1
|
Naveed M, Chao OY, Hill JW, Yang YM, Huston JP, Cao R. Circadian neurogenetics and its implications in neurophysiology, behavior, and chronomedicine. Neurosci Biobehav Rev 2024; 157:105523. [PMID: 38142983 PMCID: PMC10872425 DOI: 10.1016/j.neubiorev.2023.105523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
The circadian rhythm affects multiple physiological processes, and disruption of the circadian system can be involved in a range of disease-related pathways. The genetic underpinnings of the circadian rhythm have been well-studied in model organisms. Significant progress has been made in understanding how clock genes affect the physiological functions of the nervous system. In addition, circadian timing is becoming a key factor in improving drug efficacy and reducing drug toxicity. The circadian biology of the target cell determines how the organ responds to the drug at a specific time of day, thus regulating pharmacodynamics. The current review brings together recent advances that have begun to unravel the molecular mechanisms of how the circadian clock affects neurophysiological and behavioral processes associated with human brain diseases. We start with a brief description of how the ubiquitous circadian rhythms are regulated at the genetic, cellular, and neural circuit levels, based on knowledge derived from extensive research on model organisms. We then summarize the latest findings from genetic studies of human brain disorders, focusing on the role of human clock gene variants in these diseases. Lastly, we discuss the impact of common dietary factors and medications on human circadian rhythms and advocate for a broader application of the concept of chronomedicine.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Owen Y Chao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Jennifer W Hill
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Yi-Mei Yang
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Ruifeng Cao
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; Department of Neurology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
2
|
Jiang L, Liu C, Zhao B, Ma C, Yin Y, Zhou Q, Xu L, Mao R. Time of Day-Dependent Alteration of Hippocampal Rac1 Activation Regulates Contextual Fear Memory in Rats. Front Mol Neurosci 2022; 15:871679. [PMID: 35782392 PMCID: PMC9245039 DOI: 10.3389/fnmol.2022.871679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/13/2022] [Indexed: 12/03/2022] Open
Abstract
Fear memory in species varies according to the time of the day. Although the underlying molecular mechanisms have been extensively explored, they remain largely unknown. Here, we report that hippocampal Rac1 activity undergoes a time of day-dependent alteration both in nocturnal rats and diurnal tree shrews and that training at the lower hippocampal Rac1 activation period during the night leads to better contextual fear memory in rats. Furthermore, day and night reversion by 24 h darkness/24 h light housing inverses the external clock time of hippocampal Rac1 activation, but the better contextual fear memory still coincides with the lower Rac1 activation in rats during the night. Interestingly, exogenous melatonin treatment promotes hippocampal Rac1 activity and impairs better contextual fear memory acquired at the lower Rac1 activation period during the night, and Rac1-specific inhibitor NSC23766 compromises the effect of melatonin. These results suggest that the time of day-dependent alteration of hippocampal Rac1 activation regulates contextual fear memory in rats by forgetting.
Collapse
Affiliation(s)
- Lizhu Jiang
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-SU Joint Laboratory of Animal Model and Drug Development, Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Department of Clinical Psychology, The Third People’s Hospital of Yunnan Province, Kunming, China
- Department of Neuropsychopathy, Clinical Medical School, Dali University, Dali, China
| | - Chao Liu
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-SU Joint Laboratory of Animal Model and Drug Development, Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Baizhen Zhao
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-SU Joint Laboratory of Animal Model and Drug Development, Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Chen Ma
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-SU Joint Laboratory of Animal Model and Drug Development, Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Yan Yin
- Department of Clinical Psychology, The Third People’s Hospital of Yunnan Province, Kunming, China
| | - Qixin Zhou
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-SU Joint Laboratory of Animal Model and Drug Development, Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Lin Xu
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-SU Joint Laboratory of Animal Model and Drug Development, Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
- CAS Centre for Excellence in Brain Science and Intelligent Technology, Shanghai, China
- *Correspondence: Lin Xu,
| | - RongRong Mao
- Department of Pathology and Pathophysiology, School of Basic Medical Science, Kunming Medical University, Kunming, China
- RongRong Mao,
| |
Collapse
|
3
|
Clark JW, Daykin H, Metha JA, Allocca G, Hoyer D, Drummond SPA, Jacobson LH. Manipulation of REM sleep via orexin and GABAA receptor modulators differentially affects fear extinction in mice: effect of stable versus disrupted circadian rhythm. Sleep 2021; 44:6171207. [PMID: 33720375 DOI: 10.1093/sleep/zsab068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/22/2021] [Indexed: 12/18/2022] Open
Abstract
Sleep disruption, and especially REM sleep disruption, is associated with fear inhibition impairment in animals and humans. The REM sleep-fear inhibition relationship raises concern for individuals with PTSD, whose sleep disturbance is commonly treated with hypnotics which disrupt and/or decrease REM sleep, such as benzodiazepines or 'Z-drugs'. Here, we examined the effects of the Z-drug zolpidem, a GABAA receptor positive allosteric modulator, as well as suvorexant, an orexin receptor antagonist (hypnotics which decrease and increase REM sleep, respectively) in the context of circadian disruption in murine models of fear inhibition-related processes (i.e., fear extinction and safety learning). Adult male C57Bl/6J mice completed fear and safety conditioning before undergoing shifts in the light-dark (LD) cycle or maintaining a consistent LD schedule. Fear extinction and recall of conditioned safety were thereafter tested daily. Immediately prior to onset of the light phase between testing sessions, mice were treated with zolpidem, suvorexant, or vehicle (methylcellulose). EEG/EMG analysis showed temporal distribution of REM sleep was misaligned during LD cycle-shifts, while REM sleep duration was preserved. Suvorexant increased REM sleep and improved fear extinction rate, relative to zolpidem, which decreased REM sleep. Survival analysis demonstrated LD shifted mice treated with suvorexant were faster to achieve complete extinction than vehicle and zolpidem-treated mice in the LD shifted condition. By contrast, retention of conditioned safety memory was not influenced by either treatment. This study thus provides preclinical evidence for the potential clinical utility of hypnotics which increase REM sleep for fear extinction after PTSD-relevant sleep disturbance.
Collapse
Affiliation(s)
- Jacob W Clark
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, VIC, Australia.,Department of Pharmacology and Therapeutics, The University of Melbourne, VIC, Australia.,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC, Australia
| | - Heather Daykin
- Department of Pharmacology and Therapeutics, The University of Melbourne, VIC, Australia.,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC, Australia
| | - Jeremy A Metha
- Department of Pharmacology and Therapeutics, The University of Melbourne, VIC, Australia.,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC, Australia.,Brain, Mind and Markets Laboratory, Department of Finance, The University of Melbourne, VIC, Australia
| | - Giancarlo Allocca
- Department of Pharmacology and Therapeutics, The University of Melbourne, VIC, Australia.,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC, Australia.,Somnivore Pty. Ltd., Bacchus Marsh, Victoria, Australia
| | - Daniel Hoyer
- Department of Pharmacology and Therapeutics, The University of Melbourne, VIC, Australia.,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC, Australia.,Department of Molecular Medicine, The Scripps Research Institute, CA, The United States of America
| | - Sean P A Drummond
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, VIC, Australia
| | - Laura H Jacobson
- Department of Pharmacology and Therapeutics, The University of Melbourne, VIC, Australia.,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC, Australia
| |
Collapse
|
4
|
Circadian disruption impairs fear extinction and memory of conditioned safety in mice. Behav Brain Res 2020; 393:112788. [DOI: 10.1016/j.bbr.2020.112788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023]
|
5
|
Hartsock MJ, Spencer RL. Memory and the circadian system: Identifying candidate mechanisms by which local clocks in the brain may regulate synaptic plasticity. Neurosci Biobehav Rev 2020; 118:134-162. [PMID: 32712278 DOI: 10.1016/j.neubiorev.2020.07.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 07/14/2020] [Accepted: 07/18/2020] [Indexed: 12/11/2022]
Abstract
The circadian system is an endogenous biological network responsible for coordinating near-24-h cycles in behavior and physiology with daily timing cues from the external environment. In this review, we explore how the circadian system regulates memory formation, retention, and recall. Circadian rhythms in these memory processes may arise through several endogenous pathways, and recent work highlights the importance of genetic timekeepers found locally within tissues, called local clocks. We evaluate the circadian memory literature for evidence of local clock involvement in memory, identifying potential nodes for direct interactions between local clock components and mechanisms of synaptic plasticity. Our discussion illustrates how local clocks may pervasively modulate neuronal plastic capacity, a phenomenon that we designate here as circadian metaplasticity. We suggest that this function of local clocks supports the temporal optimization of memory processes, illuminating the potential for circadian therapeutic strategies in the prevention and treatment of memory impairment.
Collapse
Affiliation(s)
- Matthew J Hartsock
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309, United States.
| | - Robert L Spencer
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309, United States.
| |
Collapse
|
6
|
Kordestani-Moghadam P, Nasehi M, Khodagholi F, Vaseghi S, Zarrindast MR, Khani M. The fluctuations of metabotropic glutamate receptor subtype 5 (mGluR5) in the amygdala in fear conditioning model of male Wistar rats following sleep deprivation, reverse circadian and napping. Brain Res 2020; 1734:146739. [PMID: 32087111 DOI: 10.1016/j.brainres.2020.146739] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 12/20/2022]
Abstract
Sleep is involved in metabolic system, mental health and cognitive functions. Evidence shows that sleep deprivation (SD) negatively affects mental health and impairs cognitive functions, including learning and memory. Furthermore, the metabotropic glutamate receptor subtype 5 (mGluR5) is a metabolic biomarker, which is affected by various conditions, including stress, sleep deprivation, and cognitive and psychiatric disorders. In this research, we investigated the effect of SD and reverse circadian (RC), and two models of napping (continuous and non-continuous) combined with SD or RC on fear-conditioning memory, anxiety-like behavior and mGluR5 fluctuations in the amygdala. 64 male Wistar rats were used in this study. The water box apparatus was used to induce SD/RC for 48 h, and fear-conditioning memory apparatus was used to assess fear memory. The results showed, fear-conditioning memory was impaired following SD and RC, especially in contextual stage. However, anxiety-like behavior was increased. Furthermore, mGluR5 was increased in the left amygdala more than the right amygdala. Additionally, continuous napping significantly improved fear-conditioning memory, especially freezing behavior. In conclusion, following SD and RC, fear-conditioning memory in contextual stage is more vulnerable than in auditory stage. Furthermore, increase in anxiety-like behavior is related to increase in the activity of left amygdala and mGluR5 receptors.
Collapse
Affiliation(s)
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroendocrinology, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Mojgan Khani
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
7
|
Walbeek TJ, Harrison EM, Soler RR, Gorman MR. Enhanced Circadian Entrainment in Mice and Its Utility under Human Shiftwork Schedules. Clocks Sleep 2019; 1:394-413. [PMID: 33089177 PMCID: PMC7445835 DOI: 10.3390/clockssleep1030032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022] Open
Abstract
The circadian system is generally considered to be incapable of adjusting to rapid changes in sleep/work demands. In shiftworkers this leads to chronic circadian disruption and sleep loss, which together predict underperformance at work and negative health consequences. Two distinct experimental protocols have been proposed to increase circadian flexibility in rodents using dim light at night: rhythm bifurcation and T-cycle (i.e., day length) entrainment. Successful translation of such protocols to human shiftworkers could facilitate alignment of internal time with external demands. To assess entrainment flexibility following bifurcation and exposure to T-cycles, mice in Study 1 were repeatedly phase-shifted. Mice from experimental conditions rapidly phase-shifted their activity, while control mice showed expected transient misalignment. In Study 2 and 3, mice followed a several weeks-long intervention designed to model a modified DuPont or Continental shiftwork schedule, respectively. For both schedules, bifurcation and nocturnal dim lighting reduced circadian misalignment. Together, these studies demonstrate proof of concept that mammalian circadian systems can be rendered sufficiently flexible to adapt to multiple, rapidly changing shiftwork schedules. Flexible adaptation to exotic light-dark cycles likely relies on entrainment mechanisms that are distinct from traditional entrainment.
Collapse
Affiliation(s)
- Thijs J. Walbeek
- Department of Psychology, University of California San Diego, La Jolla, CA 92093, USA
- Center for Circadian Biology, University of California San Diego, La Jolla, CA 92093, USA
- Correspondence: (T.J.W.); (M.R.G.); Tel.: +1-858-822-2466 (M.R.G.)
| | - Elizabeth M. Harrison
- Department of Psychology, University of California San Diego, La Jolla, CA 92093, USA
- Center for Circadian Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Robert R. Soler
- Department of Psychology, University of California San Diego, La Jolla, CA 92093, USA
| | - Michael R. Gorman
- Department of Psychology, University of California San Diego, La Jolla, CA 92093, USA
- Center for Circadian Biology, University of California San Diego, La Jolla, CA 92093, USA
- Correspondence: (T.J.W.); (M.R.G.); Tel.: +1-858-822-2466 (M.R.G.)
| |
Collapse
|
8
|
Circadian Rhythms in Fear Conditioning: An Overview of Behavioral, Brain System, and Molecular Interactions. Neural Plast 2017; 2017:3750307. [PMID: 28698810 PMCID: PMC5494081 DOI: 10.1155/2017/3750307] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/28/2017] [Accepted: 05/14/2017] [Indexed: 12/17/2022] Open
Abstract
The formation of fear memories is a powerful and highly evolutionary conserved mechanism that serves the behavioral adaptation to environmental threats. Accordingly, classical fear conditioning paradigms have been employed to investigate fundamental molecular processes of memory formation. Evidence suggests that a circadian regulation mechanism allows for a timestamping of such fear memories and controlling memory salience during both their acquisition and their modification after retrieval. These mechanisms include an expression of molecular clocks in neurons of the amygdala, hippocampus, and medial prefrontal cortex and their tight interaction with the intracellular signaling pathways that mediate neural plasticity and information storage. The cellular activities are coordinated across different brain regions and neural circuits through the release of glucocorticoids and neuromodulators such as acetylcholine, which integrate circadian and memory-related activation. Disturbance of this interplay by circadian phase shifts or traumatic experience appears to be an important factor in the development of stress-related psychopathology, considering these circadian components are of critical importance for optimizing therapeutic approaches to these disorders.
Collapse
|