1
|
M'hani MEM, Beniaich Y, Farsi H, Piro M, Achaâban MR, Pévet P, Challet E, El Allali K. Daily rhythm of rumination in the goat (Capra hircus) is not driven by feeding. Sci Rep 2024; 14:28387. [PMID: 39551886 PMCID: PMC11570624 DOI: 10.1038/s41598-024-79586-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024] Open
Abstract
Rumination shows a nocturnal rhythmic pattern in day-active ruminants. Although feeding has been shown to quantitatively modulate rumination, it is not clear yet if feeding rhythm plays a causal role in rumination rhythm. The present study was carried out to determine whether the daily rhythm of rumination in goats under natural environmental conditions is food-dependent or not, and whether it is modulated by the season. Rumination and locomotor activity (LA) were continuously monitored in four male Moroccan goats, fed once daily every morning, and then fasted for 4 days. The same experimental design was carried out in two different seasons (summer and winter). The results show that normally fed goats ruminate on average 281 ± 37 min in both seasons. Rumination shows a rhythmic 24-h profile with a late nocturnal peak. During the four-day food deprivation, rumination persisted while its total amount duration was significantly reduced in both seasons. Our results also illustrate the clear phase-opposition between the diurnal rhythm of LA and the nocturnal rhythm of rumination. This study characterized the daily rhythm rumination in goats according to seasons and fed/fasted states, and provided clear evidence that this rhythm is not generated by feeding behavior. Further investigations are required to determine whether rumination has an endogenous origin and is driven by the central circadian clock.
Collapse
Affiliation(s)
- Mohammed El Mehdi M'hani
- Comparative Anatomy Unit, Department of Biological and Pharmaceutical Veterinary Sciences, Hassan II Agronomy and Veterinary Medicine Institute, Rabat-Instituts, BP: 6202, 10101, Rabat, Morocco
| | - Younes Beniaich
- Comparative Anatomy Unit, Department of Biological and Pharmaceutical Veterinary Sciences, Hassan II Agronomy and Veterinary Medicine Institute, Rabat-Instituts, BP: 6202, 10101, Rabat, Morocco
| | - Hicham Farsi
- Comparative Anatomy Unit, Department of Biological and Pharmaceutical Veterinary Sciences, Hassan II Agronomy and Veterinary Medicine Institute, Rabat-Instituts, BP: 6202, 10101, Rabat, Morocco
| | - Mohammed Piro
- Medicine and Surgical Unit of Domestic Animals, Department of Medicine, Surgery and Reproduction, Hassan II Agronomy and Veterinary Medicine Institute, Rabat, Morocco
| | - Mohamed Rachid Achaâban
- Comparative Anatomy Unit, Department of Biological and Pharmaceutical Veterinary Sciences, Hassan II Agronomy and Veterinary Medicine Institute, Rabat-Instituts, BP: 6202, 10101, Rabat, Morocco
| | - Paul Pévet
- Institute of Cellular and Integrative Neurosciences, CNRS and University of Strasbourg, Strasbourg, France
| | - Etienne Challet
- Institute of Cellular and Integrative Neurosciences, CNRS and University of Strasbourg, Strasbourg, France
| | - Khalid El Allali
- Comparative Anatomy Unit, Department of Biological and Pharmaceutical Veterinary Sciences, Hassan II Agronomy and Veterinary Medicine Institute, Rabat-Instituts, BP: 6202, 10101, Rabat, Morocco.
| |
Collapse
|
2
|
Pluchot C, Adriaensen H, Parias C, Dubreuil D, Arnould C, Chaillou E, Love SA. Sheep (Ovis aries) training protocol for voluntary awake and unrestrained structural brain MRI acquisitions. Behav Res Methods 2024; 56:7761-7773. [PMID: 38907122 PMCID: PMC11362526 DOI: 10.3758/s13428-024-02449-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2024] [Indexed: 06/23/2024]
Abstract
Magnetic resonance imaging (MRI) is a non-invasive technique that requires the participant to be completely motionless. To date, MRI in awake and unrestrained animals has only been achieved with humans and dogs. For other species, alternative techniques such as anesthesia, restraint and/or sedation have been necessary. Anatomical and functional MRI studies with sheep have only been conducted under general anesthesia. This ensures the absence of movement and allows relatively long MRI experiments but it removes the non-invasive nature of the MRI technique (i.e., IV injections, intubation). Anesthesia can also be detrimental to health, disrupt neurovascular coupling, and does not permit the study of higher-level cognition. Here, we present a proof-of-concept that sheep can be trained to perform a series of tasks, enabling them to voluntarily participate in MRI sessions without anesthesia or restraint. We describe a step-by-step training protocol based on positive reinforcement (food and praise) that could be used as a basis for future neuroimaging research in sheep. This protocol details the two successive phases required for sheep to successfully achieve MRI acquisitions of their brain. By providing structural brain MRI images from six out of ten sheep, we demonstrate the feasibility of our training protocol. This innovative training protocol paves the way for the possibility of conducting animal welfare-friendly functional MRI studies with sheep to investigate ovine cognition.
Collapse
Affiliation(s)
- Camille Pluchot
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France.
| | - Hans Adriaensen
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France
| | - Céline Parias
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France
| | - Didier Dubreuil
- Unité Expérimentale de Physiologie Animale de l'Orfrasière, INRAE Centre Val de Loire, 37380, Nouzilly, France
| | - Cécile Arnould
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France
| | - Elodie Chaillou
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France
| | - Scott A Love
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France.
| |
Collapse
|
3
|
Murray SJ, Mitchell NL. The Translational Benefits of Sheep as Large Animal Models of Human Neurological Disorders. Front Vet Sci 2022; 9:831838. [PMID: 35242840 PMCID: PMC8886239 DOI: 10.3389/fvets.2022.831838] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/21/2022] [Indexed: 12/15/2022] Open
Abstract
The past two decades have seen a considerable rise in the use of sheep to model human neurological disorders. While each animal model has its merits, sheep have many advantages over small animal models when it comes to studies on the brain. In particular, sheep have brains more comparable in size and structure to the human brain. They also have much longer life spans and are docile animals, making them useful for a wide range of in vivo studies. Sheep are amenable to regular blood and cerebrospinal fluid sampling which aids in biomarker discovery and monitoring of treatment efficacy. Several neurological diseases have been found to occur naturally in sheep, however sheep can also be genetically engineered or experimentally manipulated to recapitulate disease or injury. Many of these types of sheep models are currently being used for pre-clinical therapeutic trials, particularly gene therapy, with studies from several models culminating in potential treatments moving into clinical trials. This review will provide an overview of the benefits of using sheep to model neurological conditions, and highlight naturally occurring and experimentally induced sheep models that have demonstrated translational validity.
Collapse
Affiliation(s)
- Samantha J. Murray
- Faculty of Agriculture and Life Sciences, Lincoln University, Canterbury, New Zealand
| | | |
Collapse
|
4
|
Deep brain electrophysiology in freely moving sheep. Curr Biol 2022; 32:763-774.e4. [PMID: 35030329 DOI: 10.1016/j.cub.2021.12.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/05/2021] [Accepted: 12/14/2021] [Indexed: 12/17/2022]
Abstract
Although rodents are arguably the easiest animals to use for studying brain function, relying on them as model species for translational research comes with its own set of limitations. Here, we propose sheep as a practical large animal species to use for in vivo brain function studies performed in naturalistic settings. We conducted proof-of-principle deep brain electrophysiological recording experiments using unrestrained sheep during behavioral testing. Recordings were made from cortex and hippocampus, both while sheep performed goal-directed behaviors (two-choice discrimination tasks) and across states of vigilance, including sleep. Hippocampal and cortical oscillatory rhythms were consistent with those seen in rodents and non-human primates, and included cortical alpha oscillations and hippocampal sharp wave ripple oscillations (∼150 Hz) during immobility and hippocampal theta oscillations (5-6 Hz) during locomotion. Recordings were conducted over a period of many months during which time the animals participated willingly in the experiments. Over 3,000 putative neurons were identified, including examples whose activity was modulated by task, speed of locomotion, spatial position, reward and vigilance states, and one whose firing rate was potentially modulated by the sight of the investigator. Together, these experiments demonstrate that sheep are excellent experimental animals to use for longitudinal studies requiring a large-brained mammal and/or large-scale recordings across distributed neuronal networks. Sheep could be used safely for studying not only neural encoding of decision-making and spatial-mapping in naturalistic environments outside the confines of the traditional laboratory but also the neural basis of both intra- and inter-species social interactions.
Collapse
|
5
|
Abstract
The limitations of using small-brained rodents to model diseases that affect large-brain humans are becoming increasingly obvious as novel therapies emerge. Huntington's disease (HD) is one such disease. In recent years, the desirability of a large-brained, long-lived animal model of HD for preclinical testing has changed into a necessity. Treatment involving gene therapy in particular presents delivery challenges that are currently unsolved. Models using long-lived, large-brained animals would be useful, not only for refining methods of delivery (particularly for gene and other therapies that do not involve small molecules) but also for measuring long-term "off-target" effects, and assessing the efficacy of therapies. With their large brains and convoluted cortices, sheep are emerging as feasible experimental subjects that can be used to bridge the gap between rodents and humans in preclinical drug development. Sheep are readily available, economical to use, and easy to care for in naturalistic settings. With brains of a similar size to a large rhesus macaque, they have much to offer. The only thing that was missing until recently was the means of testing their neurological function and behavior using approaches and methods that are relevant to HD. In this chapter, I will outline the present and future possibilities of using sheep and testing as large animal models of HD.
Collapse
Affiliation(s)
- A J Morton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
6
|
Leuchter MK, Donzis EJ, Cepeda C, Hunter AM, Estrada-Sánchez AM, Cook IA, Levine MS, Leuchter AF. Quantitative Electroencephalographic Biomarkers in Preclinical and Human Studies of Huntington's Disease: Are They Fit-for-Purpose for Treatment Development? Front Neurol 2017; 8:91. [PMID: 28424652 PMCID: PMC5371600 DOI: 10.3389/fneur.2017.00091] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 02/27/2017] [Indexed: 01/30/2023] Open
Abstract
A major focus in development of novel therapies for Huntington's disease (HD) is identification of treatments that reduce the burden of mutant huntingtin (mHTT) protein in the brain. In order to identify and test the efficacy of such therapies, it is essential to have biomarkers that are sensitive to the effects of mHTT on brain function to determine whether the intervention has been effective at preventing toxicity in target brain systems before onset of clinical symptoms. Ideally, such biomarkers should have a plausible physiologic basis for detecting the effects of mHTT, be measureable both in preclinical models and human studies, be practical to measure serially in clinical trials, and be reliably measurable in HD gene expansion carriers (HDGECs), among other features. Quantitative electroencephalography (qEEG) fulfills many of these basic criteria of a "fit-for-purpose" biomarker. qEEG measures brain oscillatory activity that is regulated by the brain structures that are affected by mHTT in premanifest and early symptom individuals. The technology is practical to implement in the laboratory and is well tolerated by humans in clinical trials. The biomarkers are measureable across animal models and humans, with findings that appear to be detectable in HDGECs and translate across species. We review here the literature on recent developments in both preclinical and human studies of the use of qEEG biomarkers in HD, and the evidence for their usefulness as biomarkers to help guide development of novel mHTT lowering treatments.
Collapse
Affiliation(s)
- Michael K Leuchter
- David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Elissa J Donzis
- David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA.,Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles (UCLA), Los Angeles, CA, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Carlos Cepeda
- David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA.,Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles (UCLA), Los Angeles, CA, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Aimee M Hunter
- David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA.,Neuromodulation Division, Laboratory of Brain, Behavior, and Pharmacology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Ana María Estrada-Sánchez
- David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA.,Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles (UCLA), Los Angeles, CA, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Ian A Cook
- David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA.,Neuromodulation Division, Laboratory of Brain, Behavior, and Pharmacology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles (UCLA), Los Angeles, CA, USA.,Department of Bioengineering, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Michael S Levine
- David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA.,Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles (UCLA), Los Angeles, CA, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Andrew F Leuchter
- David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA.,Neuromodulation Division, Laboratory of Brain, Behavior, and Pharmacology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
7
|
Perentos N, Nicol AU, Martins AQ, Stewart JE, Taylor P, Morton AJ. Techniques for chronic monitoring of brain activity in freely moving sheep using wireless EEG recording. J Neurosci Methods 2016; 279:87-100. [PMID: 27914975 DOI: 10.1016/j.jneumeth.2016.11.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/21/2016] [Accepted: 11/24/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND Large mammals with complex central nervous systems offer new possibilities for translational research into basic brain function. Techniques for monitoring brain activity in large mammals, however, are not as well developed as they are in rodents. NEW METHOD We have developed a method for chronic monitoring of electroencephalographic (EEG) activity in unrestrained sheep. We describe the methods for behavioural training prior to implantation, surgical procedures for implantation, a protocol for reliable anaesthesia and recovery, methods for EEG data collection, as well as data pertaining to suitability and longevity of different types of electrodes. RESULTS Sheep tolerated all procedures well, and surgical complications were minimal. Electrode types used included epidural and subdural screws, intracortical needles and subdural disk electrodes, with the latter producing the best and most reliable results. The implants yielded longitudinal EEG data of consistent quality for periods of at least a year, and in some cases up to 2 years. COMPARISON WITH EXISTING METHODS This is the first detailed methodology to be described for chronic brain function monitoring in freely moving unrestrained sheep. CONCLUSIONS The developed method will be particularly useful in chronic investigations of brain activity during normal behaviour that can include sleep, learning and memory. As well, within the context of disease, the method can be used to monitor brain pathology or the progress of therapeutic trials in transgenic or natural disease models in sheep.
Collapse
Affiliation(s)
- N Perentos
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, United Kingdom
| | - A U Nicol
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, United Kingdom
| | - A Q Martins
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, United Kingdom
| | - J E Stewart
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, United Kingdom
| | - P Taylor
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, United Kingdom
| | - A J Morton
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, United Kingdom.
| |
Collapse
|