1
|
Bureš Z, Svobodová Burianová J, Pysanenko K, Syka J. The effect of acoustically enriched environment on structure and function of the developing auditory system. Hear Res 2024; 453:109110. [PMID: 39278142 DOI: 10.1016/j.heares.2024.109110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/17/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
It has long been known that environmental conditions, particularly during development, affect morphological and functional properties of the brain including sensory systems; manipulating the environment thus represents a viable way to explore experience-dependent plasticity of the brain as well as of sensory systems. In this review, we summarize our experience with the effects of acoustically enriched environment (AEE) consisting of spectrally and temporally modulated complex sounds applied during first weeks of the postnatal development in rats and compare it with the related knowledge from the literature. Compared to controls, rats exposed to AEE showed in neurons of several parts of the auditory system differences in the dendritic length and in number of spines and spine density. The AEE exposure permanently influenced neuronal representation of the sound frequency and intensity resulting in lower excitatory thresholds, increased frequency selectivity and steeper rate-intensity functions. These changes were present both in the neurons of the inferior colliculus and the auditory cortex (AC). In addition, the AEE changed the responsiveness of AC neurons to frequency modulated, and also to a lesser extent, amplitude-modulated stimuli. Rearing rat pups in AEE leads to an increased reliability of acoustical responses of AC neurons, affecting both the rate and the temporal codes. At the level of individual spikes, the discharge patterns of individual neurons show a higher degree of similarity across stimulus repetitions. Behaviorally, rearing pups in AEE resulted in an improvement in the frequency resolution and gap detection ability under conditions with a worsened stimulus clarity. Altogether, the results of experiments show that the exposure to AEE during the critical developmental period influences the frequency and temporal processing in the auditory system, and these changes persist until adulthood. The results may serve for interpretation of the effects of the application of enriched acoustical environment in human neonatal medicine, especially in the case of care for preterm born children.
Collapse
Affiliation(s)
- Zbyněk Bureš
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic; Department of Technical Studies, College of Polytechnics Jihlava, Tolstého 16, 58601, Jihlava, Czech Republic; Department of Otorhinolaryngology, Third Faculty of Medicine, University Hospital Královské Vinohrady, Charles University in Prague, Šrobárova 1150/50, 10034 Prague 10, Czech Republic.
| | - Jana Svobodová Burianová
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic
| | - Kateryna Pysanenko
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic
| | - Josef Syka
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic
| |
Collapse
|
2
|
Rybalko N, Suchánková Š, Bureš Z, Jovanović N, Melichar A, Profant O, Tureček R. Mice prone to tinnitus after acoustic trauma show increased pre-exposure sensitivity to background noise. Front Behav Neurosci 2023; 17:1321277. [PMID: 38144362 PMCID: PMC10739389 DOI: 10.3389/fnbeh.2023.1321277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/28/2023] [Indexed: 12/26/2023] Open
Abstract
Noise-induced tinnitus is generally associated with hearing impairment caused by traumatic acoustic overexposure. Previous studies in laboratory animals and human subjects, however, have observed differences in tinnitus susceptibility, even among individuals with similar hearing loss. The mechanisms underlying increased sensitivity or, conversely, resistance to tinnitus are still incompletely understood. Here, we used behavioral tests and ABR audiometry to compare the sound-evoked responses of mice that differed in the presence of noise-induced tinnitus. The aim was to find a specific pre-exposure neurophysiological marker that would predict the development of tinnitus after acoustic trauma. Noise-exposed mice were screened for tinnitus-like behavior with the GPIAS paradigm and subsequently divided into tinnitus (+T) and non-tinnitus (-T) groups. Both groups showed hearing loss after exposure, manifested by elevated audiometric thresholds along with reduced amplitudes and prolonged latencies of ABR waves. Prior to exposure, except for a slightly increased slope of growth function for ABR amplitudes in +T mice, the two groups did not show significant audiometric differences. Behavioral measures, such as the magnitude of the acoustic startle response and its inhibition by gap pre-pulse, were also similar before exposure in both groups. However, +T mice showed significantly increased suppression of the acoustic startle response in the presence of background noise of moderate intensity. Thus, increased modulation of startle by background sounds may represent a behavioral correlate of susceptibility to noise-induced tinnitus, and its measurement may form the basis of a simple non-invasive method for predicting tinnitus development in laboratory rodents.
Collapse
Affiliation(s)
- Natalia Rybalko
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Štěpánka Suchánková
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Zbyněk Bureš
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czechia
- Department of Otorhinolaryngology, Third Faculty of Medicine, University Hospital Královské Vinohrady, Charles University in Prague, Prague, Czechia
| | - Nataša Jovanović
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Adolf Melichar
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Oliver Profant
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czechia
- Department of Otorhinolaryngology, Third Faculty of Medicine, University Hospital Královské Vinohrady, Charles University in Prague, Prague, Czechia
| | - Rostislav Tureček
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czechia
| |
Collapse
|
3
|
Around-the-Clock Noise Induces AD-like Neuropathology by Disrupting Autophagy Flux Homeostasis. Cells 2022; 11:cells11172742. [PMID: 36078149 PMCID: PMC9454913 DOI: 10.3390/cells11172742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 01/18/2023] Open
Abstract
Environmental noise is a common hazard in military operations. Military service members during long operations are often exposed to around-the-clock noise and suffer massive emotional and cognitive dysfunction related to an Alzheimer’s disease (AD)-like neuropathology. It is essential to clarify the mechanisms underlying the effects of around-the-clock noise exposure on the central nervous system. Here, Wistar rats were continuously exposed to white noise (95 dB during the on-duty phase [8:00–16:00] and 75 dB during the off-duty phase (16:00–8:00 the next day)) for 40 days. The levels of phosphorylated tau, amyloid-β (Aβ), and neuroinflammation in the cortex and hippocampus were assessed and autophagosome (AP) aggregation was observed by transmission electron microscopy. Dyshomeostasis of autophagic flux resulting from around-the-clock noise exposure was assessed at different stages to investigate the potential pathological mechanisms. Around-the-clock noise significantly increased Aβ peptide, tau phosphorylation at Ser396 and Ser404, and neuroinflammation. Moreover, the AMPK-mTOR signaling pathway was depressed in the cortex and the hippocampus of rats exposed to around-the-clock noise. Consequently, autophagosome–lysosome fusion was deterred and resulted in AP accumulation. Our results indicate that around-the-clock noise exposure has detrimental influences on autophagic flux homeostasis and may be associated with AD-like neuropathology in the cortex and the hippocampus.
Collapse
|
4
|
Manno FAM, An Z, Kumar R, Wu EX, He J, Feng Y, Lau C. Structural Alterations in a Rat Model of Short-Term Conductive Hearing Loss Are Associated With Reduced Resting State Functional Connectivity. Front Syst Neurosci 2021; 15:655172. [PMID: 34456689 PMCID: PMC8397539 DOI: 10.3389/fnsys.2021.655172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022] Open
Abstract
Conductive hearing loss (CHL) results in attenuation of air conducted sound reaching the inner ear. How a change in air conducted sound alters the auditory system resulting in cortical alterations is not well understood. Here, we have assessed structural and functional magnetic resonance imaging (MRI) in an adult (P60) rat model of short-term conductive hearing loss (1 week). Diffusion tensor imaging (DTI) revealed fractional anisotropy (FA) and axial diffusivity alterations after hearing loss that circumscribed the auditory cortex (AC). Tractography found the lateral lemniscus tract leading to the bilateral inferior colliculus (IC) was reduced. For baseline comparison, DTI and tractography alterations were not found for the somatosensory cortex. To determine functional connectivity changes due to hearing loss, seed-based analysis (SBA) and independent component analysis (ICA) were performed. Short term conductive hearing loss altered functional connectivity in the AC and IC, but not the somatosensory cortex. The results present an exploratory neuroimaging assessment of structural alterations coupled to a change in functional connectivity after conductive hearing loss. The results and implications for humans consist of structural-functional brain alterations following short term hearing loss in adults.
Collapse
Affiliation(s)
| | - Ziqi An
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| | - Rachit Kumar
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Medical Scientist Training Program, University of Pennsylvania, Philadelphia, PA, United States
| | - Ed X. Wu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, SAR China
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong, SAR China
| | - Jufang He
- Department of Neuroscience, City University of Hong Kong, Hong Kong, SAR China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, SAR China
| | - Yanqiu Feng
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| | - Condon Lau
- Department of Physics, City University of Hong Kong, Hong Kong, SAR China
| |
Collapse
|
5
|
Bures Z, Pysanenko K, Syka J. The influence of developmental noise exposure on the temporal processing of acoustical signals in the auditory cortex of rats. Hear Res 2021; 409:108306. [PMID: 34311267 DOI: 10.1016/j.heares.2021.108306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/01/2021] [Accepted: 06/30/2021] [Indexed: 11/19/2022]
Abstract
Previous experiments have acknowledged that inappropriate or missing auditory inputs during the critical period of development cause permanent changes of the structure and function of the auditory system (Bures et al., 2017). We explore in this study how developmental noise exposure influences the coding of temporally structured stimuli in the neurons of the primary auditory cortex (AC) in Long Evans rats. The animals were exposed on postnatal day 14 (P14) for 12 minutes to a loud (125 dB SPL) broad-band noise. The responses to an amplitude-modulated (AM) noise, frequency-modulated (FM) tones, and click trains, were recorded from the right AC of rats of two age groups: young-adult (ca. 6 months old) and adult (ca. 2 years old), both in the exposed animals and in control unexposed rats. The neonatal exposure resulted in a higher synchronization ability (phase-locking) of the AC neurons for all three stimuli; furthermore, the similarity of neuronal response patterns to repetitive stimulation was higher in the exposed rats. On the other hand, the exposed animals showed a steeper decline of modulation-transfer functions towards higher modulation frequencies/repetition rates. Differences between the two age groups were also apparent; in general, aging had qualitatively the same effect as the developmental exposure. The current results demonstrate that brief noise exposure during the maturation of the auditory system influences both the temporal and the rate coding of periodically modulated sounds in the AC of rats; the changes are permanent and observable up to late adulthood.
Collapse
Affiliation(s)
- Zbynek Bures
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic; Department of Cognitive Systems and Neurosciences, Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University, Jugoslávských partyzánů 1580/3, 160 00 Prague 6, Czech Republic.
| | - Kateryna Pysanenko
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic
| | - Josef Syka
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic
| |
Collapse
|
6
|
Acoustically Enriched Environment during the Critical Period of Postnatal Development Positively Modulates Gap Detection and Frequency Discrimination Abilities in Adult Rats. Neural Plast 2021; 2021:6611922. [PMID: 33777134 PMCID: PMC7979287 DOI: 10.1155/2021/6611922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/05/2021] [Accepted: 02/23/2021] [Indexed: 11/18/2022] Open
Abstract
Throughout life, sensory systems adapt to the sensory environment to provide optimal responses to relevant tasks. In the case of a developing system, sensory inputs induce changes that are permanent and detectable up to adulthood. Previously, we have shown that rearing rat pups in a complex acoustic environment (spectrally and temporally modulated sound) from postnatal day 14 (P14) to P28 permanently improves the response characteristics of neurons in the inferior colliculus and auditory cortex, influencing tonotopical arrangement, response thresholds and strength, and frequency selectivity, along with stochasticity and the reproducibility of neuronal spiking patterns. In this study, we used a set of behavioral tests based on a recording of the acoustic startle response (ASR) and its prepulse inhibition (PPI), with the aim to extend the evidence of the persistent beneficial effects of the developmental acoustical enrichment. The enriched animals were generally not more sensitive to startling sounds, and also, their PPI of ASR, induced by noise or pure tone pulses, was comparable to the controls. They did, however, exhibit a more pronounced PPI when the prepulse stimulus was represented either by a change in the frequency of a background tone or by a silent gap in background noise. The differences in the PPI of ASR between the enriched and control animals were significant at lower (55 dB SPL), but not at higher (65-75 dB SPL), intensities of background sound. Thus, rearing pups in the acoustically enriched environment led to an improvement of the frequency resolution and gap detection ability under more difficult testing conditions, i.e., with a worsened stimulus clarity. We confirmed, using behavioral tests, that an acoustically enriched environment during the critical period of development influences the frequency and temporal processing in the auditory system, and these changes persist until adulthood.
Collapse
|
7
|
Metabolic changes in the brain and blood of rats following acoustic trauma, tinnitus and hyperacusis. PROGRESS IN BRAIN RESEARCH 2021; 262:399-430. [PMID: 33931189 DOI: 10.1016/bs.pbr.2020.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
It has been increasingly recognized that tinnitus is likely to be generated by complex network changes. Acoustic trauma that causes tinnitus induces significant changes in multiple metabolic pathways in the brain. However, it is not clear whether those metabolic changes in the brain could also be reflected in blood samples and whether metabolic changes could discriminate acoustic trauma, hyperacusis and tinnitus. We analyzed brain and serum metabolic changes in rats following acoustic trauma or a sham procedure using metabolomics. Hearing levels were recorded before and after acoustic trauma and behavioral measures to quantify tinnitus and hyperacusis were conducted at 4 weeks following acoustic trauma. Tissues from 11 different brain regions and serum samples were collected at about 3 months following acoustic trauma. Among the acoustic trauma animals, eight exhibited hyperacusis-like behavior and three exhibited tinnitus-like behavior. Using Gas chromatography-mass spectrometry and multivariate statistical analysis, significant metabolic changes were found in acoustic trauma animals in both the brain and serum samples with a number of metabolic pathways significantly perturbated. Furthermore, metabolic changes in the serum were able to differentiate sham from acoustic trauma animals, as well as sham from hyperacusis animals, with high accuracy. Our results suggest that serum metabolic profiling in combination with machine learning analysis may be a promising approach for identifying biomarkers for acoustic trauma, hyperacusis and potentially, tinnitus.
Collapse
|
8
|
Bureš Z, Profant O, Svobodová V, Tóthová D, Vencovský V, Syka J. Speech Comprehension and Its Relation to Other Auditory Parameters in Elderly Patients With Tinnitus. Front Aging Neurosci 2019; 11:219. [PMID: 31496946 PMCID: PMC6713070 DOI: 10.3389/fnagi.2019.00219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/02/2019] [Indexed: 11/13/2022] Open
Abstract
Deteriorated speech comprehension is a common manifestation of the age-related decline of auditory functions (presbycusis). It could be assumed that when presbycusis is accompanied by tinnitus, general hearing functions, and particularly comprehension of speech in quiet and speech in noise (SIN), will be significantly affected. In this study, speech comprehension ability and other parameters of auditory function were assessed in elderly subjects with (T, n = 25) and without (NT, n = 26) tinnitus, aiming for examination of both peripheral and central auditory processing. Apart from high-frequency audiograms in quiet and in background noise, speech recognition thresholds in silence or in competitive babble noise, and the ability to understand temporally gated speech (GS), we measured also sensitivity to frequency modulation (FM) and interaural delay, gap detection thresholds (GDT), or the difference limens of intensity. The results show that in elderly participants matched by age (mean ages around 68 years), cognitive status (median MoCA scores around 27), and hearing thresholds [median pure-tone averages (PTA) around 16 dB hearing loss (HL)], tinnitus per se has little influence on speech comprehension. The tinnitus patients also show similar GDT, sensitivity to interaural intensity difference, and sensitivity to FM as the NT subjects. Despite these similarities, nevertheless, significant differences in auditory processing have been found in the tinnitus participants: a worse ability to detect tones in noise, a higher sensitivity to intensity changes, and a higher sensitivity to interaural time differences. Additional correlation analyses further revealed that speech comprehension in the T subjects is dependent on the sensitivity to temporal modulation and interaural time delay (ITD), while these correlations are weak and non-significant in the NT subjects. Therefore, despite similarities in average speech comprehension and several other parameters of auditory function, elderly people with tinnitus exhibit different auditory processing, particularly at a suprathreshold level. The results also suggest that speech comprehension ability of elderly tinnitus patients relies more on temporal features of the sound stimuli, especially under difficult conditions, compared to elderly people without tinnitus.
Collapse
Affiliation(s)
- Zbyněk Bureš
- Department of Auditory Neuroscience, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia.,Department of Technical Studies, College of Polytechnics, Jihlava, Czechia
| | - Oliver Profant
- Department of Auditory Neuroscience, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia.,Department of Otorhinolaryngology of Faculty Hospital Královské Vinohrady and 3rd Faculty of Medicine, Charles University, Prague, Czechia
| | - Veronika Svobodová
- Department of Auditory Neuroscience, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia.,Department of Otorhinolaryngology and Head and Neck Surgery, 1st Faculty of Medicine, Charles University in Prague, University Hospital Motol, Prague, Czechia
| | - Diana Tóthová
- Department of Auditory Neuroscience, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia.,Department of Otorhinolaryngology and Head and Neck Surgery, 1st Faculty of Medicine, Charles University in Prague, University Hospital Motol, Prague, Czechia
| | - Václav Vencovský
- Department of Auditory Neuroscience, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia.,Department of Radioelectronics, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czechia
| | - Josef Syka
- Department of Auditory Neuroscience, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|