1
|
Crain E, Minaya DM, de La Serre CB. Microbiota-induced inflammation mediates the impacts of a Western diet on hippocampal-dependent memory. Nutr Res 2025; 138:89-106. [PMID: 40339190 DOI: 10.1016/j.nutres.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 04/01/2025] [Accepted: 04/01/2025] [Indexed: 05/10/2025]
Abstract
Obesity is associated with impaired hippocampal-dependent memory, but the mechanisms driving this pathology are not fully understood. Western diets (WD) contribute to obesity, and previous reviews have described a role for WD in impaired hippocampal-dependent memory. However, there is need for a more detailed description of the pathways by which WD may impair memory. The short vs long-term effect of specific dietary components on brain structure and functions as well as the precise mechanism and molecular pathways involved are still not fully understood. This review focuses on the mechanisms and effects of gut microbiota-driven neuroinflammation. WD leads to changes and imbalance in bacterial taxa abundances that are deleterious to the host health (gut dysbiosis) and studies in rodent models show these changes are sufficient to impair hippocampal-dependent memory. Here, we discuss a variety of proposed mechanisms linking microbiota composition to hippocampal function, with a focus on neuroinflammation. Gut microbiota impacts gastrointestinal barrier function, leading to increased circulating proinflammatory bacterial products, increased blood-brain barrier permeability, and neuroinflammation.
Collapse
Affiliation(s)
- Eden Crain
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA
| | - Dulce M Minaya
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA
| | - Claire B de La Serre
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
2
|
EFSA Panel on Food Additives and Flavourings (FAF), Castle L, Andreassen M, Aquilina G, Bastos ML, Boon P, Fallico B, FitzGerald R, Frutos Fernandez MJ, Grasl‐Kraupp B, Gundert‐Remy U, Gürtler R, Houdeau E, Kurek M, Louro H, Morales P, Passamonti S, Batke M, Bruzell E, Chipman J, Cheyns K, Crebelli R, Fortes C, Fürst P, Halldorsson T, LeBlanc J, Mirat M, Lindtner O, Mortensen A, Ntzani E, Shah R, Wallace H, Wright M, Barmaz S, Civitella C, Georgelova P, Lodi F, Mazzoli E, Rasinger J, Maria Rincon A, Tard A, Zakidou P, Younes M. Re-evaluation of saccharin and its sodium, potassium and calcium salts (E 954) as food additives. EFSA J 2024; 22:e9044. [PMID: 39553702 PMCID: PMC11565076 DOI: 10.2903/j.efsa.2024.9044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
This opinion deals with the re-evaluation of saccharin and its sodium, potassium and calcium salts (E 954) as food additives. Saccharin is the chemically manufactured compound 1,2-benzisothiazol-3(2H)-one-1,1-dioxide. Along with its sodium (Na), potassium (K) and calcium (Ca) salts, they are authorised as sweeteners (E 954). E 954 can be produced by two manufacturing methods i.e. Remsen-Fahlberg and Maumee. No analytical data on potential impurities were provided for products manufactured with the Maumee process; therefore, the Panel could only evaluate saccharins (E 954) manufactured with the Remsen-Fahlberg process. The Panel concluded that the newly available studies do not raise a concern for genotoxicity of E 954 and the saccharins impurities associated with the Remsen-Fahlberg manufacturing process. For the potential impurities associated with the Maumee process, a concern for genotoxicity was identified. The data set evaluated consisted of animals and human studies. The Panel considered appropriate to set a numerical acceptable daily intake (ADI) and considered the decrease in body weight in animal studies as the relevant endpoint for the derivation of a reference point. An ADI of 9 mg/kg body weight (bw) per day, expressed as free imide, was derived for saccharins (E 954). This ADI replaces the ADI of 5 mg /kg bw per day (expressed as sodium saccharin, corresponding to 3.8 mg /kg bw per day saccharin as free imide) established by the Scientific Committee on Food. The Panel considered the refined brand-loyal exposure assessment scenario the most appropriate exposure scenario for the risk assessment. The Panel noted that the P95 exposure estimates for chronic exposure to saccharins (E 954) were below the ADI. The Panel recommended the European Commission to consider the revision of the EU specifications of saccharin and its sodium, potassium and calcium salts (E 954).
Collapse
|
3
|
Boakes RA, Badolato C, Rehn S. Taste aversion learning during successive negative contrast. Learn Behav 2024; 52:272-284. [PMID: 38332437 PMCID: PMC11408539 DOI: 10.3758/s13420-024-00626-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
Previous experiments found that acceptance of saccharin by rats was reduced if they had prior experience of sucrose or some other highly palatable solution. This study tested whether such successive negative contrast (SNC) effects involve acquisition of an aversion to the new taste. In three experiments, rats were switched from sucrose exposure in Stage 1 to a less palatable solution containing a new taste in Stage 2. In Experiments 1 and 2, a novel flavor was added to a saccharin solution at the start of Stage 2. In Experiment 1, preference tests revealed a weak aversion to the added vanilla flavor in the Suc-Sacch group, while in Experiment 2 an aversion was found in the Suc-Sacch group to the salty flavor that was used, compared with controls given access either saccharin or water in Stage 1. In Experiment 3, the Suc-Quin group, given quinine solution in Stage 2, displayed a greater aversion to quinine than a Water-Quin control group. These results support the suggestion that taste aversion learning plays a role in the initial suppression of intakes in a qualitative consummatory SNC effect. However, in the light of other evidence, it seems that the unusual persistence of successive negative contrast when rats are switched from sucrose to saccharin is not due to a long-lasting reduction in the value of saccharin.
Collapse
Affiliation(s)
- Robert A Boakes
- School of Psychology (A18), University of Sydney, Sydney, NSW, 2006, Australia.
| | - Connie Badolato
- School of Psychology (A18), University of Sydney, Sydney, NSW, 2006, Australia
| | - Simone Rehn
- School of Psychology (A18), University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
4
|
Yin J, Cheng L, Hong Y, Li Z, Li C, Ban X, Zhu L, Gu Z. A Comprehensive Review of the Effects of Glycemic Carbohydrates on the Neurocognitive Functions Based on Gut Microenvironment Regulation and Glycemic Fluctuation Control. Nutrients 2023; 15:5080. [PMID: 38140339 PMCID: PMC10745758 DOI: 10.3390/nu15245080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Improper glycemic carbohydrates (GCs) consumption can be a potential risk factor for metabolic diseases such as obesity and diabetes, which may lead to cognitive impairment. Although several potential mechanisms have been studied, the biological relationship between carbohydrate consumption and neurocognitive impairment is still uncertain. In this review, the main effects and mechanisms of GCs' digestive characteristics on cognitive functions are comprehensively elucidated. Additionally, healthier carbohydrate selection, a reliable research model, and future directions are discussed. Individuals in their early and late lives and patients with metabolic diseases are highly susceptible to dietary-induced cognitive impairment. It is well known that gut function is closely related to dietary patterns. Unhealthy carbohydrate diet-induced gut microenvironment disorders negatively impact cognitive functions through the gut-brain axis. Moreover, severe glycemic fluctuations, due to rapidly digestible carbohydrate consumption or metabolic diseases, can impair neurocognitive functions by disrupting glucose metabolism, dysregulating calcium homeostasis, oxidative stress, inflammatory responses, and accumulating advanced glycation end products. Unstable glycemic status can lead to more severe neurological impairment than persistent hyperglycemia. Slow-digested or resistant carbohydrates might contribute to better neurocognitive functions due to stable glycemic response and healthier gut functions than fully gelatinized starch and nutritive sugars.
Collapse
Affiliation(s)
- Jian Yin
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
| | - Li Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Yan Hong
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Ling Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
5
|
Gladding JM, Bradfield LA, Kendig MD. Diet and obesity effects on cue-driven food-seeking: insights from studies of Pavlovian-instrumental transfer in rodents and humans. Front Behav Neurosci 2023; 17:1199887. [PMID: 37424751 PMCID: PMC10325859 DOI: 10.3389/fnbeh.2023.1199887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Our modern environment is said to be obesogenic, promoting the consumption of calorically dense foods and reducing energy expenditure. One factor thought to drive excess energy intake is the abundance of cues signaling the availability of highly palatable foods. Indeed, these cues exert powerful influences over food-related decision-making. Although obesity is associated with changes to several cognitive domains, the specific role of cues in producing this shift and on decision-making more generally, remains poorly understood. Here we review the literature examining how obesity and palatable diets affect the ability of Pavlovian cues to influence instrumental food-seeking behaviors by examining rodent and human studies incorporating Pavlovian-instrumental transfer (PIT) protocols. There are two types of PIT: (a) general PIT that tests whether cues can energize actions elicited in the pursuit of food generally, and (b) specific PIT which tests whether cues can elicit an action that earns a specific food outcome when faced with a choice. Both types of PIT have been shown to be vulnerable to alterations as a result of changes to diet and obesity. However, effects appear to be driven less by increases in body fat and more by palatable diet exposure per se. We discuss the limitations and implications of the current findings. The challenges for future research are to uncover the mechanisms underlying these alterations to PIT, which appear unrelated to excess weight itself, and to better model the complex determinants of food choice in humans.
Collapse
|
6
|
Kendig MD, Leigh S, Hasebe K, Kaakoush NO, Westbrook RF, Morris MJ. Obesogenic Diet Cycling Produces Graded Effects on Cognition and Microbiota Composition in Rats. Mol Nutr Food Res 2023; 67:e2200809. [PMID: 37083181 PMCID: PMC10909530 DOI: 10.1002/mnfr.202200809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/20/2023] [Indexed: 04/22/2023]
Abstract
SCOPE The effects of diet cycling on cognition and fecal microbiota are not well understood. METHOD AND RESULTS Adult male Sprague-Dawley rats were cycled between a high-fat, high-sugar "cafeteria" diet (Caf) and regular chow. The impairment in place recognition memory produced by 16 days of Caf diet was reduced by switching to chow for 11 but not 4 days. Next, rats received 16 days of Caf diet in 2, 4, 8, or 16-day cycles, each separated by 4-day chow cycles. Place recognition memory declined from baseline in all groups and was impaired in the 16- versus 2-day group. Finally, rats received 24 days of Caf diet continuously or in 3-day cycles separated by 2- or 4-day chow cycles. Any Caf diet access impaired cognition and increased adiposity relative to controls, without altering hippocampal gene expression. Place recognition and adiposity were the strongest predictors of global microbiota composition. Overall, diets with higher Caf > chow ratios produced greater spatial memory impairments and larger shifts in gut microbiota species richness and beta diversity. CONCLUSION Results suggest that diet-induced cognitive deficits worsen in proportion to unhealthy diet exposure, and that shifting to a healthy chow for at least a week is required for recovery under the conditions tested here.
Collapse
Affiliation(s)
- Michael D. Kendig
- School of Medical SciencesUNSW SydneySydneyNSW2052Australia
- School of Life SciencesUniversity of TechnologyUltimoNSW2007Australia
| | - Sarah‐Jane Leigh
- School of Medical SciencesUNSW SydneySydneyNSW2052Australia
- APC MicrobiomeUniversity of CorkCorkT12 K8AFIreland
| | - Kyoko Hasebe
- School of Medical SciencesUNSW SydneySydneyNSW2052Australia
| | | | | | | |
Collapse
|
7
|
Kendig MD, Chow JYL, Martire SI, Rooney KB, Boakes RA. Switching from Sugar- to Artificially-Sweetened Beverages: A 12-Week Trial. Nutrients 2023; 15:2191. [PMID: 37432352 DOI: 10.3390/nu15092191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Consumption of sugar-sweetened beverages (SSBs) forms the primary source of added sugar intake and can increase the risk of metabolic disease. Evidence from studies in humans and rodents also indicates that consumption of SSBs can impair performance on cognitive tests, but that removing SSB access can ameliorate these effects. METHODS The present study used an unblinded 3-group parallel design to assess the effects of a 12-week intervention in which young healthy adults (mean age = 22.85, SD = 3.89; mean BMI: 23.2, SD = 3.6) who regularly consumed SSBs were instructed to replace SSB intake with artificially-sweetened beverages (n = 28) or water (n = 25), or (c) to continue SSB intake (n = 27). RESULTS No significant group differences were observed in short-term verbal memory on the Logical Memory test or the ratio of waist circumference to height (primary outcomes), nor in secondary measures of effect, impulsivity, adiposity, or glucose tolerance. One notable change was a significant reduction in liking for strong sucrose solutions in participants who switched to water. Switching from SSBs to 'diet' drinks or water had no detectable impact on cognitive or metabolic health over the relatively short time frame studied here. This study was prospectively registered with the Australian New Zealand Clinical Trials Registry (ACTRN12615001004550; Universal Trial Number: U1111-1170-4543).
Collapse
Affiliation(s)
- Michael D Kendig
- School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Julie Y L Chow
- School of Psychology, UNSW Sydney, Sydney, NSW 2052, Australia
- School of Psychology, University of Sydney, Sydney, NSW 2006, Australia
| | - Sarah I Martire
- School of Psychology, University of Sydney, Sydney, NSW 2006, Australia
| | - Kieron B Rooney
- Discipline of Exercise and Sport Science, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Robert A Boakes
- School of Psychology, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
8
|
Kendig MD, Hasebe K, Tajaddini A, Kaakoush NO, Westbrook RF, Morris MJ. The Benefits of Switching to a Healthy Diet on Metabolic, Cognitive, and Gut Microbiome Parameters Are Preserved in Adult Rat Offspring of Mothers Fed a High-Fat, High-Sugar Diet. Mol Nutr Food Res 2023; 67:e2200318. [PMID: 36271770 PMCID: PMC10909468 DOI: 10.1002/mnfr.202200318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/05/2022] [Indexed: 01/19/2023]
Abstract
SCOPE Maternal obesity increases the risk of health complications in children, highlighting the need for effective interventions. A rat model of maternal obesity to examine whether a diet switch intervention could reverse the adverse effects of an unhealthy postweaning diet is used. METHODS AND RESULTS Male and female offspring born to dams fed standard chow or a high-fat, high-sugar "cafeteria" (Caf) diet are weaned onto chow or Caf diets until 22 weeks of age, when Caf-fed groups are switched to chow for 5 weeks. Adiposity, gut microbiota composition, and place recognition memory are assessed before and after the switch. Body weight and adiposity fall in switched groups but remain significantly higher than chow-fed controls. Nonetheless, the diet switch improves a deficit in place recognition memory observed in Caf-fed groups, increases gut microbiota species richness, and alters β diversity. Modeling indicate that adiposity most strongly predicts gut microbiota composition before and after the switch. CONCLUSION Maternal obesity does not alter the effects of switching diet on metabolic, microbial, or cognitive measures. Thus, a healthy diet intervention lead to major shifts in body weight, adiposity, place recognition memory, and gut microbiota composition, with beneficial effects preserved in offspring born to obese dams.
Collapse
Affiliation(s)
- Michael D. Kendig
- Department of PharmacologySchool of Medical SciencesUNSW SydneyNSW2052Australia
- School of Life SciencesUniversity of Technology SydneyNSW2007Australia
| | - Kyoko Hasebe
- Department of PharmacologySchool of Medical SciencesUNSW SydneyNSW2052Australia
| | - Aynaz Tajaddini
- Department of PharmacologySchool of Medical SciencesUNSW SydneyNSW2052Australia
| | | | | | - Margaret J. Morris
- Department of PharmacologySchool of Medical SciencesUNSW SydneyNSW2052Australia
| |
Collapse
|
9
|
Tsan L, Sun S, Hayes AMR, Bridi L, Chirala LS, Noble EE, Fodor AA, Kanoski SE. Early life Western diet-induced memory impairments and gut microbiome changes in female rats are long-lasting despite healthy dietary intervention. Nutr Neurosci 2022; 25:2490-2506. [PMID: 34565305 PMCID: PMC8957635 DOI: 10.1080/1028415x.2021.1980697] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Western diet consumption during adolescence results in hippocampus (HPC)-dependent memory impairments and gut microbiome dysbiosis. Whether these adverse outcomes persist in adulthood following healthy dietary intervention is unknown. Here we assessed the short- and long-term effects of adolescent consumption of a Western diet enriched with either sugar or both sugar and fat on metabolic outcomes, HPC function, and gut microbiota. METHODS Adolescent female rats (PN 26) were fed a standard chow diet (CHOW), chow with access to 11% sugar solution (SUG), or a junk food cafeteria-style diet (CAF) containing various foods high in fat and/or sugar. During adulthood (PN 65+), metabolic outcomes, HPC-dependent memory, and gut microbial populations were evaluated. In a subsequent experiment, these outcomes were evaluated following a 5-week dietary intervention where CAF and SUG groups were maintained on standard chow alone. RESULTS Both CAF and SUG groups demonstrated impaired HPC-dependent memory, increased adiposity, and altered gut microbial populations relative to the CHOW group. However, impaired peripheral glucose regulation was only observed in the SUG group. When examined following a healthy dietary intervention in a separate experiment, metabolic dysfunction was not observed in either the CAF or SUG group, whereas HPC-dependent memory impairments were observed in the CAF but not the SUG group. In both groups the composition of the gut microbiota remained distinct from CHOW rats after the dietary intervention. CONCLUSIONS While the metabolic impairments associated with adolescent junk food diet consumption are not present in adulthood following dietary intervention, the HPC-dependent memory impairments and the gut microbiome dysbiosis persist.
Collapse
Affiliation(s)
- Linda Tsan
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Shan Sun
- Department of Bioinformatics and Genomics at the University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Anna M. R. Hayes
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Lana Bridi
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Lekha S. Chirala
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Emily E. Noble
- Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | - Anthony A. Fodor
- Department of Bioinformatics and Genomics at the University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Scott E. Kanoski
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
10
|
An Ecological Validity Model for the Prevention of Obesity: Non-Nutritive Sweetener Consumption in Rats and the Effects of Switching from Sugar-Sweetened to Diet Beverages. Nutrients 2022; 14:nu14132758. [PMID: 35807938 PMCID: PMC9269107 DOI: 10.3390/nu14132758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/01/2023] Open
Abstract
Reducing consumption of sugar-sweetened beverages (SSBs) has been encouraged due to its strong association with obesity. In parallel, consumption of “diet” or non-nutritive sweetened (NNS) beverages has significantly increased. This has led to burgeoning numbers of animal studies investigating metabolic consequences of NNS beverage consumption. However, most animal study designs do not reflect the way humans consume NNS drinks, thus reducing translational capacity. The present experiment aimed to find an ecologically valid model of NNS consumption and evidence of metabolic recovery following a switch from sucrose to NNS in female and male Sprague Dawley rats. The main behavioural outcome was consumption of commercially available NNS beverages during preference and acceptance testing, with changes to consumption following chronic sucrose consumption as a secondary outcome. The main metabolic outcome was retroperitoneal fat pad mass at culling, with body weight gain and fasting blood glucose levels (FBGLs) as secondary outcomes. In a two-phase experiment, behavioural tests were performed before and after 4 weeks of ad libitum access to 10% w/v sucrose. During Phase 2, the rats were given ad libitum access to assigned commercial NNS drinks for a further 4 weeks, with controls provided access to water only. FBGLs were measured at the end of Phases 1 and 2. Female and male rats accepted commercially available NNS beverages, although the volumes consumed varied considerably. Following the switch from sucrose to NNS (containing no sucrose), no group difference was observed in retroperitoneal fat mass, body weight change or FBGLs, suggesting both sexes exhibited limited metabolic recovery. These findings demonstrate that an ecologically valid model for NNS consumption can be developed for some commercially available NNS beverages to further enhance translational capacity.
Collapse
|
11
|
Caffeine-based flavor preference conditioning in the rat. Learn Behav 2021; 50:222-232. [PMID: 34494210 DOI: 10.3758/s13420-021-00483-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2021] [Indexed: 11/08/2022]
Abstract
The massive consumption of caffeine-containing beverages has prompted many studies involving human participants that have obtained caffeine-based increases in liking for a flavor. However, few studies have succeeded in obtaining caffeine-based flavor preference learning in rats. The main aim of the present study was to examine the conditions under which such learning can be detected. Three experiments differed mainly in terms of the base solution to which caffeine was added. Using a base of maltodextrin and saccharin, Experiment 1 found modest increases in flavor preferences in both food- and fluid-restricted rats. Experiment 2 found a strong caffeine-based flavor preference when water, but not saccharin, was used as the base. Whereas the first two experiments used a within-subject design, in which one flavor was paired with caffeine and a second flavor was not, Experiment 3 used a between-subject design with fluid-restricted rats given almond-flavored water containing caffeine in the Paired condition but not in the Unpaired condition; caffeine-based flavor preference learning was again found. In Experiments 1 and 2 post-conditioning exposure to the flavor alone produced a decrease in preference. In summary, the main achievements of this study were to extend the conditions under which caffeine-based flavor preferences can be detected in rats and demonstrate that such learned preferences are subject to extinction.
Collapse
|
12
|
Rehn S, Boakes RA, Badolato CJ, Rooney KB. Sex differences in recovery from cognitive and metabolic impairments induced by supplementary sucrose in rats. Physiol Behav 2021; 239:113515. [PMID: 34224781 DOI: 10.1016/j.physbeh.2021.113515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/25/2022]
Abstract
Consumption of beverages containing around 10% sucrose contributes to worldwide obesity. Studies using rats can increase understanding of the consequences of such consumption. The present experiment aimed to compare male and female rats, first, in terms of cognitive and metabolic impairments produced by excessive intakes of 10% sucrose solution (Stage 1:8 weeks) and, second, with regard to recovery once access to sucrose ceased (Stage 2:4 weeks). All animals had unrestricted access to chow and water throughout. The primary cognitive outcome was performance on a place recognition task. The primary metabolic outcome was retroperitoneal fat pad mass/kg bodyweight at cull, with body weight and glucose tolerance as secondary outcomes. In a 3 × 2 between-subject factorial design the first factor was whether rats had: (1) unlimited access to a 10% sucrose solution and water throughout both stages (Suc-Suc); (2) were switched from sucrose in the 8-week Stage 1 to water only in the 4-week Stage 2 (Suc-Water); or (3) had no access to sucrose in either stage (Water-Water). The second factor was sex. A major metabolic outcome was that of persistent adiposity in both males and females in the Suc-Water condition. As for place recognition, females in the Suc-Suc condition showed greater long-term resistance than males to the impact of excessive sucrose on spatial memory impairment. Overall, few sex differences were found in secondary metabolic outcomes.
Collapse
Affiliation(s)
- Simone Rehn
- School of Psychology, University of Sydney, Australia
| | | | | | - Kieron B Rooney
- Faculty of Health Science, Charles Perkins Centre, University of Sydney, Australia
| |
Collapse
|
13
|
Kendig MD, Leigh SJ, Morris MJ. Unravelling the impacts of western-style diets on brain, gut microbiota and cognition. Neurosci Biobehav Rev 2021; 128:233-243. [PMID: 34153343 DOI: 10.1016/j.neubiorev.2021.05.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 03/23/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023]
Abstract
The steady rise in the prevalence of obesity has been fostered by modern environments that reduce energy expenditure and encourage consumption of 'western'-style diets high in fat and sugar. Obesity has been consistently associated with impairments in executive function and episodic memory, while emerging evidence indicates that high-fat, high-sugar diets can impair aspects of cognition within days, even when provided intermittently. Here we review the detrimental effects of diet and obesity on cognition and the role of inflammatory and circulating factors, compromised blood-brain barrier integrity and gut microbiome changes. We next evaluate evidence for changing risk profiles across life stages (adolescence and ageing) and other populations at risk (e.g. through maternal obesity). Finally, interventions to ameliorate diet-induced cognitive deficits are discussed, including dietary shifts, exercise, and the emerging field of microbiome-targeted therapies. With evidence that poor diet and obesity impair cognition via multiple mechanisms across the human lifespan, the challenge for future research is to identify effective interventions, in addition to diet and exercise, to prevent and ameliorate adverse effects.
Collapse
|
14
|
Espinosa‐García C, Fuentes‐Venado CE, Guerra‐Araiza C, Segura‐Uribe J, Chávez‐Gutiérrez E, Farfán‐García ED, Estrada Cruz NA, Pinto‐Almazán R. Sex differences in the performance of cognitive tasks in a murine model of metabolic syndrome. Eur J Neurosci 2020; 52:2724-2736. [PMID: 32302458 DOI: 10.1111/ejn.14751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Claudia Espinosa‐García
- Department of Emergency Medicine Emory University Atlanta GA USA
- Laboratorio de Biología Molecular en Enfermedades Metabólicas y Neurodegenerativas Unidad de InvestigaciónHospital Regional de Alta Especialidad de Ixtapaluca Ixtapaluca Mexico
| | - Claudia Erika Fuentes‐Venado
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades Centro Médico Nacional Siglo XXIInstituto Mexicano del Seguro Social Mexico City Mexico
- Servicio de Medicina Física y Rehabilitación Hospital General de Zona No 197 Texcoco Mexico
- Doctorado en Ciencias Biológicas y de la Salud Universidad Autónoma Metropolitana Unidad Iztapalapa Mexico City Mexico
| | - Christian Guerra‐Araiza
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades Centro Médico Nacional Siglo XXIInstituto Mexicano del Seguro Social Mexico City Mexico
| | - Julia Segura‐Uribe
- Unidad de Investigación Médica en Enfermedades Neurológicas Centro Médico Nacional Siglo XXIInstituto Mexicano del Seguro Social Mexico City Mexico
- Departamento de Investigación Hospital Infantil de México Federico GómezSecretaría de Salud Mexico City Mexico
| | - Edwin Chávez‐Gutiérrez
- Laboratorio de Biología Molecular en Enfermedades Metabólicas y Neurodegenerativas Unidad de InvestigaciónHospital Regional de Alta Especialidad de Ixtapaluca Ixtapaluca Mexico
| | - Eunice Dalet Farfán‐García
- Departamento de Fisiología, Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional. Mexico City Mexico
| | - Norma Angélica Estrada Cruz
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades Centro Médico Nacional Siglo XXIInstituto Mexicano del Seguro Social Mexico City Mexico
| | - Rodolfo Pinto‐Almazán
- Laboratorio de Biología Molecular en Enfermedades Metabólicas y Neurodegenerativas Unidad de InvestigaciónHospital Regional de Alta Especialidad de Ixtapaluca Ixtapaluca Mexico
| |
Collapse
|
15
|
Boakes RA, Rehn S, Badolato C, Rooney KB. Reduced acceptance of saccharin solutions by rats previously consuming more highly palatable solutions. Physiol Behav 2020; 218:112822. [PMID: 32004547 DOI: 10.1016/j.physbeh.2020.112822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/14/2020] [Accepted: 01/24/2020] [Indexed: 11/29/2022]
Abstract
Rats first given 24-h access to 10% sucrose for 4 or 12 days (Stage 1) were then switched to a saccharin solution for a 12-day Stage 2. The initial result of this switch was that these Sucrose groups drank less saccharin than Water groups that had been given only water to drink in Stage 1. This difference was maintained throughout Stage 2 by the females that served in Experiments 1 and 4 and by the males that served in Experiment 3. Experiment 1 also found that access to 10% glucose in Stage 1 produced an essentially identical decrease in subsequent saccharin acceptance as that produced by giving 10% sucrose in Stage 1. The impact on subsequent acceptance of saccharin was also tested in rats given two types of maltodextrin solution. The first type of maltodextrin (Myopure brand) was used with the males in Experiment 2; this failed to find any difference between the Maltodextrin and the Water group. However, when a second type of maltodextrin (SolCarb brand) was given to males in Stage 1 of Experiment 3, the results for this group were similar to those from a group given sucrose in Stage 1. The final experiment confirmed that prior exposure to maltodextrin solutions can reduce saccharin acceptance by female rats. Overall, the results suggest that acceptance of saccharin is sensitive to a contrast effect, in that it is reduced by prior exposure to a solution that is more palatable but not necessarily sweet.
Collapse
Affiliation(s)
| | - Simone Rehn
- School of Psychology, University of Sydney, Australia
| | | | - Kieron B Rooney
- Faculty of Health Sciences and Charles Perkins Centre, University of Sydney, Australia
| |
Collapse
|
16
|
Zhang M, Yang X, Xu W, Cai X, Wang M, Xu Y, Yu P, Zhang J, Zheng Y, Chen J, Yang J, Zhu X. Evaluation of the effects of three sulfa sweeteners on the lifespan and intestinal fat deposition in C. elegans. Food Res Int 2019; 122:66-76. [PMID: 31229125 DOI: 10.1016/j.foodres.2019.03.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/22/2019] [Accepted: 03/12/2019] [Indexed: 02/01/2023]
Abstract
High sugar content in beverage or food can affect the aging process, and thus natural/artificial sweeteners are widely used as substitutes. However, whether sweeteners have such adverse effects as sugar remains to be clarified. Therefore, in the current study, three sulfa sweeteners, namely, saccharin sodium salt hydrate (SAC2), sodium cyclamate (CYC3) and acesulfame potassium (AceK4) were evaluated for their effects on the lifespan, deposition of lipofuscin, exercise activity, food intake, and intestinal fat deposition (IFD5) of Caenorhabditis elegans (C. elegans6). It was shown that SAC at 0.3 and 10 mg/mL shortened the lifespan of C. elegans and impaired the exercise capacity, while at other concentrations no significant effects were observed. In contrast, CYC at 0.1, 1 and 10 mg/mL prolonged the lifespan of C. elegans. On the other hand, AceK at 1 mg/mL increased the lifespan of C. elegans, and could decrease both lipofuscin deposition and IFD in a dose-dependent manner. Taken together, these results indicated that although SAC, CYC, and AceK all belong to the sulfa sweeteners, each has distinct effects on different physiological activities associated with aging, at least in C. elegans.
Collapse
Affiliation(s)
- Mohan Zhang
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang 310058, China; Wenzhou Center for Disease Control and Prevention, Wenzhou, Zhejiang 325000, China
| | - Xin Yang
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang 310058, China
| | - Wan Xu
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang 310058, China
| | - Xiaobo Cai
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang 310058, China
| | - Mingxiang Wang
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang 310058, China
| | - Yuying Xu
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang 310058, China
| | - Peilin Yu
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang 310058, China
| | - Jun Zhang
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang 310058, China
| | - Yifan Zheng
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang 310058, China
| | - Jiang Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, China.
| | - Jun Yang
- Department of Toxicology, Hangzhou Normal University School of Medicine, Hangzhou, Zhejiang 311121, China.; Zhejiang Provincial Center for Uterine Cancer Diagnosis and Therapy Research, Hangzhou, Zhejiang 310006, China.
| | - Xinqiang Zhu
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang 310058, China; The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China.
| |
Collapse
|