1
|
Ahmed HS. The Multifaceted Role of L-Type Amino Acid Transporter 1 at the Blood-Brain Barrier: Structural Implications and Therapeutic Potential. Mol Neurobiol 2025; 62:3813-3832. [PMID: 39325101 DOI: 10.1007/s12035-024-04506-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/14/2024] [Indexed: 09/27/2024]
Abstract
L-type amino acid transporter 1 (LAT1) is integral to the transport of large neutral amino acids across the blood-brain barrier (BBB), playing a crucial role in brain homeostasis and the delivery of therapeutic agents. This review explores the multifaceted role of LAT1 in neurological disorders, including its structural and functional aspects at the BBB. Studies using advanced BBB models, such as induced pluripotent stem cell (iPSC)-derived systems and quantitative proteomic analyses, have demonstrated LAT1's significant impact on drug permeability and transport efficiency. In Alzheimer's disease, LAT1-mediated delivery of anti-inflammatory and neuroprotective agents shows promise in overcoming BBB limitations. In Parkinson's disease, LAT1's role in transporting L-DOPA and other therapeutic agents highlights its potential in enhancing treatment efficacy. In phenylketonuria, studies have revealed polymorphisms and genetic variations of LAT1, which could be correlated to disease severity. Prodrugs of valproic acid, pregabalin, and gabapentin help use LAT1-mediated transport to increase the therapeutic activity and bioavailability of the prodrug in the brain. LAT1 has also been studied in neurodevelopment disorders like autism spectrum disorders and Rett syndrome, along with neuropsychiatric implications in depression. Its implications in neuro-oncology, especially in transporting therapeutic agents into cancer cells, show immense future potential. Phenotypes of LAT1 have also shown variations in the general population affecting their ability to respond to painkillers and anti-inflammatory drugs. Furthermore, LAT1-targeted approaches, such as functionalized nanoparticles and prodrugs, show promise in overcoming chemoresistance and enhancing drug delivery to the brain. The ongoing exploration of LAT1's structural characteristics and therapeutic applications reiterates its critical role in advancing treatments for neurological disorders.
Collapse
Affiliation(s)
- H Shafeeq Ahmed
- Bangalore Medical College and Research Institute, Bangalore, 560002, Karnataka, India.
| |
Collapse
|
2
|
Engelen MPKJ, Simbo SY, Ruebush LE, Thaden JJ, Ten Have GAM, Harrykissoon RI, Zachria AJ, Calder PC, Pereira SL, Deutz NEP. Functional and metabolic effects of omega-3 polyunsaturated fatty acid supplementation and the role of β-hydroxy-β-methylbutyrate addition in chronic obstructive pulmonary disease: A randomized clinical trial. Clin Nutr 2024; 43:2263-2278. [PMID: 39181037 DOI: 10.1016/j.clnu.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024]
Abstract
INTRODUCTION Short-term (4 weeks) supplementation with n-3 polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) has recently been shown to improve protein metabolism in a dose dependent way in normal weight patients with Chronic Obstructive Pulmonary Disease (COPD). Furthermore, EPA/DHA supplementation was able to increase extremity lean soft tissue but not muscle function. No studies are available combining n-3 PUFAs and the leucine metabolite β-hydroxy-β-methylbutyrate (HMB) supplementation in chronic clinical conditions. Whether adding HMB to daily EPA/DHA supplementation for 10 weeks enhances muscle and brain health, daily functional performance, and quality of life of patients with COPD by further improving their protein and amino acid homeostasis remains unknown. METHODS Patients with COPD (GOLD: II-IV, n = 46) received daily for 10 weeks, according to a randomized double-blind placebo-controlled three-group design, EPA/DHA (n = 16), EPA/DHA to which HMB was added (n = 14), or placebo (n = 16). The daily dose of 2.0 g of EPA/DHA or soy + corn oil as the placebo was provided via gel capsules, and 3.0 g of Ca-HMB or maltodextrin as placebo as powders. At pre- and post-intervention, a pulse mixture of multiple amino acids was administered to measure postabsorptive net protein breakdown (netPB as primary endpoint) and whole body production (WBP) and conversion rates of the amino acids. As secondary endpoints, lean soft tissue and fat mass were assessed by dual-energy X-ray absorptiometry, upper and lower muscle function by handgrip and single leg isokinetic dynamometry, brain (cognitive, wellbeing) health by assessments, daily functional performance by measuring 6-min walk distance, 4-m gait speed, and postural balance, and quality of life by questionnaire. Plasma enrichments and concentrations were analyzed by LC-MS/MS, and systemic inflammatory profile and metabolic hormones by Luminex. RESULTS HMB + EPA/DHA but not EPA/DHA supplementation increased postabsorptive netPB (p = 0.028), and WBPs of glutamine (p = 0.024), taurine (p = 0.039), and tyrosine (p = 0.036). Both EPA/DHA and HMB + EPA/DHA supplementation resulted in increased WBP of phenylalanine (p < 0.05). EPA/DHA but not HMB + EPA/DHA was able to increase WBP of arginine (p = 0.030), citrulline (p = 0.008), valine (p = 0.038), and conversion of citrulline to arginine (p = 0.009). Whole body and extremity fat mass were reduced after HMB + EPA/DHA supplementation only, whereas lean soft tissue was increased after EPA/DHA (p = 0.049) and HMB + EPA/DHA (p = 0.073). No other significant findings were observed. Reductions in several proinflammatory cytokines were observed in the HMB + EPA/DHA group including IL-2, IL-17, IL-6, IL-12P40, and TNF-β (p < 0.05). CONCLUSIONS Ten weeks of supplementation with 2 g of EPA/DHA daily is sufficient to induce muscle gain in COPD but HMB is needed to induce fat loss. Whether HMB is solely responsible for the fat mass loss or has a synergistic effect with EPA/DHA remains unclear. The increase in net protein breakdown observed with HMB + EPA/DHA supplementation may indicate a beneficial enhanced protein turnover cycling associated with increased lean soft tissue. CLINICAL TRIAL REGISTRY ClinicalTrials.gov; NCT03796455.
Collapse
Affiliation(s)
- Mariëlle P K J Engelen
- Center for Translational Research in Aging and Longevity, Dept. Kinesiology and Sport Management, Texas A&M University, College Station, USA; Primary Care & Rural Medicine, Texas A&M University, College Station, TX, USA.
| | - Sunday Y Simbo
- Center for Translational Research in Aging and Longevity, Dept. Kinesiology and Sport Management, Texas A&M University, College Station, USA
| | - Laura E Ruebush
- Center for Translational Research in Aging and Longevity, Dept. Kinesiology and Sport Management, Texas A&M University, College Station, USA
| | - John J Thaden
- Center for Translational Research in Aging and Longevity, Dept. Kinesiology and Sport Management, Texas A&M University, College Station, USA
| | - Gabriella A M Ten Have
- Center for Translational Research in Aging and Longevity, Dept. Kinesiology and Sport Management, Texas A&M University, College Station, USA
| | - Rajesh I Harrykissoon
- Pulmonary, Critical Care and Sleep Medicine, Scott and White Medical Center, College Station, TX, USA
| | - Anthony J Zachria
- Pulmonary, Critical Care and Sleep Medicine, Scott and White Medical Center, College Station, TX, USA
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton and NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | | | - Nicolaas E P Deutz
- Primary Care & Rural Medicine, Texas A&M University, College Station, TX, USA
| |
Collapse
|
3
|
Mabry S, Wilson EN, Bradshaw JL, Gardner JJ, Fadeyibi O, Vera E, Osikoya O, Cushen SC, Karamichos D, Goulopoulou S, Cunningham RL. Sex and age differences in social and cognitive function in offspring exposed to late gestational hypoxia. RESEARCH SQUARE 2023:rs.3.rs-2507737. [PMID: 37333114 PMCID: PMC10275064 DOI: 10.21203/rs.3.rs-2507737/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Background Gestational sleep apnea affects 8-26% of pregnancies and can increase the risk for autism spectrum disorder (ASD) in offspring. ASD is a neurodevelopmental disorder associated with social dysfunction, repetitive behaviors, anxiety, and cognitive impairment. To examine the relationship between gestational sleep apnea and ASD-associated behaviors, we used a chronic intermittent hypoxia (CIH) protocol between gestational days (GD) 15-19 in pregnant rats to model late gestational sleep apnea. We hypothesized that late gestational CIH would produce sex- and age-specific social, mood, and cognitive impairments in offspring. Methods Timed pregnant Long-Evans rats were exposed to CIH or room air normoxia from GD 15-19. Behavioral testing of offspring occurred during either puberty or young adulthood. To examine ASD-associated phenotypes, we quantified ASD-associated behaviors (social function, repetitive behaviors, anxiety-like behaviors, and spatial memory and learning), hippocampal activity (glutamatergic NMDA receptors, dopamine transporter, monoamine oxidase-A, EGR-1, and doublecortin), and circulating hormones in offspring. Results Late gestational CIH induced sex- and age-specific differences in social, repetitive and memory functions in offspring. These effects were mostly transient and present during puberty. In female pubertal offspring, CIH impaired social function, increased repetitive behaviors, and increased circulating corticosterone levels, but did not impact memory. In contrast, CIH transiently induced spatial memory dysfunction in pubertal male offspring but did not impact social or repetitive functions. Long-term effects of gestational CIH were only observed in female offspring, wherein CIH induced social disengagement and suppression of circulating corticosterone levels in young adulthood. No effects of gestational CIH were observed on anxiety-like behaviors, hippocampal activity, circulating testosterone levels, or circulating estradiol levels, regardless of sex or age of offspring. Conclusions Our results indicate that hypoxia-associated pregnancy complications during late gestation can increase the risk for ASD-associated behavioral and physiological outcomes, such as pubertal social dysfunction, corticosterone dysregulation, and memory impairments.
Collapse
Affiliation(s)
- Steve Mabry
- UNTHSC: University of North Texas Health Science Center
| | | | | | | | | | - Edward Vera
- UNTHSC: University of North Texas Health Science Center
| | | | | | | | | | | |
Collapse
|
4
|
Juraska JM. Changes in sex differences in neuroanatomical structure and cognitive behavior across the life span. Learn Mem 2022; 29:340-348. [PMID: 36206396 PMCID: PMC9488018 DOI: 10.1101/lm.053499.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022]
Abstract
Sex differences occur in the structure and function of the rat cerebral cortex and hippocampus, which can change from the juvenile period through old age. Although the evidence is incomplete, it appears that in at least some portions of the cortex these differences develop due to the rise of ovarian hormones at puberty and are potentially not dependent on the perinatal rise in testosterone, which is essential for sexual differentiation of the hypothalamus and sexual behavior. During aging of female rats, the presence of continued ovarian hormone secretion after cessation of the estrous cycle also influences sex differences in neuroanatomical structure and cognitive behavior, resulting in nullification or reversal of sex differences seen in younger adults. Sex differences can be altered by experience in a stimulating environment during the juvenile/adolescent period, and sex differences in performance even can be affected by the parameters of a task. Thus, broad generalizations about differences such as "spatial ability" are to be avoided. It is clear that to understand how the brain produces behavior, sex and hormones have to be taken into account.
Collapse
Affiliation(s)
- Janice M Juraska
- Department of Psychology, Program in Neuroscience, University of Illinois at Urbana-Champaign, Champaign, Illinois 61820, USA
| |
Collapse
|
5
|
Tosato M, Ciciarello F, Zazzara MB, Pais C, Savera G, Picca A, Galluzzo V, Coelho-Júnior HJ, Calvani R, Marzetti E, Landi F. Nutraceuticals and Dietary Supplements for Older Adults with Long COVID. Clin Geriatr Med 2022; 38:565-591. [PMID: 35868674 PMCID: PMC9212635 DOI: 10.1016/j.cger.2022.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Matteo Tosato
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, Rome 00168, Italy
| | - Francesca Ciciarello
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, Rome 00168, Italy
| | - Maria Beatrice Zazzara
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, Rome 00168, Italy
| | - Cristina Pais
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, Rome 00168, Italy
| | - Giulia Savera
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, Rome 00168, Italy
| | - Anna Picca
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, Rome 00168, Italy
| | - Vincenzo Galluzzo
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, Rome 00168, Italy
| | - Hélio José Coelho-Júnior
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, L.go F. Vito 8, Rome 00168, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, Rome 00168, Italy.
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, Rome 00168, Italy; Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, L.go F. Vito 8, Rome 00168, Italy
| | - Francesco Landi
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, Rome 00168, Italy; Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, L.go F. Vito 8, Rome 00168, Italy
| |
Collapse
|
6
|
Engelen MPKJ. Editorial: The role of targeted nutritional modulation alongside exercise rehabilitation to improve systemic health outcomes in chronic diseases. Curr Opin Clin Nutr Metab Care 2022; 25:133-135. [PMID: 35762171 DOI: 10.1097/mco.0000000000000827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Mariëlle P K J Engelen
- Center for Translational Research in Aging & Longevity, Department of Health & Kinesiology, Texas A&M University. College Station, Texas, USA
| |
Collapse
|
7
|
Barranco A, Garcia L, Gruart A, Delgado-Garcia JM, Rueda R, Ramirez M. Effects of β-Hydroxy β-Methylbutyrate Supplementation on Working Memory and Hippocampal Long-Term Potentiation in Rodents. Nutrients 2022; 14:nu14051090. [PMID: 35268065 PMCID: PMC8912805 DOI: 10.3390/nu14051090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/05/2023] Open
Abstract
β-hydroxy β-methylbutyrate (HMB), a metabolite of the essential amino acid leucine, has been shown to preserve muscle mass and strength during aging. The signaling mechanism by which HMB elicits its favorable effects on protein metabolism in skeletal muscle is also preserved in the brain. However, there are only a few studies, all at relatively high doses, addressing the effect of HMB supplementation on cognition. This study evaluated the effects of different doses of HMB on the potentiation of hippocampal synapses following the experimental induction of long-term potentiation (LTP) in the hippocampus of behaving rats, as well as on working memory test (delayed matching-to-position, DMTP) in mice. HMB doses in rats were 225 (low), 450 (medium), and 900 (high) mg/kg body weight/day and were double in mice. Rats who received medium or high HMB doses improved LTP, suggesting that HMB administration enhances mechanisms related to neuronal plasticity. In the DMTP test, mice that received any of the tested doses of HMB performed better than the control group in the overall test with particularities depending on the dose and the task phase.
Collapse
Affiliation(s)
- Alejandro Barranco
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain;
| | | | - Agnes Gruart
- Division of Neurosciences, Pablo de Olavide University, 41001 Seville, Spain; (A.G.); (J.M.D.-G.)
| | | | - Ricardo Rueda
- Abbott Nutrition, Research and Development, 18004 Granada, Spain;
| | - Maria Ramirez
- Abbott Nutrition, Research and Development, 18004 Granada, Spain;
- Correspondence: ; Tel.: +34-669-127998
| |
Collapse
|
8
|
A Proton-Coupled Transport System for β-Hydroxy-β-Methylbutyrate (HMB) in Blood-Brain Barrier Endothelial Cell Line hCMEC/D3. Nutrients 2021; 13:nu13093220. [PMID: 34579098 DOI: 10.3390/nu13093220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/31/2022] Open
Abstract
β-Hydroxy-β-methylbutyrate (HMB), a leucine metabolite, is used as a nutritional ingredient to improve skeletal muscle health. Preclinical studies indicate that this supplement also elicits significant benefits in the brain; it promotes neurite outgrowth and prevents age-related reductions in neuronal dendrites and cognitive performance. As orally administered HMB elicits these effects in the brain, we infer that HMB crosses the blood-brain barrier (BBB). However, there have been no reports detailing the transport mechanism for HMB in BBB. Here we show that HMB is taken up in the human BBB endothelial cell line hCMEC/D3 via H+-coupled monocarboxylate transporters that also transport lactate and β-hydroxybutyrate. MCT1 (monocarboxylate transporter 1) and MCT4 (monocarboxylate transporter 4) belonging to the solute carrier gene family SLC16 (solute carrier, gene family 16) are involved, but additional transporters also contribute to the process. HMB uptake in BBB endothelial cells results in intracellular acidification, demonstrating cotransport with H+. Since HMB is known to activate mTOR with potential to elicit transcriptomic changes, we examined the influence of HMB on the expression of selective transporters. We found no change in MCT1 and MCT4 expression. Interestingly, the expression of LAT1 (system L amino acid transporter 1), a high-affinity transporter for branched-chain amino acids relevant to neurological disorders such as autism, is induced. This effect is dependent on mTOR (mechanistic target of rapamycine) activation by HMB with no involvement of histone deacetylases. These studies show that HMB in systemic circulation can cross the BBB via carrier-mediated processes, and that it also has a positive influence on the expression of LAT1, an important amino acid transporter in the BBB.
Collapse
|
9
|
Courel-Ibáñez J, Vetrovsky T, Dadova K, Pallarés JG, Steffl M. Health Benefits of β-Hydroxy-β-Methylbutyrate (HMB) Supplementation in Addition to Physical Exercise in Older Adults: A Systematic Review with Meta-Analysis. Nutrients 2019; 11:nu11092082. [PMID: 31484462 PMCID: PMC6769498 DOI: 10.3390/nu11092082] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 12/14/2022] Open
Abstract
Both regular exercise training and beta-hydroxy-beta-methylbutyrate (HMB) supplementation are shown as effective treatments to delay or reverse frailty and reduce cognitive impairment in older people. However, there is very little evidence on the true benefits of combining both strategies. The aim of this meta-analysis was to quantify the effects of exercise in addition to HMB supplementation, on physical and cognitive health in older adults. Data from 10 randomized controlled trials (RCTs) investigating the effect of HMB supplementation and physical function in adults aged 50 years or older were analyzed, involving 384 participants. Results showed that HMB supplementation in addition to physical exercise has no or fairly low impact in improving body composition, muscle strength, or physical performance in adults aged 50 to 80 years, compared to exercise alone. There is a gap of knowledge on the beneficial effects of HMB combined with exercise to preserve cognitive functions in aging and age-related neurodegenerative diseases. Future RCTs are needed to refine treatment choices combining HMB and exercises for older people in particular populations, ages, and health status. Specifically, interventions in older adults aged 80 years or older, with cognitive impairment, frailty, or limited mobility are required.
Collapse
Affiliation(s)
- Javier Courel-Ibáñez
- Human Performance and Sports Science Laboratory, Faculty of Sport Sciences, University of Murcia, 30100 Murcia, Spain.
| | - Tomas Vetrovsky
- Faculty of Physical Education and Sport, Charles University, Prague 16252, Czech Republic
| | - Klara Dadova
- Faculty of Physical Education and Sport, Charles University, Prague 16252, Czech Republic
| | - Jesús G Pallarés
- Human Performance and Sports Science Laboratory, Faculty of Sport Sciences, University of Murcia, 30100 Murcia, Spain
| | - Michal Steffl
- Faculty of Physical Education and Sport, Charles University, Prague 16252, Czech Republic
| |
Collapse
|
10
|
Munroe M, Mahmassani ZS, Dvoretskiy S, Reid JJ, Miller BF, Hamilton K, Rhodes JS, Boppart MD. Cognitive function is preserved in aged mice following long-term β-hydroxy β-methylbutyrate supplementation. Nutr Neurosci 2018; 23:170-182. [PMID: 29914347 DOI: 10.1080/1028415x.2018.1483101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
β-hydroxy β-methylbutyrate (HMB) is a nutritional supplement purported to enhance skeletal muscle mass and strength, as well as cognitive function in older adults. The purpose of this study was to determine the potential for long-term HMB supplementation to preserve muscle function and cognition in aged mice, as well as provide evidence of a link between vessel-associated pericyte function and outcomes. Four- (Adult/Ad) and 17 month-old (Aged/Ag) C57BL/6J mice consumed chow containing 600 mg/kg BW/day of either Ca-HMB (Ad, n=16; Ag, n=17) or Ca-Lactate (Ad, n=16; Ag, n=17) for 6 months. HMB did not prevent age-related reductions in muscle mass, strength and coordination (Age main effect, P<0.05). The rate of muscle protein synthesis decreased within the mitochondrial fraction (age main effect, P<0.05), and this decline was not prevented with HMB. Despite no change in muscle mass or function, an age-dependent reduction in active avoidance learning was attenuated with HMB (Age and HMB main effects, P<0.05). Age detrimentally impacted muscle-resident pericyte gene expression with no recovery observed with HMB, whereas no changes in brain-resident pericyte quantity or function were observed with age or HMB. The findings from this study suggest that prolonged HMB supplementation starting in adulthood may preserve cognition with age.
Collapse
Affiliation(s)
- Michael Munroe
- Department of Kinesiology & Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ziad S Mahmassani
- Department of Kinesiology & Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Svyatoslav Dvoretskiy
- Department of Kinesiology & Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Justin J Reid
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Benjamin F Miller
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Karyn Hamilton
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Justin S Rhodes
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Marni D Boppart
- Department of Kinesiology & Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
11
|
Engelen MPKJ, Deutz NEP. Is β-hydroxy β-methylbutyrate an effective anabolic agent to improve outcome in older diseased populations? Curr Opin Clin Nutr Metab Care 2018; 21:207-213. [PMID: 29406417 PMCID: PMC5882564 DOI: 10.1097/mco.0000000000000459] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW β-Hydroxy β-methylbutyrate (HMB) has been used for many years in athletes for muscle buildup and strength, and endurance enhancement. In recent years, its interest quickly expanded in older (diseased) populations and during (exercise) rehabilitation and recovery from hospitalization and surgery. We will discuss recent literature about HMB metabolism, its pharmacokinetics compared with the frequently used metabolite leucine, effectiveness of HMB to improve outcome in older diseased adults, and novel approaches for HMB use. RECENT FINDINGS HMB supplementation resulted in positive outcomes on muscle mass and functionality, related to its anabolic and anticatabolic properties and prolonged half-life time in blood. Furthermore, it was able to increase the benefits of (exercise) rehabilitation programs to enhance recovery from illness or medical procedures. There is promising evidence that HMB might support bone density, improve cognitive function, and reduce abdominal obesity, which is of importance particularly in the older (diseased) population. SUMMARY The older diseased population might benefit from dietary HMB because of its established positive properties as well as its long lasting (pharmacological) effect. In addition to evaluating its efficacy and application in various clinical conditions, more research is needed into the mechanisms of action, the optimal dosage, and its potential additional beneficial effects on outcome.
Collapse
Affiliation(s)
- Mariëlle P K J Engelen
- Department of Health and Kinesiology, Center for Translational Research in Aging & Longevity, Texas A&M University, College Station, Texas, USA
| | | |
Collapse
|
12
|
Kougias DG, Das T, Perez AB, Pereira SL. A role for nutritional intervention in addressing the aging neuromuscular junction. Nutr Res 2018; 53:1-14. [PMID: 29804584 DOI: 10.1016/j.nutres.2018.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 12/20/2022]
Abstract
The purpose of this review is to discuss the structural and physiological changes that underlie age-related neuromuscular dysfunction and to summarize current evidence on the potential role of nutritional interventions on neuromuscular dysfunction-associated pathways. Age-related neuromuscular deficits are known to coincide with distinct changes in the central and peripheral nervous system, in the neuromuscular system, and systemically. Although many features contribute to the age-related decline in neuromuscular function, a comprehensive understanding of their integration and temporal relationship is needed. Nonetheless, many nutrients and ingredients show promise in modulating neuromuscular output by counteracting the age-related changes that coincide with neuromuscular dysfunction. In particular, dietary supplements, such as vitamin D, omega-3 fatty acids, β-hydroxy-β-methylbutyrate, creatine, and dietary phospholipids, demonstrate potential in ameliorating age-related neuromuscular dysfunction. However, current evidence seldom directly assesses neuromuscular outcomes and is not always in the context of aging. Additional clinical research studies are needed to confirm the benefits of dietary supplements on neuromuscular function, as well as to define the appropriate population, dosage, and duration for intervention.
Collapse
Affiliation(s)
- Daniel G Kougias
- Abbott Nutrition, Strategic Research, 3300 Stelzer Road, Columbus, OH, USA; Neuroscience Program, University of Illinois, Urbana-Champaign, IL, USA.
| | - Tapas Das
- Abbott Nutrition, Strategic Research, 3300 Stelzer Road, Columbus, OH, USA.
| | | | - Suzette L Pereira
- Abbott Nutrition, Strategic Research, 3300 Stelzer Road, Columbus, OH, USA.
| |
Collapse
|