1
|
Shimada A, Alhilou AM, Svensson P, Ernberg M, Christidis N. Functional Change in Experimental Allodynia After Glutamate-Induced Pain in the Human Masseter Muscle. FRONTIERS IN ORAL HEALTH 2020; 1:609082. [PMID: 35047987 PMCID: PMC8757840 DOI: 10.3389/froh.2020.609082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/23/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Glutamate, as well as nerve growth factor (NGF), is involved in nociception from peripheral tissues, such as muscles. However, the potential interaction between glutamate and NGF still remains unclear. This study investigated the interaction between glutamate-induced masseter muscle pain and NGF-induced allodynia on pain perception and jaw function in healthy individuals, and any possible sex differences in the response. Materials and Methods: Thirty pain-free adult participants (15 men and 15 women, mean age ± SD: 24 ± 4 years) participated in this study consisting of three sessions (Day 0, Day 3, and Day 4). NGF (5 μg/mL, 1.0 mL) was injected into the masseter muscle on Day 0 to induce muscle allodynia. On Day 3, glutamate (1M, 0.2 mL) was injected into the same masseter muscle. Before and after injections on Day 0 and 3, and post-injection (Day 4), spontaneous pain, temporal summation pain, as well as functional pain and fatigue in response to chewing were assessed with validated scales, and the pressure pain threshold (PPT) was recorded. Results: Spontaneous pain intensity was significantly higher after glutamate than NGF (P < 0.001). PPTs, temporal summation pain and functional measures were all reduced 3 days after NGF injection (P's < 0.001). Injection of glutamate on Day 3 did not further affect PPTs or temporal summation pain and there were no sex differences in the effects (P > 0.189). Chewing pain (P = 0.022) and fatigue increased after glutamate injection to a higher degree in the women than men (P = 0.037). Conclusion: Taken together, while glutamate injected into the NGF-sensitized muscle was painful, it did not alter muscle tenderness in women vs. men. However, pain and fatigue evoked by jaw function were higher in women after glutamate injection. This suggest that sex differences reported for masseter myalgia, mimicked by glutamate and NGF mediated pain in this study, may be greater for measures of perceived jaw function, which should be considered in a clinical evaluation.
Collapse
Affiliation(s)
- Akiko Shimada
- Department of Geriatric Dentistry, Osaka Dental University, Osaka, Japan
| | - Abdelrahman M Alhilou
- Division of Oral Diagnostics and Rehabilitation, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden.,Scandinavian Center for Orofacial Neurosciences (SCON), Huddinge, Sweden.,Department of Restorative Dentistry, College of Dentistry, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Peter Svensson
- Section of Orofacial Pain and Jaw Function, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark.,Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Malin Ernberg
- Division of Oral Diagnostics and Rehabilitation, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden.,Scandinavian Center for Orofacial Neurosciences (SCON), Huddinge, Sweden
| | - Nikolaos Christidis
- Division of Oral Diagnostics and Rehabilitation, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden.,Scandinavian Center for Orofacial Neurosciences (SCON), Huddinge, Sweden
| |
Collapse
|
2
|
Guo W, Zou S, Mohammad Z, Wang S, Yang J, Li H, Dubner R, Wei F, Chung MK, Ro JY, Ren K. Voluntary biting behavior as a functional measure of orofacial pain in mice. Physiol Behav 2019; 204:129-139. [PMID: 30797813 DOI: 10.1016/j.physbeh.2019.02.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Pain-related behavior secondary to masticatory function can be assessed with the rodent bite force model. A reduction of the bite force has been shown to be related to pain associated with the masseter muscle and jaw activity, while an increase in bite force suggests improvement of muscle function and less pain. To evaluate the usefulness of the bite force measure in studying long-lasting orofacial pain we analyzed biting parameters during prolonged myofascial pain induced by ligation injury of the masseter muscle tendon (TL) in mice. METHODS C57Bl/6 mice were habituated to bite at a pair of aluminum plates attached to a force displacement transducer. The transduced voltage signals were amplified and converted to force through calibration with a standard weight set. Voluntary biting behavior was recorded for 100 s/session and those with bite forces ≥980 mN were analyzed. Nociception was also verified with von Frey, conditioned place avoidance (CPA) tests and mouse grimace scale. Persistent orofacial pain was induced with unilateral ligation of one tendon of the masseter muscle (TL). RESULTS To reduce interference of random bites of smaller forces, the top 5 or 15 bite forces (BF5/15) were chosen as a measure of masticatory function and related to pain behavior. Both male and female mice exhibited similar BF5/15. For the first nascent test of all mice, mean bite force was significantly and positively correlated with the body weight. However, this correlation was less clear in the latter tests (2-8 w). TL induced a reduction of BF5/15 that peaked at 1 w and returned to the baseline within 3 w. The von Frey and CPA tests indicated that mechanical allodynia/hyperalgesia persisted at the time when the BF had returned to the pre-injury level. Infusion of pain-relieving bone marrow stromal cells improved biting behavior in both male and female mice as shown by significantly increased BF5/15, compared to vehicle-treated mice. CONCLUSIONS Mouse voluntary biting behavior can be reliably measured and quantified with a simplified setup. The bite force showed an inverse relationship with the level of pain after TL and was improved by pain-relieving manipulations. However, the injury-induced reduction of bite force peaked early and did not parallel with other measures of nociception in the later phase of hyperalgesia. The results suggest that multiple factors such as the level of habituation, cognitive motive, physical status, and feeding drive may affect random voluntary biting and confound the biting parameters related to maintained hyperalgesia.
Collapse
Affiliation(s)
- Wei Guo
- Department of Neural and Pain Sciences, School of Dentistry, & Program in Neuroscience, University of Maryland, Baltimore, MD 21201, USA
| | - Shiping Zou
- Department of Neural and Pain Sciences, School of Dentistry, & Program in Neuroscience, University of Maryland, Baltimore, MD 21201, USA
| | - Zaid Mohammad
- Department of Neural and Pain Sciences, School of Dentistry, & Program in Neuroscience, University of Maryland, Baltimore, MD 21201, USA
| | - Sheng Wang
- Department of Neural and Pain Sciences, School of Dentistry, & Program in Neuroscience, University of Maryland, Baltimore, MD 21201, USA
| | - Jiale Yang
- Department of Neural and Pain Sciences, School of Dentistry, & Program in Neuroscience, University of Maryland, Baltimore, MD 21201, USA
| | - Huijuan Li
- Department of Neural and Pain Sciences, School of Dentistry, & Program in Neuroscience, University of Maryland, Baltimore, MD 21201, USA; Department of Neurology, The 3rd Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Ronald Dubner
- Department of Neural and Pain Sciences, School of Dentistry, & Program in Neuroscience, University of Maryland, Baltimore, MD 21201, USA
| | - Feng Wei
- Department of Neural and Pain Sciences, School of Dentistry, & Program in Neuroscience, University of Maryland, Baltimore, MD 21201, USA
| | - Man-Kyo Chung
- Department of Neural and Pain Sciences, School of Dentistry, & Program in Neuroscience, University of Maryland, Baltimore, MD 21201, USA
| | - Jin Y Ro
- Department of Neural and Pain Sciences, School of Dentistry, & Program in Neuroscience, University of Maryland, Baltimore, MD 21201, USA
| | - Ke Ren
- Department of Neural and Pain Sciences, School of Dentistry, & Program in Neuroscience, University of Maryland, Baltimore, MD 21201, USA.
| |
Collapse
|
3
|
Mouse incising central pattern generator: Characteristics and modulation by pain. Physiol Behav 2018; 196:8-24. [PMID: 30149084 DOI: 10.1016/j.physbeh.2018.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Vertebrate incising and chewing are controlled by a set of neurons comprising the central pattern generator (CPG) for mastication. Mandibular positioning and force generation to perform these tasks is complex and requires coordination of multiple jaw opening and closing muscle compartments located in muscles on both sides of the jaw. The purpose of this study was to determine the characteristics of the CPG by recording mouse incising forces in the home cage environment to evaluate changes in force characteristics with incising frequency and force direction. A second purpose was to evaluate the effects of jaw closing muscle pain on CPG output parameters. METHODS Digitized incising forces were recorded for approximately 24 h using a 3-dimensional force transducer attached to solid food chow. Male and female CD-1 mice were evaluated during their last (fourth) baseline assessment and seven days after a second acidic saline injection into the left masseter muscle when maximum pain was experienced. Incising force resultants were calculated from the three axes data and force parameters were assessed including inter-peak intervals (IPI), peak amplitude, load time and unload time. Multiple regression analyses were conducted to identify incising episodes that had parameters of force that were significantly correlated (p < 0.001). These incising episodes were considered to represent the output of the CPG with a steady state of incoming sensory afferent inputs. Incising parameters were evaluated for each of the discrete incising frequencies (4.6, 5.3, 6.2, 7.6 Hz) and the predominant force directions: jaw closing (-Z), jaw retrusion (+X) and jaw protrusion (-X). RESULTS A significant correlation between incising frequency (IPI) and the load time was observed. A significant decrease in peak amplitude was observed with higher incising frequency while the load rate significantly increased. The force peak amplitude and load rates were found to be statistically different when the force direction was considered, with smaller peak amplitudes and smaller load rates found in the jaw closing direction. The effect of pain on incising was to reduce the peak amplitude and load rate of incising compared to the baseline condition at lower incising frequencies. CONCLUSIONS Like the central pattern generator for locomotion, the CPG for incising controls rhythmicity, peak amplitude and force load duration/rate. However, unlike the CPG for locomotion, the amplitude of incising force decreases as the frequency increases. During incising, load rate increases with faster rhythm and is consistent with the recruitment of larger motor units. Muscle pain reduced the excitatory drive of the CPG on motoneurons and provides further support of the Pain Adaptation Model.
Collapse
|