1
|
Suematsu N, Sato AY, Kimura A, Shimegi S, Soma S. Perceptual Visual Acuity Declines With Age in a Rat Model of Retinitis Pigmentosa While Light Perception is Maintained. Invest Ophthalmol Vis Sci 2025; 66:31. [PMID: 40094656 PMCID: PMC11925224 DOI: 10.1167/iovs.66.3.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
Purpose Retinitis pigmentosa (RP) is a leading cause of blindness and genetically induces impairment of the retinal epithelium and photoreceptors. In this study, we investigated the decline in the visual response and visual ability during disease progression. This understanding is crucial for disease staging in patients, establishing therapeutic plans in advance, and evaluating the effects of interventional treatments. Methods We used a rat model of inherited RP (Royal College of Surgeons [RCS] rats) and evaluated form visual acuity and light perception using behavioral tests and electrophysiological recordings in the dorsal lateral geniculate nucleus, superior colliculus, and primary visual cortex. Results The perceptual form vision (detection of grating stimulus) was attenuated by 9 weeks old. The neural responses in the three early visual areas to flashing grating stimuli with various contrasts and spatial frequencies showed similar degeneration progress as the behavioral evaluations. Light perception (detection of a bright uniform light source) was maintained until at least 11 weeks old. The neural responses to the uniform flashlight stimulus in the three early visual areas were maintained during the same period. Conclusions Our findings suggest that form vision is primarily affected by the progression of RP, whereas non-form vision is potentially robust to retinal degeneration. This maintenance of light perception is likely due to the preserved function of intrinsically photosensitive retinal ganglion cells. These results provide useful and fundamental knowledge for evaluating the protective or restorative effects of experimental treatments for RP.
Collapse
Affiliation(s)
- Naofumi Suematsu
- Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Akinori Y Sato
- Graduate School of Medicine, Osaka University, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya University, Aichi, Japan
| | - Akihiro Kimura
- Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Healthcare, Osaka Health Science University, Osaka, Japan
| | - Satoshi Shimegi
- Graduate School of Medicine, Osaka University, Osaka, Japan
- Center for Education in Liberal Arts and Sciences, Osaka University, Osaka, Japan
| | - Shogo Soma
- Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
2
|
Soma S, Suematsu N, Sato AY, Tsunoda K, Bramian A, Reddy A, Takabatake K, Karube F, Fujiyama F, Shimegi S. Acetylcholine from the nucleus basalis magnocellularis facilitates the retrieval of well-established memory. Neurobiol Learn Mem 2021; 183:107484. [PMID: 34175450 DOI: 10.1016/j.nlm.2021.107484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 01/31/2023]
Abstract
Retrieval deficit of long-term memory is a cardinal symptom of dementia and has been proposed to associate with abnormalities in the central cholinergic system. Difficulty in the retrieval of memory is experienced by healthy individuals and not limited to patients with neurological disorders that result in forgetfulness. The difficulty of retrieving memories is associated with various factors, such as how often the event was experienced or remembered, but it is unclear how the cholinergic system plays a role in the retrieval of memory formed by a daily routine (accumulated experience). To investigate this point, we trained rats moderately (for a week) or extensively (for a month) to detect a visual cue in a two-alternative forced-choice task. First, we confirmed the well-established memory in the extensively trained group was more resistant to the retrieval problem than recently acquired memory in the moderately trained group. Next, we tested the effect of a cholinesterase inhibitor, donepezil, on the retrieval of memory after a long no-task period in extensively trained rats. Pre-administration of donepezil improved performance and reduced the latency of task initiation compared to the saline-treated group. Finally, we lesioned cholinergic neurons of the nucleus basalis magnocellularis (NBM), which project to the entire neocortex, by injecting the cholinergic toxin 192 IgG-saporin. NBM-lesioned rats showed severely impaired task initiation and performance. These abilities recovered as the trials progressed, though they never reached the level observed in rats with intact NBM. These results suggest that acetylcholine released from the NBM contributes to the retrieval of well-established memory developed by a daily routine.
Collapse
Affiliation(s)
- Shogo Soma
- Graduate School of Medicine, Osaka University, Osaka 560-0043, Japan; Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697, USA; Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | - Naofumi Suematsu
- Graduate School of Medicine, Osaka University, Osaka 560-0043, Japan; Center for Sciences Towards Symbiosis Among Human, Machine and Data, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Akinori Y Sato
- Graduate School of Medicine, Osaka University, Osaka 560-0043, Japan; Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Keisuke Tsunoda
- Graduate School of Medicine, Osaka University, Osaka 560-0043, Japan
| | - Allen Bramian
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697, USA
| | - Anish Reddy
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697, USA
| | - Koki Takabatake
- College of Arts & Sciences, Washington University in Saint Louis, Saint Louis, MO 63130, USA
| | - Fuyuki Karube
- Graduate School of Brain Science, Doshisha University, Kyoto 619-0225, Japan; Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Fumino Fujiyama
- Graduate School of Brain Science, Doshisha University, Kyoto 619-0225, Japan; Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Satoshi Shimegi
- Graduate School of Medicine, Osaka University, Osaka 560-0043, Japan; Center for Education in Liberal Arts and Sciences, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
3
|
Puell MC, de Pascual-Teresa S. The acute effect of cocoa and red-berries on visual acuity and cone-mediated dark adaptation in healthy eyes. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
4
|
Redondo B, Jiménez R, Molina R, Dalton K, Vera J. Effects of caffeine ingestion on dynamic visual acuity: a placebo-controlled, double-blind, balanced-crossover study in low caffeine consumers. Psychopharmacology (Berl) 2021; 238:3391-3398. [PMID: 34420061 PMCID: PMC8629887 DOI: 10.1007/s00213-021-05953-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/03/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Acute caffeine ingestion has been associated with improvements in cognitive performance and visual functioning. The main objective of this study was to determine the effects of caffeine intake on dynamic visual acuity (DVA). METHODS Twenty-one low caffeine consumers (22.5 ± 1.6 years) took part in this placebo-controlled, double-blind, and balanced crossover study. In two different days and following a random order, participants ingested either caffeine (4 mg/kg) or placebo, and DVA was measured after 60 min of ingesting the corresponding capsule. A recently developed and validated software (moV& test, V&mp Vision Suite, Waterloo, Canada) was used to assess DVA. RESULTS We found a greater accuracy for both the horizontal and random motion paths of DVA after caffeine ingestion (p < 0.001 and p = 0.002, respectively). In regard to the speed of the response, our data revealed that caffeine intake was associated with a faster reaction time for horizontally (p = 0.012) but not for randomly (p = 0.846) moving targets. Also, participants reported higher levels of perceived activation after consuming caffeine in comparison to placebo (p < 0.001). CONCLUSIONS Our data suggest that caffeine intake (i.e., a capsule containing 4 mg/kg) has an ergogenic effect on DVA, which may be of special relevance in real-word contexts that require to accurately and rapidly detect moving targets (e.g., sports, driving, or piloting).
Collapse
Affiliation(s)
- Beatríz Redondo
- CLARO (Clinical and Laboratory Applications of Research in Optometry) Research Group, Department of Optics, Faculty of Sciences, University of Granada, Campus de la Fuentenueva 2, 18001 Granada, Spain
| | - Raimundo Jiménez
- CLARO (Clinical and Laboratory Applications of Research in Optometry) Research Group, Department of Optics, Faculty of Sciences, University of Granada, Campus de la Fuentenueva 2, 18001, Granada, Spain.
| | - Rubén Molina
- CLARO (Clinical and Laboratory Applications of Research in Optometry) Research Group, Department of Optics, Faculty of Sciences, University of Granada, Campus de la Fuentenueva 2, 18001 Granada, Spain
| | - Kristine Dalton
- School of Optometry & Vision Science, University of Waterloo, Waterloo, Canada
| | - Jesús Vera
- CLARO (Clinical and Laboratory Applications of Research in Optometry) Research Group, Department of Optics, Faculty of Sciences, University of Granada, Campus de la Fuentenueva 2, 18001 Granada, Spain
| |
Collapse
|
5
|
Tsunoda K, Sato AY, Mizuyama R, Shimegi S. Noradrenaline modulates neuronal and perceptual visual detectability via β-adrenergic receptor. Psychopharmacology (Berl) 2021; 238:3615-3627. [PMID: 34546404 PMCID: PMC8629798 DOI: 10.1007/s00213-021-05980-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/06/2021] [Indexed: 11/23/2022]
Abstract
RATIONALE Noradrenaline (NA) is a neuromodulator secreted from noradrenergic neurons in the locus coeruleus to the whole brain depending on the physiological state and behavioral context. It regulates various brain functions including vision via three major adrenergic receptor (AR) subtypes. Previous studies investigating the noradrenergic modulations on vision reported different effects, including improvement and impairment of perceptual visual sensitivity in rodents via β-AR, an AR subtype. Therefore, it remains unknown how NA affects perceptual visual sensitivity via β-AR and what neuronal mechanisms underlie it. OBJECTIVES The current study investigated the noradrenergic modulation of perceptual and neuronal visual sensitivity via β-AR in the primary visual cortex (V1). METHODS We performed extracellular multi-point recordings from V1 of rats performing a go/no-go visual detection task under the head-fixed condition. A β-AR blocker, propranolol (10 mM), was topically administered onto the V1 surface, and the drug effect on behavioral and neuronal activities was quantified by comparing pre-and post-drug administration. RESULTS The topical administration of propranolol onto the V1 surface significantly improved the task performance. An analysis of the multi-unit activity in V1 showed that propranolol significantly suppressed spontaneous activity and facilitated the visual response of the recording sites in V1. We further calculated the signal-to-noise ratio (SNR), finding that the SNR was significantly improved after propranolol administration. CONCLUSIONS Pharmacological blockade of β-AR in V1 improves perceptual visual detectability by modifying the SNR of neuronal activity.
Collapse
Affiliation(s)
- Keisuke Tsunoda
- grid.136593.b0000 0004 0373 3971Laboratory of Brain Information Science in Sports, Center for Education in Liberal Arts and Sciences, Osaka University, Toyonaka, Osaka Japan ,grid.136593.b0000 0004 0373 3971Laboratory of Brain Information Science in Sports, Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka Japan ,grid.258799.80000 0004 0372 2033Present Address: Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akinori Y. Sato
- grid.136593.b0000 0004 0373 3971Laboratory of Brain Information Science in Sports, Center for Education in Liberal Arts and Sciences, Osaka University, Toyonaka, Osaka Japan ,grid.136593.b0000 0004 0373 3971Laboratory of Brain Information Science in Sports, Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka Japan ,grid.27476.300000 0001 0943 978XPresent Address: Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Ryo Mizuyama
- grid.136593.b0000 0004 0373 3971Laboratory of Brain Information Science in Sports, Center for Education in Liberal Arts and Sciences, Osaka University, Toyonaka, Osaka Japan ,grid.136593.b0000 0004 0373 3971Laboratory of Brain Information Science in Sports, Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka Japan
| | - Satoshi Shimegi
- Laboratory of Brain Information Science in Sports, Center for Education in Liberal Arts and Sciences, Osaka University, Toyonaka, Osaka, Japan. .,Laboratory of Brain Information Science in Sports, Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka, Japan.
| |
Collapse
|
6
|
Sato AY, Tsunoda K, Mizuyama R, Shimegi S. Serotonin improves behavioral contrast sensitivity of freely moving rats. PLoS One 2020; 15:e0230367. [PMID: 32191757 PMCID: PMC7082012 DOI: 10.1371/journal.pone.0230367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/27/2020] [Indexed: 11/19/2022] Open
Abstract
Serotonin (5-HT) is a neuromodulator secreted from serotonergic neurons located in the pons and upper brain stem in a behavioral context-dependent manner. The serotonergic axon terminals innervate almost the whole brain, causing modulatory actions on various brain functions including vision. Our previous study demonstrated the visual responses of neurons in the primary visual cortex (V1) of anesthetized monkeys were modulated by the activation of 5-HT receptors depending on the response magnitude, in which 5-HT2A receptor-selective agonists enhanced weak visual responses but not strong responses. This observation suggests that the activation of serotonergic receptors modulates neuronal visual information processing to improve the behavioral detectability of a stimulus. However, it remains unknown if 5-HT improves visual detectability at the behavioral level. To investigate this point, visual detectability was measured as contrast sensitivity (CS) in freely moving rats using a two-alternative forced-choice visual detection task (2AFC-VDT) combined with the staircase method. The grating contrast was decreased or increased step by step after a correct choice (hit) or incorrect choice (miss), respectively. CS was evaluated as an inverse value of the visual contrast threshold. The effect of the intraperitoneal administration of fluoxetine (FLX, 5 mg/kg), a selective serotonin reuptake inhibitor, on CS was tested. The CS of rats was significantly higher in FLX than control conditions, and the drug effect showed specificity for the spatial frequency (SF) of a grating stimulus, in which CS improvement was observed at optimal SF but not non-optimal high SF. Thus, we conclude that endogenously-secreted serotonin in the brain improves visual detectability, which may be mediated by vision-related neurons acquiring SF information of the visual stimulus.
Collapse
Affiliation(s)
- Akinori Y. Sato
- Laboratory of Brain Information Science in Sports, Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka, Japan
| | - Keisuke Tsunoda
- Laboratory of Brain Information Science in Sports, Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka, Japan
| | - Ryo Mizuyama
- Laboratory of Brain Information Science in Sports, Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka, Japan
| | - Satoshi Shimegi
- Laboratory of Brain Information Science in Sports, Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka, Japan
- Laboratory of Brain Information Science in Sports, Center for Education in Liberal Arts and Sciences, Osaka University, Toyonaka, Osaka, Japan
- Laboratory of Brain Information Science in Sports, Graduate School of Medicine, Osaka University, Toyonaka, Osaka, Japan
- * E-mail:
| |
Collapse
|