1
|
Nayana J, Shankaranarayana Rao BS, Srikumar BN. The interaction between finasteride and corticosterone levels: implications for depression-, and anxiety-like behavior and hippocampal synaptic plasticity in male rats. Psychopharmacology (Berl) 2025:10.1007/s00213-025-06810-1. [PMID: 40377688 DOI: 10.1007/s00213-025-06810-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 05/02/2025] [Indexed: 05/18/2025]
Abstract
RATIONALE Finasteride is FDA-approved for the treatment of hair loss and in older men for benign prostatic hyperplasia. However, some patients treated with finasteride reported suicidal ideation, depression, and anxiety. The neurobiological mechanisms underlying this are not clearly understood. Previously, we showed that short-term finasteride administration results in depression- and anxiety-like behaviour. Since finasteride treatment is long-term in the clinic, we examine the effects of chronic finasteride administration in the current study. OBJECTIVE This study aims to understand the behavioral, cellular, and molecular changes in male rats following 21 days of finasteride (3 mg, 10 mg, and 30 mg/Kg) administration. METHODS Depression-like behavior was evaluated using forced swim (FST), sucrose preference (SPT), and splash tests. Anxiety-like behavior was assessed using elevated plus maze (EPM), open field (OFT), light-dark (LDT), Vogel's conflict (VCT), and home cage emergence (HCET), and depression-related anxiety in novelty-suppressed feeding task (NSFT) tests. Hippocampal synaptic plasticity was assessed by field excitatory post-synaptic potentials (fEPSP) recordings in the Schaffer-collateral-CA1 synapses, and plasma corticosterone levels were estimated using ELISA. RESULTS Chronic finasteride administration induced depression-like and anxiety-like behavior in SPT and EPM, respectively, but not in the other paradigms. There was a modest decrease in long-term potentiation in the hippocampus. Interestingly, there was an increase in the plasma corticosterone levels with 6 days of finasteride administration, but not after 14 or 21 days of administration. CONCLUSIONS Chronic administration of finasteride did not induce a robust depression- and anxiety-like behavior and modestly affected synaptic plasticity. This could be potentially because of the adaptive response observed in the plasma corticosterone levels.
Collapse
Affiliation(s)
- Jose Nayana
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560029, India
| | | | - Bettadapura N Srikumar
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560029, India.
| |
Collapse
|
2
|
Choudhary D, Sasibhushana RB, Shankaranarayana Rao BS, Srikumar BN. Mifepristone blocks the anxiolytic- and antidepressant-like effects of allopregnanolone in male rats. Int J Neurosci 2024; 134:839-848. [PMID: 36469636 DOI: 10.1080/00207454.2022.2153047] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Allopregnanolone (3α, 5α-tetrahydroprogesterone) is an inhibitory neurosteroid synthesized from progesterone via 5α-reductase activity in the brain and has anxiolytic, antidepressant, sedative, anticonvulsant, and analgesic activity. Altered levels of allopregnanolone cause anxiety, depression, premenstrual syndrome, and psychiatric disorders. Although allopregnanolone exerts most of its actions by modulating GABAA receptor, NMDA receptor, BDNF expression, and PXR activity, a recent study showed its effects are blocked by mifepristone on lordosis behavior which indicates the involvement of progestin or glucocorticoid receptors in the effects of allopregnanolone since mifepristone blocks both these receptors. However, whether these receptors are involved in acute anxiolytic or antidepressant-like effects is unknown. METHODS Adult male Wistar rats were used to study whether the prior administration of mifepristone would alter the effects of allopregnanolone in the elevated plus maze (EPM) and forced swim test (FST) was evaluated. RESULTS 10 mg/Kg dose of allopregnanolone increased percent open arm entries in the EPM, whereas 3 mg/Kg dose of allopregnanolone decreased percent immobility in the FST. Mifepristone administration resulted in a U-shaped response in the FST (with 1 mg/Kg, s.c., decreasing the immobility time) without significantly impacting the behavior in the EPM. In combination studies, mifepristone blocked the anxiolytic and antidepressant effects of allopregnanolone. CONCLUSION The current study provides evidence for the first time that progestin or glucocorticoid receptors are involved in the acute anxiolytic and antidepressant effects of allopregnanolone. Understanding the mechanism of action of allopregnanolone will help us design better therapeutic strategies to treat neuropsychiatric diseases such as depression and anxiety.
Collapse
Affiliation(s)
- Divya Choudhary
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
- Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, India
| | - R B Sasibhushana
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - B S Shankaranarayana Rao
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - B N Srikumar
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| |
Collapse
|
3
|
Baset A, Huang F. Shedding light on subiculum's role in human brain disorders. Brain Res Bull 2024; 214:110993. [PMID: 38825254 DOI: 10.1016/j.brainresbull.2024.110993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/17/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Subiculum is a pivotal output component of the hippocampal formation, a structure often overlooked in neuroscientific research. Here, this review aims to explore the role of the subiculum in various brain disorders, shedding light on its significance within the functional-neuroanatomical perspective on neurological diseases. The subiculum's involvement in multiple brain disorders was thoroughly examined. In Alzheimer's disease, subiculum alterations precede cognitive decline, while in epilepsy, the subiculum plays a critical role in seizure initiation. Stress involves the subiculum's impact on the hypothalamic-pituitary-adrenocortical axis. Moreover, the subiculum exhibits structural and functional changes in anxiety, schizophrenia, and Parkinson's disease, contributing to cognitive deficits. Bipolar disorder is linked to subiculum structural abnormalities, while autism spectrum disorder reveals an alteration of inward deformation in the subiculum. Lastly, frontotemporal dementia shows volumetric differences in the subiculum, emphasizing its contribution to the disorder's complexity. Taken together, this review consolidates existing knowledge on the subiculum's role in brain disorders, and may facilitate future research, diagnostic strategies, and therapeutic interventions for various neurological conditions.
Collapse
Affiliation(s)
- Abdul Baset
- Department of Neuroscience, City University of Hong Kong, Hong Kong Special Administrative Region of China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Special Administrative Region of China
| | - Fengwen Huang
- Department of Neuroscience, City University of Hong Kong, Hong Kong Special Administrative Region of China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Special Administrative Region of China.
| |
Collapse
|
4
|
Sasibhushana RB, Shankaranarayana Rao BS, Srikumar BN. Anxiety-, and depression-like behavior following short-term finasteride administration is associated with impaired synaptic plasticity and cognitive behavior in male rats. J Psychiatr Res 2024; 174:304-318. [PMID: 38685188 DOI: 10.1016/j.jpsychires.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 02/05/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
Finasteride, a 5α-Reductase inhibitor, is used to treat male pattern baldness and benign prostatic hyperplasia. Several clinical studies show that chronic finasteride treatment induces persistent depression, suicidal thoughts and cognitive impairment and these symptoms are persistent even after its withdrawal. Previous results from our lab showed that repeated administration of finasteride for six days induces depression-like behavior. However, whether short-term finasteride administration induces anxiety-like behavior and memory impairment and alters synaptic plasticity are not known, which formed the basis of this study. Finasteride was administered to 2-2.5 months old male Wistar rats for six days and subjected to behavioral evaluation, biochemical estimation and synaptic plasticity assessment. Anxiety-like behavior was evaluated in the elevated plus maze (EPM), open field test (OFT), light/dark test (LDT), and novelty suppressed feeding test (NSFT), and learning and memory using novel object recognition test (NORT) and novel object location test (NOLT) and depression-like behavior in the sucrose preference test (SPT). Synaptic plasticity in the hippocampal Schaffer collateral-CA1 was evaluated using slice field potential recordings. Plasma corticosterone levels were estimated using ELISA. Finasteride administration induced anxiety-like behavior in the EPM, OFT, LDT and NSFT, and depression-like behavior in the SPT. Further, finasteride induced hippocampal dependent spatial learning and memory impairment in the NOLT. In addition, finasteride decreased basal synaptic plasticity and long-term potentiation (LTP) in the hippocampus. A trend of increased plasma corticosterone levels was observed following repeated finasteride administration. These results indicate the potential role of corticosterone and synaptic plasticity in finasteride-induced effects and further studies will pave way for the development of novel neurosteroid-based therapeutics in neuropsychiatric diseases.
Collapse
Affiliation(s)
- R B Sasibhushana
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560029, India
| | - B S Shankaranarayana Rao
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560029, India
| | - Bettadapura N Srikumar
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560029, India.
| |
Collapse
|
5
|
Nayana J, Shankaranarayana Rao BS, Srikumar BN. Repeated finasteride administration promotes synaptic plasticity and produces antidepressant- and anxiolytic-like effects in female rats. J Neurosci Res 2024; 102:e25306. [PMID: 38468573 DOI: 10.1002/jnr.25306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/04/2023] [Accepted: 01/27/2024] [Indexed: 03/13/2024]
Abstract
Finasteride is used in female-pattern hair loss, hirsutism, and polycystic ovarian syndrome. It inhibits 5α-reductase, which is an important enzyme in the biosynthesis of neurosteroids. The effects of finasteride treatment on mental health in female patients as well as the effects of repeated/chronic finasteride administration in female rodents are still unknown. Accordingly, in our study, we administered finasteride (10, 30, or 100 mg/Kg, s.c.) for 6 days in female rats and evaluated behavior, plasma steroid levels, and synaptic plasticity. Depression-like behavior was evaluated using forced swim test (FST) and splash test. Anxiety-like behavior was evaluated using novelty-suppressed feeding task (NSFT), elevated plus maze (EPM), open field test (OFT), and light-dark test (LDT). Plasma steroid levels were assessed using ELISA and synaptic plasticity by field potential recordings. We observed that finasteride decreased total immobility duration in FST, indicating antidepressant-like effect and decreased the latency to first bite in NSFT, showing anxiolytic-like effect. We also found a significant increase in plasma estradiol and a significant decrease in plasma corticosterone level. Furthermore, field potential recordings showed that finasteride increased hippocampal long-term potentiation. These results indicate that repeated finasteride administration in female rats may have antidepressant- and anxiolytic-like effect, which might be mediated by enhanced estradiol levels or decreased corticosterone levels. Further studies are required to validate the molecular mechanisms underlying the effects of finasteride in female rats. Understanding the mechanisms will help us in developing novel neurosteroid-based therapeutics in the treatment of neuropsychiatric disorders in women.
Collapse
Affiliation(s)
- Jose Nayana
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | | | - Bettadapura N Srikumar
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| |
Collapse
|
6
|
Subhadeep D, Srikumar BN, Shankaranarayana Rao BS, Kutty BM. Ventral subicular lesion impairs pro-social empathy-like behavior in adult Wistar rats. Neurosci Lett 2022; 776:136535. [PMID: 35182682 DOI: 10.1016/j.neulet.2022.136535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 12/01/2022]
Abstract
The subiculum, an important structure of the hippocampal formation, regulates spatial information processing, social cognition, and affective behavior. Earlier we demonstrated deficits in sociability and social novelty as a measure of social cognition in ventral subicular lesioned (VSL) rats. The present study investigated empathy-like pro-social behavior and the associated affective states in VSL rats. The ability of free rats to release trapped cagemates was assessed using a modified door-opening empathy task.The rat pairs (free rat and the trapped cagemate) used were from the same group and tested for eight days to assess the pro-social behavior displayed by the free rats. The controlfree rats learned to open the door quickly to release the trapped cagemate and both the rats displayed social responses by emitting 'hedonic' calls (50-kHz ultrasonic vocalizations) while playing after the release. The VSLfree rats, however, were less exploratory, displayed apathy towards the trapped cagemate, demonstrated freezing behavior following door-opening and did not interact with the cagemate even after its release. These findings indicate deficits of social motivation and reinforcement learning associated with lesions in possibly both the rats. In addition, the VSL rat pairs elicited more 22-kHz 'alarm' calls and fewer 50-kHz 'hedonic' calls highlighting the lesion-induced alterations of contextual processing and threat perception abilities. In conclusion, VSL led to significant pro-social deficits implicating the role of ventral subiculum in social cognition and empathy. More studies are needed to substantiate whether the subiculum is implicated in social deficits associated with psychiatric conditions such as autism spectrum disorder.
Collapse
Affiliation(s)
- Duttagupta Subhadeep
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560 029, India
| | - B N Srikumar
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560 029, India
| | - B S Shankaranarayana Rao
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560 029, India
| | - Bindu M Kutty
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560 029, India.
| |
Collapse
|
7
|
Bystritsky A, Spivak NM, Dang BH, Becerra SA, Distler MG, Jordan SE, Kuhn TP. Brain circuitry underlying the ABC model of anxiety. J Psychiatr Res 2021; 138:3-14. [PMID: 33798786 DOI: 10.1016/j.jpsychires.2021.03.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
Anxiety Disorders are prevalent and often chronic, recurrent conditions that reduce quality of life. The first-line treatments, such as serotonin reuptake inhibitors and cognitive behavioral therapy, leave a significant proportion of patients symptomatic. As psychiatry moves toward targeted circuit-based treatments, there is a need for a theory that unites the phenomenology of anxiety with its underlying neural circuits. The Alarm, Belief, Coping (ABC) theory of anxiety describes how the neural circuits associated with anxiety interact with each other and domains of the anxiety symptoms, both temporally and spatially. The latest advancements in neuroimaging techniques offer the ability to assess these circuits in vivo. Using Neurosynth, a large open-access meta-analytic imaging database, the association between terms related to specific neural circuits was explored within the ABC theory framework. Alarm-related terms were associated with the amygdala, anterior cingulum, insula, and bed nucleus of stria terminalis. Belief-related terms were associated with medial prefrontal cortex, precuneus, bilateral temporal poles, and hippocampus. Coping-related terms were associated with the ventrolateral and dorsolateral prefrontal cortices, basal ganglia, and anterior cingulate. Neural connections underlying the functional neuroanatomy of the ABC model were observed. Additionally, there was considerable interaction and overlap between circuits associated with the symptom domains. Further neuroimaging research is needed to explore the dynamic interaction between the functional domains of the ABC theory. This will pave the way for probing the neuroanatomical underpinnings of anxiety disorders and provide an evidence-based foundation for the development of targeted treatments, such as neuromodulation.
Collapse
Affiliation(s)
- Alexander Bystritsky
- Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, CA, USA; BrainSonix Corporation, Sherman Oaks, CA, USA.
| | - Norman M Spivak
- Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, CA, USA; Department of Neurosurgery, UCLA, Los Angeles, CA, USA; David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Bianca H Dang
- Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, CA, USA
| | - Sergio A Becerra
- Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, CA, USA
| | - Margaret G Distler
- Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, CA, USA
| | - Sheldon E Jordan
- Neurology Management Associates - Los Angeles, Santa Monica, CA, USA
| | - Taylor P Kuhn
- Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, CA, USA; David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| |
Collapse
|
8
|
Subhadeep D, Srikumar BN, Shankaranarayana Rao BS, Kutty BM. Exposure to Short Photoperiod Regime Restores Spatial Cognition in Ventral Subicular Lesioned Rats: Potential Role of Hippocampal Plasticity, Glucocorticoid Receptors, and Neurogenesis. Mol Neurobiol 2021; 58:4437-4459. [PMID: 34024004 DOI: 10.1007/s12035-021-02409-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/27/2021] [Indexed: 12/29/2022]
Abstract
Ambient light influences our mood, behavior, and cognition. Phototherapy has been considered as an effective non-pharmacological intervention strategy in the restoration of cognitive functions following central nervous system insults. However, the cellular and molecular underpinnings of phototherapy-mediated functional recovery are yet to be studied. The present study examines the effectiveness of short photoperiod regime (SPR; 6:18-h light:dark cycle) in restoring the cognitive functions in ventral subicular lesioned rats. Bilateral ventral subicular lesion (VSL) resulted in significant impairment of spatial navigational abilities when tested in the Morris water maze (MWM) task. Further, VSL resulted in reduced expression of glucocorticoid receptors (GRs) and activity-regulated cytoskeletal (Arc) protein and suppression of neurogenesis in the hippocampus. VSL also suppressed the magnitude of long-term potentiation (LTP) in the hippocampal Schaffer collateral-CA1 synapses. However, exposure to SPR for 21 days showed significant restoration of spatial performance in the MWM task as the ventral subicular lesioned rats could deploy higher cognitive allocentric navigational strategies to reach the hidden platform. Further, SPR resulted in enhanced expression of hippocampal GR and Arc protein and neurogenesis but not hippocampal LTP suggestive of appropriate need-based SPR intervention. In conclusion, the study demonstrates the effectiveness of SPR in establishing functional recovery as well as the possible molecular and cellular basis of cognitive recovery in a rat model of neurodegeneration. Such studies provide a framework in understanding the efficacy of non-pharmacological strategies in establishing functional recovery in neurodegenerative conditions.
Collapse
Affiliation(s)
- Duttagupta Subhadeep
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560029, India
| | - B N Srikumar
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560029, India
| | - B S Shankaranarayana Rao
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560029, India
| | - Bindu M Kutty
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560029, India.
| |
Collapse
|
9
|
Ding SL, Yao Z, Hirokawa KE, Nguyen TN, Graybuck LT, Fong O, Bohn P, Ngo K, Smith KA, Koch C, Phillips JW, Lein ES, Harris JA, Tasic B, Zeng H. Distinct Transcriptomic Cell Types and Neural Circuits of the Subiculum and Prosubiculum along the Dorsal-Ventral Axis. Cell Rep 2021; 31:107648. [PMID: 32433957 DOI: 10.1016/j.celrep.2020.107648] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 02/23/2020] [Accepted: 04/22/2020] [Indexed: 01/02/2023] Open
Abstract
Subicular regions play important roles in spatial processing and many cognitive functions, and these are mainly attributed to the subiculum (Sub) rather than the prosubiculum (PS). Using single-cell RNA sequencing, we identify 27 transcriptomic cell types residing in sub-domains of the Sub and PS. Based on in situ expression of reliable transcriptomic markers, the precise boundaries of the Sub and PS are consistently defined along the dorsoventral axis. Using these borders to evaluate Cre-line specificity and tracer injections, we find bona fide Sub projections topographically to structures important for spatial processing and navigation. In contrast, the PS sends its outputs to widespread brain regions crucial for motivation, emotion, reward, stress, anxiety, and fear. The Sub and PS, respectively, dominate dorsal and ventral subicular regions and receive different afferents. These results reveal two molecularly and anatomically distinct circuits centered in the Sub and PS, respectively, providing a consistent explanation for historical data and a clearer foundation for future studies.
Collapse
Affiliation(s)
- Song-Lin Ding
- Allen Institute for Brain Science, Seattle, WA 98109, USA.
| | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | | | - Olivia Fong
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Phillip Bohn
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Kiet Ngo
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Christof Koch
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Julie A Harris
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Bosiljka Tasic
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| |
Collapse
|
10
|
Subhadeep D, Srikumar BN, Shankaranarayana Rao BS, Kutty BM. Short photoperiod restores ventral subicular lesion‐induced deficits in affective and socio‐cognitive behavior in male Wistar rats. J Neurosci Res 2020; 98:1114-1136. [DOI: 10.1002/jnr.24601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/05/2020] [Accepted: 02/08/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Duttagupta Subhadeep
- Department of Neurophysiology National Institute of Mental Health and Neuro Sciences (NIMHANS) Bengaluru India
| | - Bettadapura N. Srikumar
- Department of Neurophysiology National Institute of Mental Health and Neuro Sciences (NIMHANS) Bengaluru India
| | | | - Bindu M. Kutty
- Department of Neurophysiology National Institute of Mental Health and Neuro Sciences (NIMHANS) Bengaluru India
| |
Collapse
|
11
|
Boronat AC, Ferreira-Maia AP, Wang YP. Sundown Syndrome in Older Persons: A Scoping Review. J Am Med Dir Assoc 2019; 20:664-671.e5. [PMID: 31043358 DOI: 10.1016/j.jamda.2019.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 01/26/2023]
Abstract
OBJECTIVES To map comprehensive investigations of the sundown syndrome (SS), highlighting its key definition and associated characteristics. DESIGN Scoping review of published articles on SS in PubMed, OVID, EMBASE, Scopus, CINAHL, and Science Direct. SETTING Post-acute and long-term health care settings. PARTICIPANTS Older adults aged ≥60 years. MEASURES Articles must present primary data on specific SS behavior, with explicit psychopathological and quantitative outcomes; and/or evening disruptive behavior. RESULTS From a total number of 460 articles focusing on psychopathology and standardized outcomes of SS, 23 were retained for the final analysis (n = 1210 subjects). The mean age of participants was 63.2 years, and slightly more participants were women. The samples were recruited by convenience from long-term care facilities and tertiary outpatient clinics. The frequency of SS varied from 2% to 82%, without evident difference between genders and race/ethnicity. Generally, the sundown episode occurred during later daytime, when psychomotor alterations and cognitive disturbance manifested repeatedly. The symptomatic manifestations of SS were heterogeneous across the studies. Demographic risk factors were inconsistent. Although some authors have viewed cognitive impairment as a substantive predisposing factor to SS, others supported SS as a predictor of looming cognitive decline. The disrupted circadian rhythm was the most accepted pathophysiology. To date, clinical trials to guide the management of SS with specific pharmacologic and nonpharmacologic approaches are scant. CONCLUSIONS AND IMPLICATIONS SS can be viewed as a cyclic delirium-like condition affecting the older population around the sunset hour that may last for a few hours. The scarcity of comprehensive studies makes it difficult to determine whether and to what extent it can represent a distinct disease, a prodromal stage of dementia, or an epiphenomenon of incipient or worsening dementia. Extensive gathering of clinical data from multiple health care settings, using uniform measurement tools, is much needed.
Collapse
Affiliation(s)
- Alexandre C Boronat
- Instituto de Psiquiatria (LIM-23), Hospital das Clinicas HC FMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Ana Paula Ferreira-Maia
- Instituto de Psiquiatria (LIM-23), Hospital das Clinicas HC FMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Yuan-Pang Wang
- Instituto de Psiquiatria (LIM-23), Hospital das Clinicas HC FMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|