [PMID: 31191250 PMCID: PMC6546032 DOI: 10.3389/fncel.2019.00205] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 04/24/2019] [Indexed: 12/21/2022] Open
Abstract
Synaptic plasticity of the neuronal circuits associated with feeding behavior is regulated by peripheral signals as a response to changes in the energy status of the body. These signals include glucose, free fatty acids, leptin and ghrelin and are released into circulation, being able to reach the brain. Ghrelin, a small peptide released from the stomach, is an orexigenic hormone produced in peripheral organs, and its action regulates food intake, body weight and glucose homeostasis. Behavioral studies show that ghrelin is implicated in the regulation of both hedonic and homeostatic feeding and of cognition. Ghrelin-induced synaptic plasticity has been described in neuronal circuits associated with these behaviors. In this review, we discuss the neuromodulatory mechanisms induced by ghrelin in regulating synaptic plasticity in three main neuronal circuits previously associated with feeding behaviors, namely hypothalamic (homeostatic feeding), ventral tegmental (hedonic and motivational feeding) and hippocampal (cognitive) circuits. Given the central role of ghrelin in regulating feeding behaviors, and the altered ghrelin levels associated with metabolic disorders such as obesity and anorexia, it is of paramount relevance to understand the effects of ghrelin on synaptic plasticity of neuronal circuits associated with feeding behaviors.
Collapse
Affiliation(s)
- Débora Serrenho
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal.,PhD Program in Experimental Biology and Biomedicine (PDBEB), University of Coimbra, Coimbra, Portugal
| | - Sandra D Santos
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Ana Luísa Carvalho
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
27
|
Chapelot D, Charlot K. Physiology of energy homeostasis: Models, actors, challenges and the glucoadipostatic loop. Metabolism 2019; 92:11-25. [PMID: 30500561 DOI: 10.1016/j.metabol.2018.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/25/2018] [Accepted: 11/19/2018] [Indexed: 12/16/2022]
Abstract
The aim of this review is to discuss the physiology of energy homeostasis (EH), which is a debated concept. Thus, we will see that the set-point theory is highly challenged and that other models integrating an anticipative component, such as energy allostasis, seem more relevant to experimental reports and life preservation. Moreover, the current obesity epidemic suggests that EH is poorly efficient in the modern human dietary environment. Non-homeostatic phenomena linked to hedonism and reward seem to profoundly impair EH. In this review, the apparent failed homeostatic responses to energy challenges such as exercise, cafeteria diet, overfeeding and diet-induced weight loss, as well as their putative determinants, are analyzed to highlight the mechanisms of EH. Then, the hormonal, neuronal, and metabolic factors of energy intake or energy expenditure are briefly presented. Last, this review focuses on the contributions of two of the most pivotal and often overlooked determinants of EH: the availability of endogenous energy and the pattern of energy intake. A glucoadipostatic loop model is finally proposed to link energy stored in adipose tissue to EH through changes in eating behavior via leptin and sympathetic nervous system activity.
Collapse
Affiliation(s)
- Didier Chapelot
- Université Paris 13, Centre de Recherche en Epidémiologie et Statistique, Equipe de Recherche en Epidémiologie Nutritionnelle (EREN), Inserm (U1153), Inra (U1125), Cnam, Bobigny, France.
| | - Keyne Charlot
- Institut de Recherche Biomédicale des Armées, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Département Environnements Opérationnels, Brétigny-sur-Orge, France
| |
Collapse
|
28
|
The impact of fasting on resting state brain networks in mice. Sci Rep 2019; 9:2976. [PMID: 30814613 PMCID: PMC6393589 DOI: 10.1038/s41598-019-39851-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 02/04/2019] [Indexed: 11/18/2022] Open
Abstract
Fasting is known to influence learning and memory in mice and alter the neural networks that subserve these cognitive functions. We used high-resolution functional MRI to study the impact of fasting on resting-state functional connectivity in mice following 12 h of fasting. The cortex and subcortex were parcellated into 52 subregions and functional connectivity was measured between each pair of subregions in groups of fasted and non-fasted mice. Functional connectivity was globally increased in the fasted group compared to the non-fasted group, with the most significant increases evident between the hippocampus (bilateral), retrosplenial cortex (left), visual cortex (left) and auditory cortex (left). Functional brain networks in the non-fasted group comprised five segregated modules of strongly interconnected subregions, whereas the fasted group comprised only three modules. The amplitude of low frequency fluctuations (ALFF) was decreased in the ventromedial hypothalamus in the fasted group. Correlation in gamma oscillations derived from local field potentials was increased between the left visual and retrosplenial cortices in the fasted group and the power of gamma oscillations was reduced in the ventromedial hypothalamus. These results indicate that fasting induces profound changes in functional connectivity, most likely resulting from altered coupling of neuronal gamma oscillations.
Collapse
|
29
|
Davidson TL, Jones S, Roy M, Stevenson RJ. The Cognitive Control of Eating and Body Weight: It's More Than What You "Think". Front Psychol 2019; 10:62. [PMID: 30814963 PMCID: PMC6381074 DOI: 10.3389/fpsyg.2019.00062] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 01/10/2019] [Indexed: 12/18/2022] Open
Abstract
Over the past decade, a great deal of research has established the importance of cognitive processes in the control of energy intake and body weight. The present paper begins by identifying several of these cognitive processes. We then summarize evidence from human and nonhuman animal models, which shows how excess intake of obesity-promoting Western diet (WD) may have deleterious effects on these cognitive control processes. Findings that these effects may be manifested as early-life deficits in cognitive functioning and may also be associated with the emergence of serious late-life cognitive impairment are described. Consistent with these possibilities, we review evidence, obtained primarily from rodent models, that consuming a WD is associated with the emergence of pathophysiologies in the hippocampus, an important brain substrate for learning, memory, and cognition. The implications of this research for mechanism are discussed within the context of a “vicious-cycle model,” which describes how eating a WD could impair hippocampal function, producing cognitive deficits that promote increased WD intake and body weight gain, which could contribute to further hippocampal dysfunction, cognitive decline, and excess eating and weight gain.
Collapse
Affiliation(s)
- Terry L Davidson
- Center for Behavioral Neuroscience, Department of Psychology, American University, Washington, DC, United States
| | - Sabrina Jones
- Center for Behavioral Neuroscience, Department of Psychology, American University, Washington, DC, United States
| | - Megan Roy
- Center for Behavioral Neuroscience, Department of Psychology, American University, Washington, DC, United States
| | | |
Collapse
|
30
|
Bastos AEP, Costa PF, Varderidou-Minasian S, Altelaar M, Lima PA. Feeding cycle alters the biophysics and molecular expression of voltage-gated Na + currents in rat hippocampal CA1 neurones. Eur J Neurosci 2018; 49:1418-1435. [PMID: 30588669 DOI: 10.1111/ejn.14331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 12/04/2018] [Accepted: 12/14/2018] [Indexed: 11/28/2022]
Abstract
The function of hippocampus as a hub for energy balance is a subject of broad and current interest. This study aims at providing more evidence on this regard by addressing the effects of feeding cycle on the voltage-gated sodium (Na+ ) currents of acutely isolated Wistar rat hippocampal CA1 neurones. Specifically, by applying patch clamp techniques (whole cell voltage clamp and single channel in inside-out patches) we assessed the influence of feeding and fasting conditions on the intrinsic biophysical properties of Na+ currents. Additionally, mass spectrometry and western blotting experiments were used to address the effect of feeding cycle over the Na+ channel population of the rat hippocampus. Na+ currents were recorded in neurones obtained from fed and fasted animals (here termed "fed neurones" and "fasted neurones", respectively). Whole cell Na+ currents of fed neurones, as compared to fasted neurones, showed increased mean maximum current density and a higher "window current" amplitude. We demonstrate that these results are supported by an increased single channel Na+ conductance in fed neurones and, also, by a greater Nav1.2 channel density in plasma membrane-enriched fractions of fed samples (but not in whole hippocampus preparations). These results imply fast variations on the biophysics and molecular expression of Na+ currents of rat hippocampal CA1 neurones, throughout the feeding cycle. Thus, one may expect a differentiated regulation of the intrinsic neuronal excitability, which may account for the role of the hippocampus as a processor of satiety information.
Collapse
Affiliation(s)
- André E P Bastos
- Department of Chemistry and Biochemistry, Centre of Chemistry and Biochemistry, Faculty of Sciences University of Lisbon, Lisbon, Portugal.,Department of Physiology, Nova Medical School/Faculdade de Ciências Médicas, Lisbon, Portugal.,Sea4Us, Biotechnology and Marine Resources, Lda., Sagres, Portugal
| | - Pedro F Costa
- Department of Physiology, Nova Medical School/Faculdade de Ciências Médicas, Lisbon, Portugal
| | | | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Utrecht University, Utrecht, The Netherlands
| | - Pedro A Lima
- Department of Physiology, Nova Medical School/Faculdade de Ciências Médicas, Lisbon, Portugal.,Sea4Us, Biotechnology and Marine Resources, Lda., Sagres, Portugal
| |
Collapse
|
31
|
The role of fatty acids and their endocannabinoid-like derivatives in the molecular regulation of appetite. Mol Aspects Med 2018; 64:45-67. [DOI: 10.1016/j.mam.2018.01.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/05/2018] [Accepted: 01/07/2018] [Indexed: 02/07/2023]
|
32
|
Huang R, Tian S, Cai R, Sun J, Shen Y, Wang S. Ethnicity-Specific Association Between Ghrelin Leu72Met Polymorphism and Type 2 Diabetes Mellitus Susceptibility: An Updated Meta-Analysis. Front Genet 2018; 9:541. [PMID: 30487812 PMCID: PMC6246653 DOI: 10.3389/fgene.2018.00541] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 10/26/2018] [Indexed: 01/14/2023] Open
Abstract
Background: The Leu72Met polymorphism of ghrelin gene has been associated with genetic predisposition to type 2 diabetes mellitus (T2DM), while conclusions remain conflicting. Hence, we performed this updated meta-analysis to clarify the association between Leu72Met polymorphism and T2DM susceptibility. Methods: Six electronic databases were consulted for articles published before 1 January, 2018. Pooled odds ratios (OR) and 95% confidence intervals (CI) were calculated under five genetic models to assess this association. We used I 2-test and Q statistics to measure heterogeneity across the included studies. Subgroup analyses and publication bias were also performed. Results: Thirteen case-control studies involving 4720 T2DM patients and 4206 controls were included in this meta-analysis. The overall results using fixed-effects models showed that Leu72Met polymorphism was significantly associated with an increased risk of T2DM under homozygous model (OR = 1.307, 95%CI 1.001-1.705, p = 0.049). Further subgroup analyses stratified by ethnicity revealed that the risk for T2DM was only increased in Asians (homozygous model: OR = 1.335, 95%CI 1.014-1.758, p = 0.040), while decreased in Caucasians (dominant model: OR = 0.788, 95%CI 0.635-0.978, p = 0.030; heterozygous model: OR = 0.779, 95%CI 0.626-0.969, p = 0.025; allelic model: OR = 0.811, 95%CI 0.661-0.995, p = 0.045). Funnel plots were basically symmetrical, and all p-values of Egger's test under five genetic models were >0.050, which indicated no evidence of publication bias. Conclusions: Our results demonstrate that the Leu72Met polymorphism of ghrelin gene may be protective against T2DM in Caucasians, while predisposing to T2DM in Asians.
Collapse
Affiliation(s)
- Rong Huang
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China.,Medical School of Southeast University, Nanjing, China
| | - Sai Tian
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Rongrong Cai
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Jie Sun
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Yanjue Shen
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Shaohua Wang
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| |
Collapse
|
33
|
Martínez Damonte V, Rodríguez SS, Raingo J. Growth hormone secretagogue receptor constitutive activity impairs voltage-gated calcium channel-dependent inhibitory neurotransmission in hippocampal neurons. J Physiol 2018; 596:5415-5428. [PMID: 30199095 DOI: 10.1113/jp276256] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Presynaptic CaV 2 voltage-gated calcium channels link action potentials arriving at the presynaptic terminal to neurotransmitter release. Hence, their regulation is essential to fine tune brain circuitry. CaV 2 channels are highly sensitive to G protein-coupled receptor (GPCR) modulation. Our previous data indicated that growth hormone secretagogue receptor (GHSR) constitutive activity impairs CaV 2 channels by decreasing their surface density. We present compelling support for the impact of CaV 2.2 channel inhibition by agonist-independent GHSR activity exclusively on GABA release in hippocampal cultures. We found that this selectivity arises from a high reliance of GABA release on CaV 2.2 rather than on CaV 2.1 channels. Our data provide new information on the effects of the ghrelin-GHSR system on synaptic transmission, suggesting a putative physiological role of the constitutive signalling of a GPCR that is expressed at high levels in brain areas with restricted access to its natural agonist. ABSTRACT Growth hormone secretagogue receptor (GHSR) displays high constitutive activity, independent of its endogenous ligand, ghrelin. Unlike ghrelin-induced GHSR activity, the physiological role of GHSR constitutive activity and the mechanisms that underlie GHSR neuronal modulation remain elusive. We previously demonstrated that GHSR constitutive activity modulates presynaptic CaV 2 voltage-gated calcium channels. Here we postulate that GHSR constitutive activity-mediated modulation of CaV 2 channels could be relevant in the hippocampus since this brain area has high GHSR expression but restricted access to ghrelin. We performed whole-cell patch-clamp in hippocampal primary cultures from E16- to E18-day-old C57BL6 wild-type and GHSR-deficient mice after manipulating GHSR expression with lentiviral transduction. We found that GHSR constitutive activity impairs CaV 2.1 and CaV 2.2 native calcium currents and that CaV 2.2 basal impairment leads to a decrease in GABA but not glutamate release. We postulated that this selective effect is related to a higher CaV 2.2 over CaV 2.1 contribution to GABA release (∼40% for CaV 2.2 in wild-type vs. ∼20% in wild-type GHSR-overexpressing cultures). This effect of GHSR constitutive activity is conserved in hippocampal brain slices, where GHSR constitutive activity reduces local GABAergic transmission of the granule cell layer (intra-granule cell inhibitory postsynaptic current (IPSC) size ∼-67 pA in wild-type vs. ∼-100 pA in GHSR-deficient mice), whereas the glutamatergic output from the dentate gyrus to CA3 remains unchanged. In summary, we found that GHSR constitutive activity impairs IPSCs both in hippocampal primary cultures and in brain slices through a CaV 2-dependent mechanism without affecting glutamatergic transmission.
Collapse
Affiliation(s)
- Valentina Martínez Damonte
- Multidisciplinary Institute of Cell Biology (IMBICE), National Council of Science and Technology (CONICET), Buenos Aires Comision of Science (CIC) and La Plata University (UNLP), La Plata, Argentina
| | - Silvia Susana Rodríguez
- Multidisciplinary Institute of Cell Biology (IMBICE), National Council of Science and Technology (CONICET), Buenos Aires Comision of Science (CIC) and La Plata University (UNLP), La Plata, Argentina
| | - Jesica Raingo
- Multidisciplinary Institute of Cell Biology (IMBICE), National Council of Science and Technology (CONICET), Buenos Aires Comision of Science (CIC) and La Plata University (UNLP), La Plata, Argentina
| |
Collapse
|
34
|
Farokhnia M, Lee MR, Farinelli LA, Ramchandani VA, Akhlaghi F, Leggio L. Pharmacological manipulation of the ghrelin system and alcohol hangover symptoms in heavy drinking individuals: Is there a link? Pharmacol Biochem Behav 2018; 172:39-49. [PMID: 30030128 DOI: 10.1016/j.pbb.2018.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/23/2018] [Accepted: 07/16/2018] [Indexed: 12/14/2022]
Abstract
Ghrelin, an orexigenic peptide synthesized in the stomach, is a key player in the gut-brain axis. In addition to its role in regulating food intake and energy homeostasis, ghrelin has been shown to modulate alcohol-related behaviors. Alcohol consumption frequently results in hangover, an underexplored phenomenon with considerable medical, psychological, and socioeconomic consequences. While the pathophysiology of hangover is not clear, contributions of mechanisms such as alcohol-induced metabolic/endocrine changes, inflammatory/immune response, oxidative stress, and gut dysbiosis have been reported. Interestingly, these mechanisms considerably overlap with ghrelin's physiological functions. Here, we investigated whether pharmacological manipulation of the ghrelin system may affect alcohol hangover symptoms. Data were obtained from two placebo-controlled laboratory studies. The first study tested the effects of intravenous (IV) ghrelin and consisted of two experiments: a progressive-ratio IV alcohol self-administration (IV-ASA) and a fixed-dose IV alcohol clamp. The second study tested the effects of an oral ghrelin receptor inverse agonist (PF-5190457) and included a fixed-dose oral alcohol administration experiment. Alcohol hangover data were collected the morning after each alcohol administration experiment using the Acute Hangover Scale (AHS). IV ghrelin, compared to placebo, significantly reduced alcohol hangover after IV-ASA (p = 0.04) and alcohol clamp (p = 0.04); PF-5190457 had no significant effect on AHS scores. Females reported significantly higher hangover symptoms than males following the IV-ASA experiment (p = 0.04), but no gender × drug condition (ghrelin vs. placebo) effect was found. AHS total scores were positively correlated with peak subjective responses, including 'stimulation' (p = 0.08), 'sedation' (p = 0.009), 'feel high' (p = 0.05), and 'feel intoxicated' (p = 0.03) during the IV-ASA. IV ghrelin blunted the positive association between alcohol sedation and hangover as shown by trend-level drug × sedation effect (p = 0.08). This is the first study showing that exogenous ghrelin administration, but not ghrelin receptor inverse agonism, affects hangover symptoms. Future research should investigate the potential mechanism(s) underlying this effect.
Collapse
Affiliation(s)
- Mehdi Farokhnia
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Mary R Lee
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Lisa A Farinelli
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Vijay A Ramchandani
- Section on Human Psychopharmacology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Fatemeh Akhlaghi
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA; Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, USA.
| |
Collapse
|
35
|
Fu Y, Weiss CR, Paudel K, Shin EJ, Kedziorek D, Arepally A, Anders RA, Kraitchman DL. Bariatric Arterial Embolization: Effect of Microsphere Size on the Suppression of Fundal Ghrelin Expression and Weight Change in a Swine Model. Radiology 2018; 289:83-89. [PMID: 29989526 DOI: 10.1148/radiol.2018172874] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Purpose To determine whether microsphere size effects ghrelin expression and weight gain after selective bariatric arterial embolization (BAE) in swine. Materials and Methods BAE was performed in 10 swine by using smaller (100-300 μm; n = 5) or larger (300-500 μm; n = 5) calibrated microspheres into gastric arteries. Nine control pigs underwent a sham procedure. Weight and fasting plasma ghrelin levels were measured at baseline and weekly for 16 weeks. Ghrelin-expressing cells (GECs) in the stomach were assessed by using immunohistochemical staining and analyzed by using the Wilcoxon rank-sum test. Results In pigs treated with smaller microspheres, mean weight gain at 16 weeks (106.9% ± 15.0) was less than in control pigs (131.9% ± 11.6) (P < .001). Mean GEC density was lower in the gastric fundus (14.8 ± 6.3 vs 25.0 ± 6.9, P < .001) and body (27.5 ± 12.3 vs 37.9 ± 11.8, P = .004) but was not significantly different in the gastric antrum (28.2 ± 16.3 vs 24.3 ± 11.6, P = .84) and duodenum (9.2 ± 3.8 vs 8.7 ± 2.9, P = .66) versus in control pigs. BAE with larger microspheres failed to suppress weight gain or GECs in any stomach part compared with results in control swine. Plasma ghrelin levels were similar between BAE pigs and control pigs, regardless of microsphere size. Week 1 endoscopic evaluation for gastric ulcers revealed none in control pigs, five ulcers in five pigs embolized by using smaller microspheres, and three ulcers in five pigs embolized by using larger microspheres. Conclusion In bariatric arterial embolization, smaller microspheres rather than larger microspheres showed greater weight gain suppression and fundal ghrelin expression with more gastric ulceration in a swine model. © RSNA, 2018.
Collapse
Affiliation(s)
- Yingli Fu
- From the Russell H. Morgan Department of Radiology and Radiological Science (Y.F., C.R.W., K.P., D.K., D.L.K.), Department of Gastroenterology (E.J.S.), and Department of Pathology (R.A.A.), the Johns Hopkins University School of Medicine, 1800 Orleans St, Zayed Tower 7203, Baltimore, MD 21287; and Department of Radiology, Piedmont Healthcare, Atlanta, Ga (A.A.)
| | - Clifford R Weiss
- From the Russell H. Morgan Department of Radiology and Radiological Science (Y.F., C.R.W., K.P., D.K., D.L.K.), Department of Gastroenterology (E.J.S.), and Department of Pathology (R.A.A.), the Johns Hopkins University School of Medicine, 1800 Orleans St, Zayed Tower 7203, Baltimore, MD 21287; and Department of Radiology, Piedmont Healthcare, Atlanta, Ga (A.A.)
| | - Kalyan Paudel
- From the Russell H. Morgan Department of Radiology and Radiological Science (Y.F., C.R.W., K.P., D.K., D.L.K.), Department of Gastroenterology (E.J.S.), and Department of Pathology (R.A.A.), the Johns Hopkins University School of Medicine, 1800 Orleans St, Zayed Tower 7203, Baltimore, MD 21287; and Department of Radiology, Piedmont Healthcare, Atlanta, Ga (A.A.)
| | - Eun-Ji Shin
- From the Russell H. Morgan Department of Radiology and Radiological Science (Y.F., C.R.W., K.P., D.K., D.L.K.), Department of Gastroenterology (E.J.S.), and Department of Pathology (R.A.A.), the Johns Hopkins University School of Medicine, 1800 Orleans St, Zayed Tower 7203, Baltimore, MD 21287; and Department of Radiology, Piedmont Healthcare, Atlanta, Ga (A.A.)
| | - Dorota Kedziorek
- From the Russell H. Morgan Department of Radiology and Radiological Science (Y.F., C.R.W., K.P., D.K., D.L.K.), Department of Gastroenterology (E.J.S.), and Department of Pathology (R.A.A.), the Johns Hopkins University School of Medicine, 1800 Orleans St, Zayed Tower 7203, Baltimore, MD 21287; and Department of Radiology, Piedmont Healthcare, Atlanta, Ga (A.A.)
| | - Aravind Arepally
- From the Russell H. Morgan Department of Radiology and Radiological Science (Y.F., C.R.W., K.P., D.K., D.L.K.), Department of Gastroenterology (E.J.S.), and Department of Pathology (R.A.A.), the Johns Hopkins University School of Medicine, 1800 Orleans St, Zayed Tower 7203, Baltimore, MD 21287; and Department of Radiology, Piedmont Healthcare, Atlanta, Ga (A.A.)
| | - Robert A Anders
- From the Russell H. Morgan Department of Radiology and Radiological Science (Y.F., C.R.W., K.P., D.K., D.L.K.), Department of Gastroenterology (E.J.S.), and Department of Pathology (R.A.A.), the Johns Hopkins University School of Medicine, 1800 Orleans St, Zayed Tower 7203, Baltimore, MD 21287; and Department of Radiology, Piedmont Healthcare, Atlanta, Ga (A.A.)
| | - Dara L Kraitchman
- From the Russell H. Morgan Department of Radiology and Radiological Science (Y.F., C.R.W., K.P., D.K., D.L.K.), Department of Gastroenterology (E.J.S.), and Department of Pathology (R.A.A.), the Johns Hopkins University School of Medicine, 1800 Orleans St, Zayed Tower 7203, Baltimore, MD 21287; and Department of Radiology, Piedmont Healthcare, Atlanta, Ga (A.A.)
| |
Collapse
|
36
|
Liu CM, Kanoski SE. Homeostatic and non-homeostatic controls of feeding behavior: Distinct vs. common neural systems. Physiol Behav 2018; 193:223-231. [PMID: 29421588 DOI: 10.1016/j.physbeh.2018.02.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/02/2018] [Accepted: 02/03/2018] [Indexed: 02/06/2023]
Abstract
Understanding the neurobiological controls of feeding behavior is critical in light of the growing obesity pandemic, a phenomenon largely based on excessive caloric consumption. Feeding behavior and its underlying biological substrates are frequently divided in the literature into two separate categories: [1] homeostatic processes involving energy intake based on caloric and other metabolic deficits, and [2] non-homeostatic processes that involve feeding driven by environmental and cognitive factors. The present review summarizes both historic and recent research examining the homeostatic regulation of feeding with specific emphasis on hypothalamic and hindbrain circuitry that monitor and regulate various metabolic signals. Regarding non-homeostatic controls, we highlight higher-order brain structures that integrate feeding-relevant external, interoceptive, and cognitive factors, including sensory cortical processing, learned associations in the hippocampus, and reward-based processing in the nucleus accumbens and interconnected mesolimbic circuitry. Finally, the current review focuses on recent evidence that challenges the traditional view that distinct neural systems regulate homeostatic vs. non-homeostatic controls of feeding behavior. Specifically, we highlight several feeding-related endocrine systems that act on both lower- and higher-order substrates, present evidence for the modulation of learned and cognitive feeding-relevant behaviors by lower-order brain regions, and highlight data showing that apparent homeostatic-based feeding behavior is modulated by higher-order brain regions. Our concluding perspective is that the classic dissociation between homeostatic and non-homeostatic constructs in relation to feeding behavior is limited with regards to understanding the complex integrated neurobiological systems that control energy balance.
Collapse
Affiliation(s)
- Clarissa M Liu
- University of Southern California, Neuroscience Graduate Program, Los Angeles, CA, United States; University of Southern California, Department of Biological Sciences, Human and Evolutionary Biology Section, Los Angeles, CA, United States
| | - Scott E Kanoski
- University of Southern California, Neuroscience Graduate Program, Los Angeles, CA, United States; University of Southern California, Department of Biological Sciences, Human and Evolutionary Biology Section, Los Angeles, CA, United States.
| |
Collapse
|
37
|
Hsu TM, Noble EE, Reiner DJ, Liu CM, Suarez AN, Konanur VR, Hayes MR, Kanoski SE. Hippocampus ghrelin receptor signaling promotes socially-mediated learned food preference. Neuropharmacology 2017; 131:487-496. [PMID: 29191751 DOI: 10.1016/j.neuropharm.2017.11.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/12/2017] [Accepted: 11/23/2017] [Indexed: 12/24/2022]
Abstract
Social cues are potent regulators of feeding behavior, yet the neurobiological mechanisms through which social cues influence food intake are poorly understood. Here we investigate the hypothesis that the appetite-promoting gut-derived hormone, ghrelin, signals in the hippocampus to promote learned social aspects of feeding behavior. We utilized a procedure known as 'social transmission of food preference' (STFP) in which rats ('Observers') experience a social interaction with another rat ('Demonstrators') that recently consumed flavored/scented chow. STFP learning in Observer rats is indicated by a significant preference for the Demonstrator paired flavor of chow vs. a novel unpaired flavor of chow in a subsequent consumption choice test. Our results show that relative to vehicle treatment, ghrelin targeted to the ventral CA1 subregion of the hippocampus (vHP) enhanced STFP learning in rats. Additionally, STFP was impaired following peripheral injections of l-cysteine that reduce circulating ghrelin levels, suggesting that vHP ghrelin-mediated effects on STFP require peripheral ghrelin release. Finally, the endogenous relevance of vHP ghrelin receptor (GHSR-1A) signaling in STFP is supported by our data showing that STFP learning was eliminated following targeted viral vector RNA interference-mediated knockdown of vHP GHSR-1A mRNA. Control experiments indicate that vHP ghrelin-mediated STFP effects are not secondary to altered social exploration and food intake, nor to altered food preference learning based on nonsocial olfactory cues. Overall these data reveal a novel neurobiological system that promotes conditioned, social aspects of feeding behavior.
Collapse
Affiliation(s)
- Ted M Hsu
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA; Neuroscience Program, University of Southern California, Los Angeles, CA, USA
| | - Emily E Noble
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - David J Reiner
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Clarissa M Liu
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA; Neuroscience Program, University of Southern California, Los Angeles, CA, USA
| | - Andrea N Suarez
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Vaibhav R Konanur
- Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, IL, USA
| | - Matthew R Hayes
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Scott E Kanoski
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA; Neuroscience Program, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
38
|
Gangadharan A, Choi SE, Hassan A, Ayoub NM, Durante G, Balwani S, Kim YH, Pecora A, Goy A, Suh KS. Protein calorie malnutrition, nutritional intervention and personalized cancer care. Oncotarget 2017; 8:24009-24030. [PMID: 28177923 PMCID: PMC5410360 DOI: 10.18632/oncotarget.15103] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 01/23/2017] [Indexed: 12/27/2022] Open
Abstract
Cancer patients often experience weight loss caused by protein calorie malnutrition (PCM) during the course of the disease or treatment. PCM is expressed as severe if the patient has two or more of the following characteristics: obvious significant muscle wasting, loss of subcutaneous fat; nutritional intake of <50% of recommended intake for 2 weeks or more; bedridden or otherwise significantly reduced functional capacity; weight loss of >2% in 1 week, 5% in 1 month, or 7.5% in 3 months. Cancer anorexia-cachexia syndrome (CACS) is a multifactorial condition of advanced PCM associated with underlying illness (in this case cancer) and is characterized by loss of muscle with or without loss of fat mass. Cachexia is defined as weight loss of more than 5% of body weight in 12 months or less in the presence of chronic disease. Hence with a chronic illness on board even a small amount of weight loss can open the door to cachexia. These nutritional challenges can lead to severe morbidity and mortality in cancer patients. In the clinic, the application of personalized medicine and the ability to withstand the toxic effects of anti-cancer therapies can be optimized when the patient is in nutritional homeostasis and is free of anorexia and cachexia. Routine assessment of nutritional status and appropriate intervention are essential components of the effort to alleviate effects of malnutrition on quality of life and survival of patients.
Collapse
Affiliation(s)
- Anju Gangadharan
- The Genomics and Biomarkers Program, JT Cancer Center, Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ, USA
| | - Sung Eun Choi
- Department of Family, Nutrition, and Exercise Sciences, Queens College, The City University of New York, Flushing, NY, USA
| | - Ahmed Hassan
- The Genomics and Biomarkers Program, JT Cancer Center, Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ, USA
| | - Nehad M Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Gina Durante
- Department of Clinical Nutrition, Baystate Medical Center, Springfield, MA, USA
| | - Sakshi Balwani
- The Genomics and Biomarkers Program, JT Cancer Center, Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ, USA
| | - Young Hee Kim
- Department of Clinical Nutrition, Baystate Medical Center, Springfield, MA, USA
| | - Andrew Pecora
- Clinical Divisions, JT Cancer Center, Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ, USA
| | - Andre Goy
- Clinical Divisions, JT Cancer Center, Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ, USA
| | - K Stephen Suh
- The Genomics and Biomarkers Program, JT Cancer Center, Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ, USA
| |
Collapse
|
39
|
Huang R, Han J, Tian S, Cai R, Sun J, Shen Y, Wang S. Association of plasma ghrelin levels and ghrelin rs4684677 polymorphism with mild cognitive impairment in type 2 diabetic patients. Oncotarget 2017; 8:15126-15135. [PMID: 28146431 PMCID: PMC5362472 DOI: 10.18632/oncotarget.14852] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/16/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND AIMS People with insulin resistance and type 2 diabetes mellitus (T2DM) are at increased risks of cognitive impairment. We aimed to investigate the association of plasma ghrelin levels and ghrelin rs4684677 polymorphism with mild cognitive impairment (MCI) in T2DM patients. RESULTS In addition to elevated glycosylated hemoglobin (HbA1c), fasting blood glucose (FBG) and homeostasis model assessment of insulin resistance (HOMA-IR), T2DM patients with MCI had decreased plasma ghrelin levels compared with their healthy-cognition subjects (all p < 0.05). Further logistic regression analysis showed that ghrelin level was one of independent factors for MCI in T2DM patients (p < 0.05). Moreover, partial correlation analysis demonstrated that ghrelin levels were positively associated with the scores of Montreal Cognitive Assessment (r = 0.196, p = 0.041) and Auditory Verbal Learning Test-delayed recall (r = 0.197, p = 0.040) after adjustment for HbA1c, FBG and HOMA-IR, wherein the latter represented episodic memory functions. No significant differences were found for the distributions of genotype and allele of ghrelin rs4684677 polymorphism between MCI and control group. MATERIALS AND METHODS A total of 218 T2DM patients, with 112 patients who satisfied the MCI diagnostic criteria and 106 who exhibited healthy cognition, were enrolled in this study. Demographic characteristics, clinical variables and cognitive performances were extensively assessed. Plasma ghrelin levels and ghrelin rs4684677 polymorphism were also determined. CONCLUSIONS Our results suggest that decreased ghrelin levels are associated with MCI, especially with episodic memory dysfunction in T2DM populations.
Collapse
Affiliation(s)
- Rong Huang
- Department of Endocrinology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, PR China, 210009.,Medical School of Southeast University, Nanjing, PR China, 210009
| | - Jing Han
- Department of Endocrinology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, PR China, 210009
| | - Sai Tian
- Department of Endocrinology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, PR China, 210009
| | - Rongrong Cai
- Department of Endocrinology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, PR China, 210009
| | - Jie Sun
- Department of Endocrinology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, PR China, 210009
| | - Yanjue Shen
- Department of Endocrinology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, PR China, 210009
| | - Shaohua Wang
- Department of Endocrinology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, PR China, 210009
| |
Collapse
|
40
|
Zallar LJ, Farokhnia M, Tunstall BJ, Vendruscolo LF, Leggio L. The Role of the Ghrelin System in Drug Addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 136:89-119. [PMID: 29056157 DOI: 10.1016/bs.irn.2017.08.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the past years, a significant volume of research has implicated the appetitive hormone ghrelin in the mechanisms underlying drug use and addiction. From a neuroscientific standpoint, ghrelin modulates both reward and stress pathways, two key drivers of substance use behaviors. Previous investigations support a connection between the ghrelin system and alcohol, stimulants, and tobacco use in both animals and humans, while the research on opioids and cannabis is scarce. In general, upregulation of the ghrelin system seems to enhance craving for drugs as well as substances use. On the other hand, acute and chronic exposure to drugs of abuse influences the ghrelin system at different levels. This chapter summarizes the literature on the relationship between the ghrelin system and substance-related behaviors. We also review recent work investigating the ghrelin system as a potential pharmacological target for treating substance use disorders and discuss the need for additional research.
Collapse
Affiliation(s)
- Lia J Zallar
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, United States; Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Mehdi Farokhnia
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, United States
| | - Brendan J Tunstall
- Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Leandro F Vendruscolo
- Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, United States; Center for Alcohol and Addiction Studies, Brown University, Providence, RI, United States.
| |
Collapse
|
41
|
Simon JJ, Wetzel A, Sinno MH, Skunde M, Bendszus M, Preissl H, Enck P, Herzog W, Friederich HC. Integration of homeostatic signaling and food reward processing in the human brain. JCI Insight 2017; 2:92970. [PMID: 28768906 DOI: 10.1172/jci.insight.92970] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/23/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Food intake is guided by homeostatic needs and by the reward value of food, yet the exact relation between the two remains unclear. The aim of this study was to investigate the influence of different metabolic states and hormonal satiety signaling on responses in neural reward networks. METHODS Twenty-three healthy participants underwent functional magnetic resonance imaging while performing a task distinguishing between the anticipation and the receipt of either food- or monetary-related reward. Every participant was scanned twice in a counterbalanced fashion, both during a fasted state (after 24 hours fasting) and satiety. A functional connectivity analysis was performed to investigate the influence of satiety signaling on activation in neural reward networks. Blood samples were collected to assess hormonal satiety signaling. RESULTS Fasting was associated with sensitization of the striatal reward system to the anticipation of food reward irrespective of reward magnitude. Furthermore, during satiety, individual ghrelin levels were associated with increased neural processing during the expectation of food-related reward. CONCLUSIONS Our findings show that physiological hunger stimulates food consumption by specifically increasing neural processing during the expectation (i.e., incentive salience) but not the receipt of food-related reward. In addition, these findings suggest that ghrelin signaling influences hedonic-driven food intake by increasing neural reactivity during the expectation of food-related reward. These results provide insights into the neurobiological underpinnings of motivational processing and hedonic evaluation of food reward. TRIAL REGISTRATION ClinicalTrials.gov NCT03081585. FUNDING This work was supported by the German Competence Network on Obesity, which is funded by the German Federal Ministry of Education and Research (FKZ 01GI1122E).
Collapse
Affiliation(s)
- Joe J Simon
- Department of General Internal Medicine and Psychosomatics, Centre for Psychosocial Medicine, University Hospital Heidelberg, Heidelberg, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Anne Wetzel
- Department of General Internal Medicine and Psychosomatics, Centre for Psychosocial Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Maria Hamze Sinno
- Department of General Internal Medicine and Psychosomatics, Centre for Psychosocial Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Mandy Skunde
- Department of General Internal Medicine and Psychosomatics, Centre for Psychosocial Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany; Internal Medicine VI and Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany; Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, University of Tübingen, Tübingen, Germany; and German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Paul Enck
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, Tübingen, Germany
| | - Wolfgang Herzog
- Department of General Internal Medicine and Psychosomatics, Centre for Psychosocial Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Hans-Christoph Friederich
- Department of General Internal Medicine and Psychosomatics, Centre for Psychosocial Medicine, University Hospital Heidelberg, Heidelberg, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
42
|
Hannapel RC, Henderson YH, Nalloor R, Vazdarjanova A, Parent MB. Ventral hippocampal neurons inhibit postprandial energy intake. Hippocampus 2017; 27:274-284. [PMID: 28121049 DOI: 10.1002/hipo.22692] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2016] [Indexed: 12/12/2022]
Abstract
Evidence suggests that the memory of a recently ingested meal limits subsequent intake. Given that ventral hippocampal (vHC) neurons are involved in memory and energy intake, the present experiment tested the hypothesis that vHC neurons contribute to the formation of a memory of a meal and inhibit energy intake during the postprandial period. We tested (1) whether pharmacological inactivation of vHC neurons during the period following a sucrose meal, when the memory of the meal would be undergoing consolidation, accelerates the onset of the next sucrose meal and increases intake and (2) whether sucrose intake increases vHC expression of the synaptic plasticity marker activity-regulated cytoskeletal-associated protein (Arc). Adult male Sprague-Dawley rats were trained to consume a 32% sucrose solution daily at the same time and location. On the experimental day, the rats were given intra-vHC infusions of the GABAA receptor agonist muscimol or vehicle after they finished their first sucrose meal. Compared to vehicle infusions, postmeal intra-vHC muscimol infusions decreased the latency to the next sucrose meal, increased the amount of sucrose consumed during that meal, increased the total number of sucrose meals and the total amount of sucrose ingested. In addition, rats that consumed sucrose had higher levels of Arc expression in both vHC CA1 and CA3 subfields than cage control rats. Collectively, these findings are the first to show that vHC neurons inhibit energy intake during the postprandial period and support the hypothesis that vHC neurons form a memory of a meal and inhibit subsequent intake. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Yoko H Henderson
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| | - Rebecca Nalloor
- Neuroscience Institute, Augusta Biomedical Research Corporation, Charlie Norwood VA Medical Center, 950 15th Street, Augusta, Georgia
| | - Almira Vazdarjanova
- Department of Pharmacology and Toxicology, Augusta University, 1120 15th Street, CB 3526, Augusta, Georgia.,VA Research Service, Charlie Norwood VA Medical Center, 950 15th Street, Augusta, Georgia
| | - Marise B Parent
- Neuroscience Institute, Georgia State University, Atlanta, Georgia.,Department of Psychology, Georgia State University, Atlanta, Georgia
| |
Collapse
|