1
|
Coimbra VC, Rodrigues J, Santos Dos Santos R, Rodrigues RB, Streit-Jr D, de Souza Caldas AL, do Nascimento Albuquerque ES, da Silva Ferreira EJ, Maximino C, de Siqueira-Silva DH. Cryopreserved sperm does not affect larval ontogeny and quality in Rhamdia quelen. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:42. [PMID: 39907872 DOI: 10.1007/s10695-025-01455-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
Fish sperm cryopreservation is an important technique for optimizing juvenile production in aquaculture stations and laboratories and contributing to the conservation of endangered species. Despite its benefits, the cryopreservation process can cause cellular damage, affecting spermatozoa quality and offspring viability. This study aimed to evaluate the larval development of jundiá Rhamdia quelen originating from cryopreserved sperm. Larvae were obtained from artificial reproduction using oocyte samples from four females combined with fresh (Control) or cryopreserved/thawed sperm. The semen was diluted in the cryoprotective solution (1:3 ratio) consisting of skimmed milk powder (5%), methanol (10%), and fructose (5%), and was packaged into 0.25 mL straws. The straws were then stored and cooled in liquid nitrogen vapor for 18 h. The straws were individually warmed in a water bath at 25 °C for 10 s to thaw the samples. The experiments were performed in triplicates. Sperm quality, fertilization, hatching, and larval development were evaluated. After larval hatching, six larval collections were performed (5, 10, 15, 20, and 25 days after hatching), and 15 larvae were sampled per collection per treatment. Cryopreservation reduced sperm motility (70.48 ± 7.70 fresh to 41.36 ± 4.80 cryopreserved semen), progressivity (3874 fresh to 2505 cryopreserved semen), and beat cross frequency (55.83 ± 155 fresh to 50.22 ± 190 cryopreserved semen). Increased the percentage of sperm with abnormal morphology and increased most sperm pathologies. Furthermore, the fertilization rate was lower in the cryopreserved group (63.1 ± 18, and 83.72 ± 7.59 for fresh semen), while hatching was not different between groups (65.3 ± 18.05 fresh, 48.89 ± 21.77 cryopreserved semen) Otherwise, the initial larval development morphology showed no difference in the appearance of structures such as the presence of the vitelline structure, pigmentation pattern, development of the anal pore, embryonic membrane, eye, barbells, notochord flexion, and fin rays, for both treatments. There was no significant difference in the frequency of structures between larvae from fresh and cryopreserved/thawed sperm, revealing a similar developmental pattern in both treatments. In conclusion, the cryopreservation protocol affects sperm quality; however, those sperm able to fertilize the oocytes originate normal larvae with regular larval development of R. quelen up to 25 days old.
Collapse
Affiliation(s)
- Vanessa Conceição Coimbra
- Group of Studies On the Reproduction of Amazon Fish (GERPA/LaNeC), Biology Faculty (FACBIO), University Federal of South and Southern of Pará (Unifesspa), Marabá, Pará, Brazil
- Neuroscience and Behavior Laboratory Frederico Guilherme Graeff (LANEC), Institute of Healthy and Biologics Studies, Psychology University, Federal University of South and Southern of Pará, Av. Dos Ipês, Marabá, S/NPará, 68507-590, Brazil
- Graduate Program in Animal Reproduction in the Amazon (ReproAmazon), Federal Rural University of the Amazon (Ufra) and Federal University of Pará (UFPA), Av. Presidente Tancredo Neves, N° 2501, Terra Firme, Belém, Pará, 66.077-830, Brazil
| | - Jeane Rodrigues
- Group of Studies On the Reproduction of Amazon Fish (GERPA/LaNeC), Biology Faculty (FACBIO), University Federal of South and Southern of Pará (Unifesspa), Marabá, Pará, Brazil
- Neuroscience and Behavior Laboratory Frederico Guilherme Graeff (LANEC), Institute of Healthy and Biologics Studies, Psychology University, Federal University of South and Southern of Pará, Av. Dos Ipês, Marabá, S/NPará, 68507-590, Brazil
- Graduate Program in Animal Reproduction in the Amazon (ReproAmazon), Federal Rural University of the Amazon (Ufra) and Federal University of Pará (UFPA), Av. Presidente Tancredo Neves, N° 2501, Terra Firme, Belém, Pará, 66.077-830, Brazil
| | - Raquel Santos Dos Santos
- Group of Studies On the Reproduction of Amazon Fish (GERPA/LaNeC), Biology Faculty (FACBIO), University Federal of South and Southern of Pará (Unifesspa), Marabá, Pará, Brazil
- Neuroscience and Behavior Laboratory Frederico Guilherme Graeff (LANEC), Institute of Healthy and Biologics Studies, Psychology University, Federal University of South and Southern of Pará, Av. Dos Ipês, Marabá, S/NPará, 68507-590, Brazil
- AQUAM (Aquatic Species Production and Conservation) at the Aquaculture Laboratory of the Department of Animal Science, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, Rio Grande Do Sul, Brazil
| | - Rômulo Batista Rodrigues
- Veterinary Science Research Program, Federal University of Rio Grande Do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Danilo Streit-Jr
- AQUAM (Aquatic Species Production and Conservation) at the Aquaculture Laboratory of the Department of Animal Science, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, Rio Grande Do Sul, Brazil
- Veterinary Science Research Program, Federal University of Rio Grande Do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Ana Luiza de Souza Caldas
- Group of Studies On the Reproduction of Amazon Fish (GERPA/LaNeC), Biology Faculty (FACBIO), University Federal of South and Southern of Pará (Unifesspa), Marabá, Pará, Brazil
- Neuroscience and Behavior Laboratory Frederico Guilherme Graeff (LANEC), Institute of Healthy and Biologics Studies, Psychology University, Federal University of South and Southern of Pará, Av. Dos Ipês, Marabá, S/NPará, 68507-590, Brazil
| | - Eduardo Silva do Nascimento Albuquerque
- Group of Studies On the Reproduction of Amazon Fish (GERPA/LaNeC), Biology Faculty (FACBIO), University Federal of South and Southern of Pará (Unifesspa), Marabá, Pará, Brazil
- Neuroscience and Behavior Laboratory Frederico Guilherme Graeff (LANEC), Institute of Healthy and Biologics Studies, Psychology University, Federal University of South and Southern of Pará, Av. Dos Ipês, Marabá, S/NPará, 68507-590, Brazil
| | - Evagno Junior da Silva Ferreira
- Group of Studies On the Reproduction of Amazon Fish (GERPA/LaNeC), Biology Faculty (FACBIO), University Federal of South and Southern of Pará (Unifesspa), Marabá, Pará, Brazil
- Neuroscience and Behavior Laboratory Frederico Guilherme Graeff (LANEC), Institute of Healthy and Biologics Studies, Psychology University, Federal University of South and Southern of Pará, Av. Dos Ipês, Marabá, S/NPará, 68507-590, Brazil
- Graduate Program in Animal Reproduction in the Amazon (ReproAmazon), Federal Rural University of the Amazon (Ufra) and Federal University of Pará (UFPA), Av. Presidente Tancredo Neves, N° 2501, Terra Firme, Belém, Pará, 66.077-830, Brazil
| | - Caio Maximino
- Neuroscience and Behavior Laboratory Frederico Guilherme Graeff (LANEC), Institute of Healthy and Biologics Studies, Psychology University, Federal University of South and Southern of Pará, Av. Dos Ipês, Marabá, S/NPará, 68507-590, Brazil
| | - Diógenes Henrique de Siqueira-Silva
- Group of Studies On the Reproduction of Amazon Fish (GERPA/LaNeC), Biology Faculty (FACBIO), University Federal of South and Southern of Pará (Unifesspa), Marabá, Pará, Brazil.
- Neuroscience and Behavior Laboratory Frederico Guilherme Graeff (LANEC), Institute of Healthy and Biologics Studies, Psychology University, Federal University of South and Southern of Pará, Av. Dos Ipês, Marabá, S/NPará, 68507-590, Brazil.
- Graduate Program in Animal Reproduction in the Amazon (ReproAmazon), Federal Rural University of the Amazon (Ufra) and Federal University of Pará (UFPA), Av. Presidente Tancredo Neves, N° 2501, Terra Firme, Belém, Pará, 66.077-830, Brazil.
| |
Collapse
|
2
|
Lai NHY, Mohd Zahir IA, Liew AKY, Ogawa S, Parhar I, Soga T. Teleosts as behaviour test models for social stress. Front Behav Neurosci 2023; 17:1205175. [PMID: 37744951 PMCID: PMC10512554 DOI: 10.3389/fnbeh.2023.1205175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Stress is an important aspect of our everyday life and exposure to it is an unavoidable occurrence. In humans, this can come in the form of social stress or physical stress from an injury. Studies in animal models have helped researchers to understand the body's adaptive response to stress in human. Notably, the use of behavioural tests in animal models plays a pivotal role in understanding the neural, endocrine and behavioural changes induced by social stress. Under socially stressed conditions, behavioural parameters are often measured physiological and molecular parameters as changes in behaviour are direct responses to stress and are easily assessed by behavioural tests. Throughout the past few decades, the rodent model has been used as a well-established animal model for stress and behavioural changes. Recently, more attention has been drawn towards using fish as an animal model. Common fish models such as zebrafish, medaka, and African cichlids have the advantage of a higher rate of reproduction, easier handling techniques, sociability and most importantly, share evolutionary conserved genetic make-up, neural circuitry, neuropeptide molecular structure and function with mammalian species. In fact, some fish species exhibit a clear diurnal or seasonal rhythmicity in their stress response, similar to humans, as opposed to rodents. Various social stress models have been established in fish including but not limited to chronic social defeat stress, social stress avoidance, and social stress-related decision-making. The huge variety of behavioural patterns in teleost also aids in the study of more behavioural phenotypes than the mammalian species. In this review, we focus on the use of fish models as alternative models to study the effects of stress on different types of behaviours. Finally, fish behavioural tests against the typical mammalian model-based behavioural test are compared and discussed for their viability.
Collapse
Affiliation(s)
| | | | | | | | | | - Tomoko Soga
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
3
|
Cook A, Beckmann H, Azap R, Ryu S. Acute Stress Modulates Social Approach and Social Maintenance in Adult Zebrafish. eNeuro 2023; 10:ENEURO.0491-22.2023. [PMID: 37620148 PMCID: PMC10493981 DOI: 10.1523/eneuro.0491-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 08/26/2023] Open
Abstract
Stress alters social functioning in a complex manner. An important variable determining the final effects of stress is stressor intensity. However, the precise relationship between stressor intensity and social behavior is not well understood. Here, we investigate the effects of varying acute stressor intensity exposure on social behavior using adult zebrafish. We first establish a novel test using adult zebrafish that allows distinguishing fish's drive to approach a social cue and its ability to engage and maintain social interaction within the same behavioral paradigm. Next, we combined this test with a new method to deliver an acute stress stimulus of varying intensities. Our results show that both social approach and social maintenance are reduced in adult zebrafish on acute stress exposure in an intensity-dependent manner. Interestingly, lower stress intensity reduces social maintenance without affecting the social approach, while a higher stress level is required to alter social approach. These results provide evidence for a direct correlation between acute stressor intensity and social functioning and suggest that distinct steps in social behavior are modulated differentially by the acute stress level.
Collapse
Affiliation(s)
- Alexander Cook
- Institute of Human Genetics, University Medical Center of Johannes Gutenberg University Mainz, 55116, Mainz, Germany
| | - Holger Beckmann
- Institute of Human Genetics, University Medical Center of Johannes Gutenberg University Mainz, 55116, Mainz, Germany
- Living Systems Institute, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4QD, United Kingdom
| | - Rutkay Azap
- Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
| | - Soojin Ryu
- Institute of Human Genetics, University Medical Center of Johannes Gutenberg University Mainz, 55116, Mainz, Germany
- Living Systems Institute, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4QD, United Kingdom
| |
Collapse
|
4
|
Neurotoxicity of Chronic Co-Exposure of Lead and Ionic Liquid in Common Carp: Synergistic or Antagonistic? Int J Mol Sci 2022; 23:ijms23116282. [PMID: 35682962 PMCID: PMC9181186 DOI: 10.3390/ijms23116282] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
Previous studies have indicated that the harmful heavy metal lead (Pb) contamination in aquatic systems has caused intelligence development disorders and nervous system function abnormalities in juveniles due to the increased permeability of the blood-brain barrier. Ionic liquids (ILs) are considered "green" organic solvents that can replace traditional organic solvents. Studies have found the presence of ILs in soil and water due to chemical applications or unintentional leakage. Therefore, what would happen if Pb interacted with ILs in a body of water? Could ILs enable Pb to more easily cross the blood-brain barrier? Therefore, we examined the combined exposure of Pb and ILs in common carp at low concentration (18.3 mg L-1 of Pb(CH3COO)2•3 H2O and 11 mg L-1 of the IL 1-methyl-3-octylimidazolium chloride, 5% of their LC50) for 28 days in the present study. The result of a neurobehavioral assay showed that chronic exposure of lead at lower concentrations significantly altered fish movement and neurobehaviors, indicating that lead exposure caused neurotoxicity in the carp. Increases in the neurotransmitter dopamine levels and injuries in the fish brain accounted for neurobehavioral abnormalities induced by lead exposure. Moreover, we also found that lead could easily cross the blood-brain barrier and caused significant bioaccumulation in the brain. Particularly, our study indicated that the ionic liquid could not synergistically promote blood-brain barrier permeability and hence failed to increase the absorption of lead in the fish brain, suggesting that the combined exposure of lead and ILs was not a synergistic effect but antagonism to the neurotoxicity. The results of this study suggested that ILs could recede the Pb induced neurotoxicity in fish.
Collapse
|
5
|
Fenske L, Concato AC, Vanin AP, Tamagno WA, de Oliveira Sofiatti JR, Treichel H, da Rosa JGS, Barcellos LJG, Kaizer RR. 17-α-Ethinylestradiol modulates endocrine and behavioral responses to stress in zebrafish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:29341-29351. [PMID: 32440876 DOI: 10.1007/s11356-020-09318-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
The synthetic estrogen, 17-α-ethinylestradiol (EE2), present in contraceptive pills, is an endocrine-disrupting chemical (EDC) that can be found in the aquatic environment. We examined the impacts of EE2 on zebrafish behavioral and physiological responses through the novel tank test (NTT), which measures anxiety-like behavior; the mirror-induced aggression (MIA) test, which measures aggressiveness; and the social preference test (SPT), which measures social cohesion. The steroid hormone levels were also measured. Here, we show that exposure to EE2 impairs stress responses by regulating the levels of specific hormones and eliciting an anxiolytic response, increasing aggression, and reducing social preference in zebrafish. In nature, these changes in behavior compromise reproduction and anti-predator behaviors, which, in turn, affects species survival. The maintenance of an intact behavioral repertoire in zebrafish is essential for their survival. Thus, our results point to the danger of environmental contamination with EE2 as it may alter the dynamics of the prey-predator relationship.
Collapse
Affiliation(s)
- Lurian Fenske
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade Federal da Fronteira Sul, Rodovia RS 135, Km 72, Erechim, RS, 99700-970, Brazil
| | - Ani Carla Concato
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade Federal da Fronteira Sul, Rodovia RS 135, Km 72, Erechim, RS, 99700-970, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul, Campus Sertão, Rodovia RS 135, Km 25, Sertão, RS, 99170-000, Brazil
| | - Ana Paula Vanin
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul, Campus Sertão, Rodovia RS 135, Km 25, Sertão, RS, 99170-000, Brazil
| | - Wagner Antonio Tamagno
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul, Campus Sertão, Rodovia RS 135, Km 25, Sertão, RS, 99170-000, Brazil
| | - Jéssica Reis de Oliveira Sofiatti
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade Federal da Fronteira Sul, Rodovia RS 135, Km 72, Erechim, RS, 99700-970, Brazil
| | - Helen Treichel
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade Federal da Fronteira Sul, Rodovia RS 135, Km 72, Erechim, RS, 99700-970, Brazil
| | | | - Leonardo José Gil Barcellos
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS, 97105-900, Brazil
- Curso de Medicina Veterinária, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
- Programa de Pós-Graduação em Ciências Ambientais, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
| | - Rosilene R Kaizer
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade Federal da Fronteira Sul, Rodovia RS 135, Km 72, Erechim, RS, 99700-970, Brazil.
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul, Campus Sertão, Rodovia RS 135, Km 25, Sertão, RS, 99170-000, Brazil.
| |
Collapse
|
6
|
|
7
|
Rodrigues P, Barbosa LB, Bianchini AE, Ferrari FT, Baldisserotto B, Heinzmann BM. Nociceptive-like behavior and analgesia in silver catfish (Rhamdia quelen). Physiol Behav 2019; 210:112648. [PMID: 31408639 DOI: 10.1016/j.physbeh.2019.112648] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 12/01/2022]
Abstract
Fish are useful animal models in research and have been employed in developing new pharmacological approaches. This study aimed to establish the use of silver catfish (Rhamdia quelen) as an animal model to evaluate antinociceptive activity. Initially, different concentrations of acetic acid (2.5-20%), formalin 1% (1-10 μL), menthol 0.5% (1-10 μL) or vehicle were injected in the lips to establish which concentration of each sample promotes nociceptive-like behavior in various parameters. The effect of morphine (0.5-10 mg/kg) on locomotion parameters was also evaluated for antinociceptive concentration determination. Morphine was administered intramuscularly immediately prior to algogen administration. The inhibition was evaluated with the antagonist naloxone (5 mg/kg), which was administered in the same way. Recording time varied according to the algogen used in each test and locomotor activity was evaluated by ANY-maze® software. Acid acetic at 15%, 10 μL of 1% formalin, and 1 μL of 0.5% menthol were chosen since they promoted nociceptive-like behavior in several parameters. Morphine (5 mg/kg) reversed the algogen-induced nociceptive-like behavior and naloxone inhibited this effect. Therefore, the proposed experimental model demonstrated specificity for nociception, since the reversion of the nociceptive-like behavior for a compound with well-described analgesic activity was observed. This new pharmacological model contributes to evaluating compounds with analgesic potential and developing new analgesic drugs, in addition to being a promising alternative to use with rodents.
Collapse
Affiliation(s)
- Patrícia Rodrigues
- Post-Graduation Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | - Adriane Erbice Bianchini
- Post-Graduation Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | | | | |
Collapse
|
8
|
Costa de Melo N, Sánchez-Ortiz BL, Dos Santos Sampaio TI, Matias Pereira AC, Pinheiro da Silva Neto FL, Ribeiro da Silva H, Alves Soares Cruz R, Keita H, Soares Pereira AM, Tavares Carvalho JC. Anxiolytic and Antidepressant Effects of the Hydroethanolic Extract from the Leaves of Aloysia polystachya (Griseb.) Moldenke: A Study on Zebrafish ( Danio rerio). Pharmaceuticals (Basel) 2019; 12:ph12030106. [PMID: 31373315 PMCID: PMC6789669 DOI: 10.3390/ph12030106] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 02/06/2023] Open
Abstract
Medicinal plants such as Aloysia polystachya are often used in the treatment of psychiatric diseases, including anxiety- and depression-related humor disturbances. In folk medicine, A. polystachya is used to treat digestive and respiratory tract disturbances, as a sedative and antidepressant agent, and as a tonic for the nerves. This study aimed to evaluate the antidepressant and anxiolytic effect from the hydroethanolic extract from the leaves of Aloysia polystachya (HELAp) in zebrafish. The extract was analyzed through ultra-performance liquid chromatography-mass spectroscopy (UPLC-MS) and the main compound detected was acteoside. HELAp was administered orally (10 mg/kg) and through immersion (mg/L). The anxiolytic activity was evaluated through the scototaxis (light–dark) test using caffeine as an anxiogenic agent and buspirone as a positive control. The parameters assessed were: period spent in the white compartment (s), latency (s), alternations (n), erratic swims (n), period of freezing (s), thigmotaxis (s), and risk evaluation (n). The antidepressant effect was evaluated through the novel tank diving test using 1% ethanol, unpredictable chronic stress, and social isolation as depressors; fluoxetine was used as a positive control. The parameters assessed were: period spent at the top of the tank, latency, quadrants crossed, erratic swim, period of freezing, and distance of swam. The main chemical compound of HELAp was acteoside. The administration of the extract on zebrafish managed to revert the anxiogenic effect of caffeine without impairing their locomotion. Additionally, the treatment exerted antidepressant activity similarly to fluoxetine. Overall, the results suggest a significant anxiolytic and antidepressant activity to the extract, which is probably due to the presence of the major compound, acteoside.
Collapse
Affiliation(s)
- Nayara Costa de Melo
- Laboratório de Pesquisa em Fármacos, Curso de Farmácia, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Amapá, CEP 68.903-419, Brasil
- Programa de Pós-Graduação em Inovação Farmacêutica, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Amapá, CEP 68.903-419, Brasil
| | - Brenda Lorena Sánchez-Ortiz
- Laboratório de Pesquisa em Fármacos, Curso de Farmácia, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Amapá, CEP 68.903-419, Brasil
- Programa de Pós-Graduação em Inovação Farmacêutica, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Amapá, CEP 68.903-419, Brasil
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, C.P. 04510, México
| | - Tafnis Ingret Dos Santos Sampaio
- Laboratório de Pesquisa em Fármacos, Curso de Farmácia, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Amapá, CEP 68.903-419, Brasil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Amapá, CEP 68.903-419, Brasil
| | - Arlindo César Matias Pereira
- Laboratório de Pesquisa em Fármacos, Curso de Farmácia, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Amapá, CEP 68.903-419, Brasil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Amapá, CEP 68.903-419, Brasil
| | - Fernando Luiz Pinheiro da Silva Neto
- Laboratório de Pesquisa em Fármacos, Curso de Farmácia, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Amapá, CEP 68.903-419, Brasil
| | - Heitor Ribeiro da Silva
- Laboratório de Pesquisa em Fármacos, Curso de Farmácia, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Amapá, CEP 68.903-419, Brasil
| | - Rodrigo Alves Soares Cruz
- Laboratório de Pesquisa em Fármacos, Curso de Farmácia, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Amapá, CEP 68.903-419, Brasil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Amapá, CEP 68.903-419, Brasil
| | - Hady Keita
- Universidad de la Sierra Sur, Division de Pós-Grado, Instituto de Investigación Sobre la Salud Pública, Ciudad Universitaria, Oaxaca, C.P. 70800, México
| | - Ana Maria Soares Pereira
- Departamento de Biotecnologia em Plantas Medicinais, Universidade de Ribeirão Preto (UNAERP), Ribeirão Preto, São Paulo, CEP 14096-900, Brasil
| | - José Carlos Tavares Carvalho
- Laboratório de Pesquisa em Fármacos, Curso de Farmácia, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Amapá, CEP 68.903-419, Brasil.
- Programa de Pós-Graduação em Inovação Farmacêutica, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Amapá, CEP 68.903-419, Brasil.
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Amapá, CEP 68.903-419, Brasil.
- Rede Bionorte, Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amapá, Macapá, Amapá, CEP 68.903-419, Brasil.
| |
Collapse
|
9
|
Zanuzzo FS, de C. Bovolato AL, Pereira RT, Valença-Silva G, Barcellos LJG, Barreto RE. Innate response based on visual cues of sympatric and allopatric predators in Nile tilapia. Behav Processes 2019; 164:109-114. [DOI: 10.1016/j.beproc.2019.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 04/25/2019] [Accepted: 05/02/2019] [Indexed: 01/15/2023]
|
10
|
Baldissera MD, Souza CF, Zeppenfeld CC, Descovi SN, Moreira KLS, da Rocha MIUM, da Veiga ML, da Silva AS, Baldisserotto B. Aflatoxin B 1-contaminated diet disrupts the blood-brain barrier and affects fish behavior: Involvement of neurotransmitters in brain synaptosomes. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 60:45-51. [PMID: 29660609 DOI: 10.1016/j.etap.2018.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/26/2018] [Accepted: 04/02/2018] [Indexed: 06/08/2023]
Abstract
It is known that the cytotoxic effects of aflatoxin B1 (AFB1) in endothelial cells of the blood-brain barrier (BBB) are associated with behavioral dysfunction. However, the effects of a diet contaminated with AFB1 on the behavior of silver catfish remain unknown. Thus, the aim of this study was to evaluate whether an AFB1-contaminated diet (1177 ppb kg feed-1) impaired silver catfish behavior, as well as whether disruption of the BBB and alteration of neurotransmitters in brain synaptosomes are involved. Fish fed a diet contaminated with AFB1 presented a behavioral impairment linked with hyperlocomotion on days 14 and 21 compared with the control group (basal diet). Neurotransmitter levels were also affected on days 14 and 21. The permeability of the BBB to Evans blue dye increased in the intoxicated animals compared with the control group, which suggests that the BBB was disrupted. Moreover, acetylcholinesterase (AChE) activity in brain synaptosomes was increased in fish fed a diet contaminated with AFB1, while activity of the sodium-potassium pump (Na+, K+-ATPase) was decreased. Based on this evidence, the present study shows that silver catfish fed a diet containing AFB1 exhibit behavioral impairments related to hyperlocomotion. This diet caused a disruption of the BBB and brain lesions, which may contribute to the behavioral changes. Also, the alterations in the activities of AChE and Na+, K+-ATPase in brain synaptosomes may directly contribute to this behavior, since they may promote synapse dysfunction. In addition, the hyperlocomotion may be considered an important macroscopic marker indicating possible AFB1 intoxication.
Collapse
Affiliation(s)
- Matheus D Baldissera
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Carine F Souza
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Carla Cristina Zeppenfeld
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Sharine N Descovi
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Karen Luise S Moreira
- Department of Morphology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | | | - Marcelo L da Veiga
- Department of Morphology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Aleksandro S da Silva
- Department of Animal Science, Universidade do Estado de Santa Catarina, Chapecó, RS, Brazil
| | - Bernardo Baldisserotto
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
11
|
Wolkers CPB, Serra M, Barbosa Júnior A, Urbinati EC. Acute fluoxetine treatment increases aggressiveness in juvenile matrinxã (Brycon amazonicus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:755-759. [PMID: 28013422 DOI: 10.1007/s10695-016-0329-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 12/11/2016] [Indexed: 06/06/2023]
Abstract
Fluoxetine (FLX) is a selective serotonin (5-HT) reuptake inhibitor known for its effects modifying aggressiveness, personality traits, and anxiety-like behaviors. The aim of the present study was to evaluate the influence of the acute treatment, by immersion, with FLX on aggressive behavior of resident Brycon amazonicus fish. Fish pretreated with FLX presented an increase in aggressiveness, evidenced by the increase on the number of bites and chases against the intruder and a decrease in latency for the first attack, when compared to control fish. Together with previous studies, these results show the complexity of the neural modulation of the aggressive behavior in fish by 5-HTergic system.
Collapse
Affiliation(s)
- Carla Patricia Bejo Wolkers
- Departamento de Morfologia e Fisiologia Animal, Faculdade de Ciências agrárias e Veterinárias/Centro de Aquicultura (CAUNESP), Universidade Estadual Paulista, UNESP, Jaboticabal, SP, Brazil.
- Faculdade de Ciências Integradas do Pontal (FACIP), Universidade Federal de Uberlândia, UFU, Ituiutaba, MG, Brazil.
| | - Mônica Serra
- Departamento de Morfologia e Fisiologia Animal, Faculdade de Ciências agrárias e Veterinárias/Centro de Aquicultura (CAUNESP), Universidade Estadual Paulista, UNESP, Jaboticabal, SP, Brazil
| | - Augusto Barbosa Júnior
- Departamento de Ciência e Tecnologia, Secretaria de Ciência, Tecnologia e Insumos Estratégicos do Ministério da Saúde (DECIT/SCTIE/MS), Brasilia, DF, Brazil
| | - Elisabeth Criscuolo Urbinati
- Departamento de Morfologia e Fisiologia Animal, Faculdade de Ciências agrárias e Veterinárias/Centro de Aquicultura (CAUNESP), Universidade Estadual Paulista, UNESP, Jaboticabal, SP, Brazil
| |
Collapse
|