1
|
Yunusa S, Müller CP, Hassan Z. Mitragynine (Kratom)-Withdrawal behaviour and cognitive impairments can be ameliorated by an epigenetic mechanism. Br J Pharmacol 2024; 181:2070-2084. [PMID: 38523471 DOI: 10.1111/bph.16352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/11/2023] [Accepted: 01/02/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND AND PURPOSE Kratom is a preparation from Mitragyna speciosa, which is used as a natural drug preparation for many purposes around the world. However, an overdose of Kratom may cause addiction-like problems including aversive withdrawal states resulting in cognitive impairments via unknown mechanisms. Its main psychoactive alkaloid is mitragynine, showing opioid-like properties. EXPERIMENTAL APPROACH Here, we analysed the neuropharmacological effects of mitragynine compared with morphine withdrawal in rats and searched for a pharmacological treatment option that may reverse the occurring cognitive deficits that usually aggravate withdrawal. KEY RESULTS We found that withdrawal from 14-day mitragynine (1-10 mg·kg-1·day-1) treatment caused dose-dependent behavioural withdrawal signs resembling those of morphine (5 mg·kg-1·day-1) withdrawal. However, mitragynine (5 and 10 mg·kg-1·day-1) withdrawal also induced impairments in a passive avoidance task. Mitragynine withdrawal not only reduced hippocampal field excitatory postsynaptic potential (fEPSP) amplitudes in basal synaptic transmission and long-term potentiation (LTP) but also reduced epigenetic markers, such as histone H3K9 and H4K12 expression. At the same time, it up-regulates HDAC2 expression. Targeting the epigenetic adaptations with the HDAC inhibitor, SAHA, reversed the effects of mitragynine withdrawal on epigenetic dysregulation, hippocampal input/output curves, paired-pulse facilitation, LTP and attenuated the cognitive deficit. However, SAHA amplified the effects of morphine withdrawal. CONCLUSION AND IMPLICATIONS The data from this work show that changes in histone expression and downstream hippocampal plasticity may explain mitragynine, but not morphine, withdrawal behaviours and cognitive impairments. Thus, it may provide a new treatment approach for aversive Kratom/mitragynine withdrawal and addiction.
Collapse
Affiliation(s)
- Suleiman Yunusa
- Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia
- Department of Pharmacology, Bauchi State University Gadau, Bauchi State, Nigeria
| | - Christian P Müller
- Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
2
|
Beheshti S, Ershadi S, Zamani F, Azimzadeh M, Wesal MW. Differential impact of a ghrelin receptor antagonist or inverse agonist in the electrical kindling model of epilepsy. Epilepsy Res 2023; 197:107234. [PMID: 37793283 DOI: 10.1016/j.eplepsyres.2023.107234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023]
Abstract
Ghrelin is a peptide, which has been shown to affect seizures. However, there is not a consensus about its real impact on the control of seizure severity. We assessed the influence of intra-amygdala injections of a ghrelin receptor (GHSR) antagonist, as well as a GHSR inverse agonist on the electrical kindling-induced seizures. Two unipolar electrodes and a tripolar electrode twisted with a guide cannula were implanted in the skull surface or the basolateral amygdala of adult male rats, respectively. A rapid electrical kindling protocol was applied for kindling epileptogenesis. The stimulations were applied until rats showed three consecutive stage five seizures. Each rat was considered as its control. D-Lys-3-GHRP-6 (1, 12.5, and 25 μg/rat) or [D-Arg, D-phe, D-Trp, heu] substance P (D-SP) (50, 500 and 5000 ng/rat) as the GHSR antagonist or inverse agonist were injected into the basolateral amygdala. Seizure parameters including after-discharge duration (ADD), stage five duration (S5D), and seizure stage (SS) were documented thirty minutes following administration of the drugs or saline. Antagonism of the GHSR in the amygdala, significantly increased seizure induction in the kindled rats, in a dose-dependent manner, and induced spontaneous seizures leading to status epilepticus. Conversely, D-SP had a dose-dependent anticonvulsant activity, indicated by decreased ADD and S5D. The results show that GHSR inverse agonism suppressed seizure severity in the rat amygdala kindling model, whereas GHSR antagonism made seizures more severe. Therefore, when considering the ghrelin system to modulate seizures, it is crucial to note the differential impact of various GHSR ligands.
Collapse
Affiliation(s)
- Siamak Beheshti
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Shiva Ershadi
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Fatemeh Zamani
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mansour Azimzadeh
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran; Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysis, 43400 UPM Serdang, Selangor, Malaysia
| | - Mohammad Wasil Wesal
- Department of Biology, Faculty of Education, University of Ghazni, Gazni, Afghanistan
| |
Collapse
|
3
|
Azimzadeh M, Beheshti S. Down regulation of the hippocampal ghrelin receptor type-1a during electrical kindling-induced epileptogenesis. Epilepsy Res 2023; 189:107064. [PMID: 36516566 DOI: 10.1016/j.eplepsyres.2022.107064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/17/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Numerous studies have shown that the ghrelin hormone is involved in epileptic conditions. However, the profile of ghrelin or its functional receptor mRNAs in seizure-susceptible brain areas was not assessed during epileptogenesis. Here, we measured the expression levels of the hippocampal ghrelin or its receptor mRNAs during electrical kindling-induced epileptogenesis. The study was conducted on twenty adult male Wistar rats. One tri-polar and two uni-polar electrodes were stereotaxically implanted in the baso-lateral amygdala or skull surface, respectively. Animals were divided into four groups, consisting of two sham groups (sham1 and sham2), and two other groups, which were partially or fully kindled. After the establishment of partial or full kindling, the hippocampi of the animals and that of the corresponding sham groups were removed. A quantitative real-time PCR technique was used to measure the expression levels of ghrelin or its functional receptor mRNAs. The results indicated that the expression levels of ghrelin did not alter in either of the partially or fully kindled rats compared to the corresponding sham groups. Ghrelin receptor (ghrelinR) down regulated, significantly in the fully-kindled rats, compared to sham2 group. Meanwhile, the mRNA expression levels of ghrelinR did not change in partially-kindled rats compared to sham1 group. The outcomes of the current study highlight the crucial, unknown impact of the hippocampal ghrelinR through the development of electrical kindling epileptogenesis, and points out the importance of ghrelinR as a goal to adjust epileptogenic progression.
Collapse
Affiliation(s)
- Mansour Azimzadeh
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Siamak Beheshti
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
4
|
Reich N, Hölscher C. Beyond Appetite: Acylated Ghrelin As A Learning, Memory and Fear Behavior-modulating Hormone. Neurosci Biobehav Rev 2022; 143:104952. [DOI: 10.1016/j.neubiorev.2022.104952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 04/27/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022]
|
5
|
Chen KR, Wang HY, Liao YH, Sun LH, Huang YH, Yu L, Kuo PL. Effects of Septin-14 Gene Deletion on Adult Cognitive/Emotional Behavior. Front Mol Neurosci 2022; 15:880858. [PMID: 35571367 PMCID: PMC9100402 DOI: 10.3389/fnmol.2022.880858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
While various septin GTPases have been reported for their physiological functions, their roles in orchestrating complex cognitive/emotional functions in adult mammals remained scarcely explored. A comprehensive behavioral test battery was administered to two sexes of 12-week-old Septin-14 (SEPT14) knockout (KO) and wild-type (WT) mice. The sexually dimorphic effects of brain SEPT14 KO on inhibitory avoidance (IA) and hippocampal mGluR5 expression were noticed with greater IA latency and elevated mGluR5 level exclusively in male KO mice. Moreover, SEPT14 KO appeared to be associated with stress-provoked anxiety increase in a stress-related navigation task regardless of animals’ sexes. While male and female WT mice demonstrated comparable cell proliferation in the dorsal and ventral hippocampal dentate gyrus (DG), both sexes of SEPT14 KO mice had increased cell proliferation in the ventral DG. Finally, male and female SEPT14 KO mice displayed dampened observational fear conditioning magnitude and learning-provoked corticosterone secretion as compared to their same-sex WT mice. These results, taken together, prompt us to conclude that male, but not female, mice lacking the Septin-14 gene may exhibit increased aversive emotion-related learning and dorsal/ventral hippocampal mGluR5 expressions. Moreover, deletion of SEPT14 may be associated with elevated ventral hippocampal DG cell proliferation and stress-provoked anxiety-like behavior, while dampening vicarious fear conditioning magnitudes.
Collapse
Affiliation(s)
- Kuan-Ru Chen
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
- Department of Obstetrics and Gynecology, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Han-Yu Wang
- Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Yi-Han Liao
- Department of Physiology, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Li-Han Sun
- Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan
- Department of Physiology, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Yu-Han Huang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
- Department of Obstetrics and Gynecology, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Lung Yu
- Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan
- Department of Physiology, National Cheng Kung University College of Medicine, Tainan, Taiwan
- Lung Yu,
| | - Pao-Lin Kuo
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
- Department of Obstetrics and Gynecology, National Cheng Kung University College of Medicine, Tainan, Taiwan
- *Correspondence: Pao-Lin Kuo,
| |
Collapse
|
6
|
Azimzadeh M, Beheshti S. Antagonism of the ghrelin receptor type 1a in the rat brain induces status epilepticus in an electrical kindling model of epilepsy. Psychopharmacology (Berl) 2022; 239:479-487. [PMID: 34845505 DOI: 10.1007/s00213-021-06026-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
Studies have shown the anti-seizure properties of the ghrelin hormone in different models of epilepsy. Nevertheless, the role of the endogenous ghrelin is unknown in the electrical kindling model of epilepsy. In this study, we evaluated the effect of the antagonism of the ghrelin receptors in the brain of fully kindled rats. Adult male Wistar rats weighing 300 g were used. Animals were stereotaxically implanted with two uni-polar electrodes in the skull surface and a tri-polar electrode in the basolateral amygdala, and a guide cannula in the left lateral ventricle. Animals underwent a rapid kindling protocol. After showing three consecutive stages of five seizures, the animals were considered fully kindled. D-Lys-3-GHRP-6 (1, 50, and 100 μg/rat) was injected intracerebroventricularly (i.c.v.) in the kindled animals. Each rat was considered as its control and received a single dose of D-Lys-3-GHRP-6. Seizure parameters including after discharge duration (ADD), seizure stage (SS), stage four latency (S4L), and stage five duration (S5D) were recorded. The paired t test indicated a significant increase in seizure induction. D-Lys-3-GHRP-6 (1 μg/rat; i.c.v.) prolonged ADD in the kindled rats, significantly. D-Lys-3-GHRP-6 (50 and 100 μg/rat; i.c.v.) induced spontaneous seizures, which led to status epilepticus in the kindled rats. The results indicate that the antagonism of the ghrelin functional receptors prolongs seizures and induces status epilepticus in the kindling model of epilepsy, and propose that the endogenous ghrelin signaling has crucial antiepileptic properties.
Collapse
Affiliation(s)
- Mansour Azimzadeh
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Siamak Beheshti
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
7
|
Vaseghi S, Arjmandi-Rad S, Eskandari M, Ebrahimnejad M, Kholghi G, Zarrindast MR. Modulating role of serotonergic signaling in sleep and memory. Pharmacol Rep 2021; 74:1-26. [PMID: 34743316 DOI: 10.1007/s43440-021-00339-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 01/02/2023]
Abstract
Serotonin is an important neurotransmitter with various receptors and wide-range effects on physiological processes and cognitive functions including sleep, learning, and memory. In this review study, we aimed to discuss the role of serotonergic receptors in modulating sleep-wake cycle, and learning and memory function. Furthermore, we mentioned to sleep deprivation, its effects on memory function, and the potential interaction with serotonin. Although there are thousands of research articles focusing on the relationship between sleep and serotonin; however, the pattern of serotonergic function in sleep deprivation is inconsistent and it seems that serotonin has not a certain role in the effects of sleep deprivation on memory function. Also, we found that the injection type of serotonergic agents (systemic or local), the doses of these drugs (dose-dependent effects), and up- or down-regulation of serotonergic receptors during training with various memory tasks are important issues that can be involved in the effects of serotonergic signaling on sleep-wake cycle, memory function, and sleep deprivation-induced memory impairments. This comprehensive review was conducted in the PubMed, Scopus, and ScienceDirect databases in June and July 2021, by searching keywords sleep, sleep deprivation, memory, and serotonin.
Collapse
Affiliation(s)
- Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| | - Shirin Arjmandi-Rad
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Maliheh Eskandari
- Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mahshid Ebrahimnejad
- Department of Physiology, Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Gita Kholghi
- Department of Psychology, Faculty of Human Sciences, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Beheshti S, Dehestani H. Differential expression levels of the hippocampal ghrelin and its receptor mRNA during memory consolidation. Behav Brain Res 2021; 408:113270. [PMID: 33811951 DOI: 10.1016/j.bbr.2021.113270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 03/23/2021] [Accepted: 03/28/2021] [Indexed: 12/30/2022]
Abstract
Ghrelin is a peptide, secreted mainly from the stomach. But, it is also produced in the brain. Studies have confirmed the positive impact of ghrelin on memory formation. However, the expression levels of ghrelin or its receptors were not measured in the brain during the process of memory formation. The probable alteration in the expression levels of ghrelin or its receptors in the brain during memory formation can be a reason for the contribution of its signaling in this process. We quantified the gene expression levels of ghrelin and its receptors in the hippocampus during fear and spatial memory consolidation. Thirty- nine adult male Wistar rats weighing 180-220 g were utilized. Memory consolidation was evaluated using the inhibitory avoidance task and Morris water maze. Rats were euthanized at different times (1, 3, and 24 h) post-training and their hippocampi were removed and freezed directly in liquid nitrogen. Quantitative real-time polymerize chain reaction (PCR) was used to quantify the messenger ribonucleic acid (mRNA) expression levels of the hippocampal ghrelin and its receptors. The mRNA levels of ghrelin exhibited a significant increase, 24 h post-training in the inhibitory avoidance task, while its receptor levels were down-regulated. Also, the mRNA expression levels of the hippocampal ghrelin were not changed significantly during memory consolidation in the Morris water maze, while its receptor showed a significant increase, 24 h post-training. The results show a differential profile of the expression levels of the hippocampal ghrelin or its receptor mRNA during fear or spatial memory consolidation. This proposes that a local increase in the hippocampal ghrelin or its receptor levels might be crucial for fear, and spatial memory consolidation. However, due to the small sample sizes, it is worth noting the preliminary nature of the conclusions in the present study.
Collapse
Affiliation(s)
- Siamak Beheshti
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Hadi Dehestani
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|