1
|
Lu S, Shen J, Jin X, Zhang C, Wang B, Liu X, Bai M, Xu E, Yan X, Li Y. A novel antidepressant mechanism of baicalin: enhancing KIF5A-mediated axoplasmic transport and vesicular trafficking in glutamatergic neurons. Front Pharmacol 2025; 16:1577676. [PMID: 40290440 PMCID: PMC12023265 DOI: 10.3389/fphar.2025.1577676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 03/21/2025] [Indexed: 04/30/2025] Open
Abstract
Introduction Dysfunction of axoplasmic transport is closely linked to depression. Baicalin, a major flavonoid in Scutellaria baicalensis, a well-known traditional Chinese medicine used in depression treatment, has demonstrated antidepressant-like effects in previous studies. However, its potential role in regulating axoplasmic transport has not been explored. This study aims to investigate the antidepressant mechanisms of baicalin through modulation of axoplasmic transport in hippocampal neurons. Methods Male C57BL/6N mice were exposed to chronic unpredictable mild stress (CUMS) and treated with baicalin (10, 20, 40 mg/kg) or fluoxetine (20 mg/kg). Depression-like behaviors were assessed using the sucrose preference test (SPT), forced swimming test (FST), tail suspension test (TST), and locomotor activity test (LAT). Hippocampal neuronal pathology was examined using transmission electron microscopy (TEM), Nissl, and Golgi staining. Transcriptomic analysis was conducted to explore the molecular mechanisms of baicalin. HT22 cells were cultured in vitro and treated with corticosterone (CORT) and baicalin. FM1-43 was used to label vesicles and track vesicular movement. mRNA and protein levels were measured by qRT-PCR, Western blotting, and immunofluorescence. Results Baicalin significantly alleviated CUMS-induced depressive behaviors, increasing sucrose preference, reducing immobility time in TST and FST, and increasing food intake without affecting locomotor activity. It improved hippocampal CA3 neuronal damage, increased dendritic spine density, and promoted presynaptic vesicle accumulation, particularly in glutamatergic neurons. Transcriptomic analysis revealed that baicalin upregulated vGLUT2 (encoded by the Slc17a6 gene) and significantly increased the expression of GluN2B, GluA1, and PSD95. Moreover, baicalin upregulated the expression of kinesin family member 5A (KIF5A) both in vivo and in vitro, enhancing vesicle movement along axons and increasing vesicle-associated membrane protein 2 (VAMP2) enrichment in synaptosomes. Discussion These findings suggest that baicalin enhances anterograde axoplasmic transport by upregulating KIF5A expression, facilitating vesicular trafficking and improving synaptic function in glutamatergic neurons. This study provides novel insights into the molecular mechanisms of antidepressant effects of baicalin, highlighting KIF5A as a potential therapeutic target for depression.
Collapse
Affiliation(s)
- Shuaifei Lu
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain for Yu-Yao of Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jiduo Shen
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain for Yu-Yao of Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xiaohui Jin
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain for Yu-Yao of Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Changjing Zhang
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain for Yu-Yao of Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Baoying Wang
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain for Yu-Yao of Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xianghua Liu
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain for Yu-Yao of Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Ming Bai
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain for Yu-Yao of Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Erping Xu
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain for Yu-Yao of Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xiangli Yan
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain for Yu-Yao of Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yucheng Li
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain for Yu-Yao of Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Liu Y, Fu X, Zhao X, Cui R, Yang W. The role of exercise-related FNDC5/irisin in depression. Front Pharmacol 2024; 15:1461995. [PMID: 39484160 PMCID: PMC11524886 DOI: 10.3389/fphar.2024.1461995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/03/2024] [Indexed: 11/03/2024] Open
Abstract
The complexity of depression presents a significant challenge to traditional treatment methods, such as medication and psychotherapy. Recent studies have shown that exercise can effectively reduce depressive symptoms, offering a new alternative for treating depression. However, some depressed patients are unable to engage in regular physical activity due to age, physical limitations, and other factors. Therefore, pharmacological agents that mimic the effects of exercise become a potential treatment option. A newly discovered myokine, irisin, which is produced during exercise via cleavage of its precursor protein fibronectin type III domain-containing protein 5 (FNDC5), plays a key role in regulating energy metabolism, promoting adipose tissue browning, and improving insulin resistance. Importantly, FNDC5 can promote neural stem cell differentiation, enhance neuroplasticity, and improve mood and cognitive function. This review systematically reviews the mechanisms of action of exercise in the treatment of depression, outlines the physiology of exercise-related irisin, explores possible mechanisms of irisin's antidepressant effects. The aim of this review is to encourage future research and clinical applications of irisin in the prevention and treatment of depression.
Collapse
Affiliation(s)
- Yaqi Liu
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xiying Fu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, China
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xing Zhao
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Yang
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
3
|
Mohammadkhanizadeh A, Hosseini Y, Nikbakht F, Parvizi M, Khodabandehloo F. Evaluating the potential effects of apigenin on memory, anxiety, and social interaction amelioration after social isolation stress. Int J Dev Neurosci 2024. [PMID: 39367711 DOI: 10.1002/jdn.10380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/11/2024] [Accepted: 09/09/2024] [Indexed: 10/06/2024] Open
Abstract
Vigorous research confirmed the anti-inflammatory, antioxidant, and antidementia effects of apigenin (Api). The present study evaluated the beneficial impacts of Api administration on behaviour, brain-derived neurotrophic factor (BDNF), Interleukin 6 (IL-6), oxidative stress, and inflammation induced by social isolation (SI) stress in rats. For this purpose, rats underwent a 28-day SI period followed by a 4-week oral Api treatment (50 mg/kg/day, PO). On Day 56, behaviour tests were performed, including an elevated plus maze (EPM), Morris water maze (MWM), and three-chamber social tests. The oxidative stress markers, IL-6, and BDNF levels were measured in the hippocampus. Our results showed that SI stress caused an increase in anxiety and a decrease in spatial memory, sociability, and social preference index. In addition, SI stress increased hippocampal levels of IL-6 and malondialdehyde (MDA) content, whereas it reduced the hippocampal BDNF level and superoxide dismutase (SOD) activities. Our study indicated that Api attenuates anxiety and causes improvements in spatial memory and social interaction. These desirable effects of Api might be related to amelioration in the BDNF level, IL-6, and oxidative stress biomarkers in the hippocampus.
Collapse
Affiliation(s)
- Ali Mohammadkhanizadeh
- Behavioural and Cognitive Science Research Centre, AJA University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Center and Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Yasaman Hosseini
- Behavioural and Cognitive Science Research Centre, AJA University of Medical Sciences, Tehran, Iran
| | - Farnaz Nikbakht
- Cellular and Molecular Research Center and Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Parvizi
- Behavioural and Cognitive Science Research Centre, AJA University of Medical Sciences, Tehran, Iran
- Department of Physiology, faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Fatemeh Khodabandehloo
- Department of Genetic and Advanced Medicine Technology, faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Ahmadi E, Pourmotabbed A, Aghaz N, Nedaei SE, Veisi M, Salimi Z, Zarei F, Jalili C, Moradpour F, Zeinivand M. Curcumin and exercise prevent depression via alleviating hippocampus injury and improve depressive-like behaviors in chronically stressed depression rats. Res Pharm Sci 2024; 19:509-519. [PMID: 39691296 PMCID: PMC11648346 DOI: 10.4103/rps.rps_94_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 12/13/2023] [Accepted: 09/07/2024] [Indexed: 12/19/2024] Open
Abstract
Background and purpose Depression is a growing public health concern worldwide, characterized by cognitive impairment and structural abnormalities of the hippocampus. Current antidepressant treatment sometimes causes the late onset of results and the much faster occurrence of side effects. For this reason, the interest in new treatment strategies including exercise and natural products such as curcumin has increased to treat depression. The present study investigated the role of curcumin and exercise in improving depressive-like behavior and hippocampal damage induced by mild unpredictable chronic stress in male rats. Experimental approach This study analyzed the effects of curcumin (100 mg/kg/day, P.O for 14 days) and exercise (treadmill running, 45 min/day for 14 days) on immobility behavior (forced swimming test), locomotor activity (open field test), anhedonia (sucrose preference test) and cell survival (Nissl staining) of the hippocampal CA3 region in chronically stressed depression rats. Findings/Results In the current study, curcumin treatment combined with exercise effectively improved immobility behavior, locomotor activity, and increased hippocampal cell survival resulted in preventing the development of hippocampus dysfunction and depressive-like behaviors. Conclusion and implications This study demonstrated a new prospect for treating depression. The current findings give researchers the confidence to continue the investigations on the effects of curcumin accompanied with exercise as a novel therapy for the treatment of depression.
Collapse
Affiliation(s)
- Elaheh Ahmadi
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| | - Ali Pourmotabbed
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| | - Nilofar Aghaz
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| | - Seyed Ershad Nedaei
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| | - Mojgan Veisi
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| | - Zahra Salimi
- Department of Biology, Faculty of Science, University of Qom, Qom, I.R. Iran
| | - Fatemeh Zarei
- Department of Biology, Faculty of Science, Razi University, Kermanshah, I.R. Iran
| | - Cyrus Jalili
- Department of Anatomical Sciences, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| | - Farshad Moradpour
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| | - Motahareh Zeinivand
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| |
Collapse
|
5
|
Talaee N, Azadvar S, Khodadadi S, Abbasi N, Asli-Pashaki ZN, Mirabzadeh Y, Kholghi G, Akhondzadeh S, Vaseghi S. Comparing the effect of fluoxetine, escitalopram, and sertraline, on the level of BDNF and depression in preclinical and clinical studies: a systematic review. Eur J Clin Pharmacol 2024; 80:983-1016. [PMID: 38558317 DOI: 10.1007/s00228-024-03680-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Brain-derived neurotrophic factor (BDNF) dysfunction is one of the most important mechanisms underlying depression. It seems that selective serotonin reuptake inhibitors (SSRIs) improve depression via affecting BDNF level. In this systematic review, for the first time, we aimed to review the effect of three SSRIs including fluoxetine, escitalopram, and sertraline, on both depression and BDNF level in preclinical and clinical studies. PubMed electronic database was searched, and 193 articles were included in this study. After reviewing all manuscripts, only one important difference was found: subjects. We found that SSRIs induce different effects in animals vs. humans. Preclinical studies showed many controversial effects, while human studies showed only two effects: improvement of depression, with or without the improvement of BDNF. However, most studies used chronic SSRIs treatment, while acute SSRIs were not effectively used and evaluated. In conclusion, it seems that SSRIs are reliable antidepressants, and the improvement effect of SSRIs on depression is not dependent to BDNF level (at least in human studies).
Collapse
Affiliation(s)
- Nastaran Talaee
- Department of Psychology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shataw Azadvar
- Department of Power Electronic, Faculty of Electrical Engineering, Sahand University of Technology, Tabriz, Iran
| | - Sanaz Khodadadi
- Student Research Committee, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nahal Abbasi
- Department of Health Psychology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Yasaman Mirabzadeh
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Gita Kholghi
- Department of Psychology, Faculty of Human Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Shahin Akhondzadeh
- Psychiatric Research Center, Department of Psychiatry, Faculty of Medicine, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Salar Vaseghi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, 1419815477, Iran.
| |
Collapse
|
6
|
Shipa AME, Kahilo KA, Elshazly SA, Taher ES, Nasr NE, Alotaibi BS, Almadaly EA, Assas M, Abdo W, Abouzed TK, Salem AE, Kirci D, El-Seedi HR, Refaey MS, Rizk NI, Shukry M, Dorghamm DA. Protective effect of Petroselinum crispum methanolic extract against acrylamide-induced reproductive toxicity in male rats through NF-ĸB, kinesin, steroidogenesis pathways. Reprod Toxicol 2024; 126:108586. [PMID: 38614435 DOI: 10.1016/j.reprotox.2024.108586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/19/2024] [Accepted: 03/29/2024] [Indexed: 04/15/2024]
Abstract
This study examined the protective effects of a Petroselinum crispum (P. crispum) methanolic extract on reproductive dysfunction induced by acrylamide in male rats. A total of 40 rats were divided into four groups (n=10). The control group received distilled water, the acrylamide group received 10 mg/kg of acrylamide, the P. crispum group received 100 mg/kg of P. crispum extract, and the combined group was pretreated with P. crispum for two weeks before co-administration of P. crispum and acrylamide. All administrations were administered orally using a gastric tube for eight weeks. Acrylamide decreased testosterone levels but did not affect levels of FSH or LH. It also increased testicular levels of (MDA) malondialdehyde and reduced activity of (SOD) superoxide dismutase and impairment of sperm parameters. Furthermore, the administration of acrylamide resulted in an elevation of tumor necrosis factor-alpha (TNF-α) levels and a reduction in the levels of steroidogenic acute regulatory protein (STAR) and cytochrome P450scc (P450scc). Acrylamide negatively affected the histopathological outcomes, Johnsen's score, the diameter of seminiferous tubules, and the thickness of the germinal epithelium. It also upregulated the expression of NF-ĸB P65 and downregulated the expression of kinesin motor protein. In contrast, treatment with P. crispum extract restored the levels of antioxidant enzymes, improved sperm parameters, and normalized the gene expression of TNF-α, IL-10, IL-6, iNOS, NF-ĸB, STAR, CYP17A1, 17β-HSD and P450scc. It also recovered testicular histological parameters and immunoexpression of NF-ĸB P65 and kinesin altered by acrylamide. P. crispum showed protective effects against acrylamide-induced reproductive toxicity by suppressing oxidative damage and inflammatory pathways.
Collapse
Affiliation(s)
- Ahmed M E Shipa
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Khaled A Kahilo
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Samir A Elshazly
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Ehab S Taher
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
| | - Nasr E Nasr
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Badriyah S Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Essam A Almadaly
- Department of Theriogenology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Mona Assas
- Fish Processing and Biotechnology Department, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Walied Abdo
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El Sheikh 33516, Egypt
| | - Tarek K Abouzed
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; Faculty of Medicine, Biochemistry Department University of Misrata, Libya
| | | | - Damla Kirci
- Department of Pharmacognosy, Faculty of Pharmacy, Selçuk University, Konya, Turkiye
| | - Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Mohamed S Refaey
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt
| | - Nermin I Rizk
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Doaa A Dorghamm
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
7
|
Chen S, Wang K, Wang H, Gao Y, Nie K, Jiang X, Su H, Tang Y, Lu F, Dong H, Wang Z. The therapeutic effects of saikosaponins on depression through the modulation of neuroplasticity: From molecular mechanisms to potential clinical applications. Pharmacol Res 2024; 201:107090. [PMID: 38309381 DOI: 10.1016/j.phrs.2024.107090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/07/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
Depression is a major global health issue that urgently requires innovative and precise treatment options. In this context, saikosaponin has emerged as a promising candidate, offering a variety of therapeutic benefits that may be effective in combating depression. This review delves into the multifaceted potential of saikosaponins in alleviating depressive symptoms. We summarized the effects of saikosaponins on structural and functional neuroplasticity, elaborated the regulatory mechanism of saikosaponins in modulating key factors that affect neuroplasticity, such as inflammation, the hypothalamic-pituitary-adrenal (HPA) axis, oxidative stress, and the brain-gut axis. Moreover, this paper highlights existing gaps in current researches and outlines directions for future studies. A detailed plan is provided for the future clinical application of saikosaponins, advocating for more targeted researches to speed up its transition from preclinical trials to clinical practice.
Collapse
Affiliation(s)
- Shen Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ke Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hongzhan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yang Gao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Kexin Nie
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xinyue Jiang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hao Su
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yueheng Tang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Fuer Lu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Zhi Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
8
|
Cai CY, Liang HY, Zhou T, Yang C, Yin JJ, Yao MH, Gu QX, Liu D, Ni HY. High-intensity interval training ameliorates chronic unpredictable mild stress-induced depressive behaviors via HDAC2-BDNF signaling in the ventral hippocampus. Brain Res 2023; 1816:148480. [PMID: 37429454 DOI: 10.1016/j.brainres.2023.148480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Major depressive disorder (MDD) is a devastating psychiatric disease, and current therapies could not well meet the demand for MDD treatment. Exercise benefits mental illness, and notably, exercise has been recommended as an alternative option for MDD treatment in some countries. However, the paradigm and intensity of exercise for MDD treatment has yet to be determined. High-intensity interval training (HIIT) is a potent and time-efficient type of exercise training and has gained popularity in recent years. In this study, we exposed the mice to chronic unpredictable mild stress (CUMS) and found HIIT exerted substantial antidepressant effect. Moreover, HIIT further enhanced the antidepressant effect of fluoxetine, a classic antidepressant in the clinic, confirming the antidepressant role of HIIT. HIIT significantly reversed the CUMS-induced upregulations in HDAC2 mRNA and protein level in the ventral hippocampus. We also found HIIT rescued the CUMS-induced downregulation in the expression of brain-derived neurotrophic factor (BDNF) and HDAC2 overexpression counteracted the HIIT-induced increase in BDNF level. More importantly, both virus-mediated HDAC2 overexpression and microinfusion of TrkB-Fc, a BDNF scavenger, in the ventral hippocampus abolished the antidepressant effect of HIIT. Together, our results strongly demonstrate that HIIT attenuates depressive behaviors, probably via HDAC2-BDNF signaling pathway and reveal that HIIT may serve as an alternative option for MDD treatment.
Collapse
Affiliation(s)
- Cheng-Yun Cai
- Co-innovation Center of Neuroregeneration, School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Nantong, China
| | - Hai-Ying Liang
- Department of Pharmacy, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Ting Zhou
- Co-innovation Center of Neuroregeneration, School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Nantong, China
| | - Chao Yang
- Co-innovation Center of Neuroregeneration, School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Nantong, China
| | - Jia-Jie Yin
- Co-innovation Center of Neuroregeneration, School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Nantong, China
| | - Meng-Han Yao
- Co-innovation Center of Neuroregeneration, School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Nantong, China
| | - Qiu-Xiang Gu
- Co-innovation Center of Neuroregeneration, School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Nantong, China.
| | - Dong Liu
- Co-innovation Center of Neuroregeneration, School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Nantong, China.
| | - Huan-Yu Ni
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China; Nanjing Medical Center for Clinical Pharmacy, Nanjing, Jiangsu, China.
| |
Collapse
|
9
|
Wang J, Tu Q, Zhang S, He X, Ma C, Qian X, Wu R, Shi X, Yang Z, Liu Y, Dong Z, Liu M. Kif15 deficiency contributes to depression-like behavior in mice. Metab Brain Dis 2023; 38:2369-2381. [PMID: 37256467 DOI: 10.1007/s11011-023-01238-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/18/2023] [Indexed: 06/01/2023]
Abstract
Neuropsychiatric disorders have a high incidence worldwide. Kinesins, a family of microtubule-based molecular motor proteins, play essential roles in intracellular and axonal transport. Variants of kinesins have been found to be related to many diseases, including neurodevelopmental/neurodegenerative disorders. Kinesin-12 (also known as Kif15) was previously found to affect the frequency of both directional microtubule transports. However, whether Kif15 deficiency impacts mood in mice is yet to be investigated. In this study, we used the CRISPR/Cas9 method to obtain Kif15-/- mice. In behavioral tests, Kif15-/- female mice exhibited prominent depressive characteristics. Further studies showed that the expression of BDNF was significantly decreased in the frontal cortex, corpus callosum, and hippocampus of Kif15-/- mice, along with the upregulation of Interleukin-6 and Interleukin-1β in the corpus callosum. In addition, the expression patterns of AnkG were notably changed in the developing brain of Kif15-/- mice. Based on our previous studies, we suggested that this appearance of altered AnkG was due to the maladjustment of the microtubule patterns induced by Kif15 deficiency. The distribution of PSD95 in neurites notably decreased after cultured neurons treated with the Kif15 inhibitor, but total PSD95 protein level was not impacted, which revealed that Kif15 may contribute to PSD95 transportation. This study suggested that Kif15 may serve as a potential target for future depression studies.
Collapse
Affiliation(s)
- Junpei Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Jiangsu, 226001, China
| | - Qifeng Tu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Jiangsu, 226001, China
| | - Siming Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Jiangsu, 226001, China
| | - Xiaomei He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Jiangsu, 226001, China
| | - Chao Ma
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Jiangsu, 226001, China
| | - Xiaowei Qian
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Jiangsu, 226001, China
| | - Ronghua Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Jiangsu, 226001, China
| | - Xinyu Shi
- Medical School of Nantong University, Jiangsu, 226001, China
| | - Zhangyi Yang
- Medical School of Nantong University, Jiangsu, 226001, China
| | - Yan Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Jiangsu, 226001, China
| | - Zhangji Dong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Jiangsu, 226001, China.
| | - Mei Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Jiangsu, 226001, China.
| |
Collapse
|
10
|
Taniguchi C, Watanabe T, Hirata M, Hatae A, Kubota K, Katsurabayashi S, Iwasaki K. Ninjinyoeito Prevents Onset of Depression-Like Behavior and Reduces Hippocampal iNOS Expression in Senescence-Accelerated Mouse Prone 8 Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:2151004. [PMID: 37593014 PMCID: PMC10432024 DOI: 10.1155/2023/2151004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023]
Abstract
Late-life depression is a globally prevalent disorder. Ninjinyoeito (NYT), a traditional Japanese herbal medicine, attenuates depressive symptoms in older patients. However, the mechanisms underlying the antidepressive effect of NYT are unknown. In this study, we investigated the mechanism of the action of NYT using senescence-accelerated mouse prone 8 (SAMP8) mice, which exhibit accelerated aging. SAMP8 mice were treated with NYT starting at 12 weeks of age. Twelve-week-old SAMP8 mice did not show prolonged immobility time in the tail suspension test compared with age-matched SAMR1 mice (normal aging control). At 34 weeks of age, vehicle-treated SAMP8 mice displayed prolonged immobility time compared with SAMR1 mice. NYT-treated SAMP8 mice showed a shorter immobility time than that of vehicle-treated SAMP8 mice. Notably, NYT decreased hippocampal inducible nitric oxide synthase (iNOS) expression in SAMP8 mice. There was no difference in iNOS expression between SAMR1 and vehicle-treated SAMP8 mice. Subchronic (5 days) administration of an iNOS inhibitor, 1400 W, shortened the immobility time in SAMP8 mice. These results suggest that NYT prevents an increase in immobility time of SAMP8 mice by decreasing iNOS levels in the hippocampus. Therefore, the antidepressive effect of NYT in older patients might be mediated, at least in part, by the downregulation of iNOS in the brain. Our data suggest that NYT is useful to prevent the onset of depression with aging.
Collapse
Affiliation(s)
- Chise Taniguchi
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Takuya Watanabe
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Marika Hirata
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Akinobu Hatae
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Kaori Kubota
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Shutaro Katsurabayashi
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Katsunori Iwasaki
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
11
|
Joo MK, Kim DH. Vagus nerve-dependent effects of fluoxetine on anxiety- and depression-like behaviors in mice. Eur J Pharmacol 2023:175862. [PMID: 37331682 DOI: 10.1016/j.ejphar.2023.175862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
The vagus nerve is a major pathway in the body that is responsible for regulating the activity of the parasympathetic nervous system, which plays an important role in mood disorders including anxiety and depression. Fluoxetine, also known as Prozac, is widely used to treat depression. Nevertheless, there are few studies on the vagus nerve-mediated action of fluoxetine. In this study, we aimed to investigate the vagus nerve-dependent actions of fluoxetine in mice with restraint stress-induced or antibiotics-induced anxiety- and depression-like behaviors. Compared to sham operation, vagotomy alone did not exhibit significant effects on behavioral changes and serotonin-related biomarkers in mice not exposed to stress, antibiotics, or fluoxetine. Oral administration of fluoxetine significantly alleviated anxiety- and depression-like behaviors. However, celiac vagotomy significantly attenuated the anti-depressive effects of fluoxetine. The vagotomy also inhibited the effect of fluoxetine to attenuate restraint stress- or cefaclor-induced reduction in serotonin levels and Htr1a mRNA expression in the hippocampus. These findings suggest that the vagus nerve may regulate the efficacy of fluoxetine for depression.
Collapse
Affiliation(s)
- Min-Kyung Joo
- Neurobiota Research Center and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, 02447, South Korea.
| | - Dong-Hyun Kim
- Neurobiota Research Center and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, 02447, South Korea.
| |
Collapse
|
12
|
Ross RE, VanDerwerker CJ, Saladin ME, Gregory CM. The role of exercise in the treatment of depression: biological underpinnings and clinical outcomes. Mol Psychiatry 2023; 28:298-328. [PMID: 36253441 PMCID: PMC9969795 DOI: 10.1038/s41380-022-01819-w] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 01/21/2023]
Abstract
Globally, depression is a leading cause of disability and has remained so for decades. Antidepressant medications have suboptimal outcomes and are too frequently associated with side effects, highlighting the need for alternative treatment options. Although primarily known for its robust physical health benefits, exercise is increasingly recognized for its mental health and antidepressant benefits. Empirical evidence indicates that exercise is effective in treating individuals with depression; however, the mechanisms by which exercise exerts anti-depressant effects are not fully understood. Acute bouts of exercise have been shown to transiently modulate circulating levels of serotonin and norepinephrine, brain-derived neurotrophic factor, and a variety of immuno-inflammatory mechanisms in clinical cohorts with depression. However, exercise training has not been demonstrated to consistently modulate such mechanisms, and evidence linking these putative mechanisms and reductions in depression is lacking. The complexity of the biological underpinnings of depression coupled with the intricate molecular cascade induced by exercise are significant obstacles in the attempt to disentangle exercise's effects on depression. Notwithstanding our limited understanding of these effects, clinical evidence uniformly argues for the use of exercise to treat depression. Regrettably, exercise remains underutilized despite being an accessible, low-cost alternative/adjunctive intervention that can simultaneously reduce depression and improve overall health. To address the gaps in our understanding of the clinical and molecular effects of exercise on depression, we propose a model that leverages systems biology and multidisciplinary team science with a large-scale public health investment. Until the science matches the scale of complexity and burden posed by depression, our ability to advance knowledge and treatment will continue to be plagued by fragmented, irreproducible mechanistic findings and no guidelines for standards of care.
Collapse
Affiliation(s)
- Ryan E. Ross
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC,Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC
| | | | - Michael E. Saladin
- Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC,Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC
| | - Chris M. Gregory
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC,Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
13
|
Jiang H, Deng S, Zhang J, Chen J, Li B, Zhu W, Zhang M, Zhang C, Meng Z. Acupuncture treatment for post-stroke depression: Intestinal microbiota and its role. Front Neurosci 2023; 17:1146946. [PMID: 37025378 PMCID: PMC10070763 DOI: 10.3389/fnins.2023.1146946] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
Stroke-induced depression is a common complication and an important risk factor for disability. Besides psychiatric symptoms, depressed patients may also exhibit a variety of gastrointestinal symptoms, and even take gastrointestinal symptoms as the primary reason for medical treatment. It is well documented that stress may disrupt the balance of the gut microbiome in patients suffering from post-stroke depression (PSD), and that disruption of the gut microbiome is closely related to the severity of the condition in depressed patients. Therefore, maintaining the balance of intestinal microbiota can be the focus of research on the mechanism of acupuncture in the treatment of PSD. Furthermore, stroke can be effectively treated with acupuncture at all stages and it may act as a special microecological regulator by regulating intestinal microbiota as well. In this article, we reviewed the studies on changing intestinal microbiota after acupuncture treatment and examined the existing problems and development prospects of acupuncture, microbiome, and poststroke depression, in order to provide new ideas for future acupuncture research.
Collapse
Affiliation(s)
- Hailun Jiang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shizhe Deng
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jieying Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junjie Chen
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Boxuan Li
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Weiming Zhu
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Menglong Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chao Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Chao Zhang,
| | - Zhihong Meng
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Zhihong Meng,
| |
Collapse
|
14
|
Dashti S, Nahavandi A. Neuroprotective effects of aripiprazole in stress-induced depressive-like behavior: Possible role of CACNA1C. J Chem Neuroanat 2022; 126:102170. [PMID: 36270562 DOI: 10.1016/j.jchemneu.2022.102170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/07/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Depression is the most common psychiatric disorder. Recently, aripiprazole, a novel antipsychotic drug, has been approved as the adjunctive therapy for the Treatment-Resistant Depression (TRD). However, the mechanisms underlying the antidepressant effects of aripiprazole are not fully known. Besides the involvement of calcium signaling dysregulations in the pathophysiology of depression, there is some evidence of overexpressed CACNA1C (the gene encoding the Cav1.2 channels) following chronic stress in the brain regions, which involved in emotional and stress responses. Based on the data indicating the aripiprazole's effects on intracellular calcium levels, this study aimed to investigate the mechanisms of therapeutic effects of aripiprazole, by a focus on the modulation of CACNA1C expression, in the rat stress-induced model of depression. METHODS Using Chronic Unpredictable Mild Stress (CUMS) model of depression, we examined the effects of aripiprazole on depressive and anxiety-like behaviors (by forced swimming test and elevated plus maze), serum IL-6 (Elisa), and cell survival (Nissl staining). In addition, CACNA1C, BDNF, and TrkB expression in the PFC and hippocampus (RT-qPCR), as well as BDNF and GAP-43 protein levels in the hippocampus (Immunohistofluorescence), have been assayed. RESULTS Our data indicated that aripiprazole could improve anxiety and depressive-like behaviors, decrease the serum levels of IL-6 and hippocampal cell death following CUMS. In addition, we showed the significant modulation on overexpressed CACNA1C, as well as downregulated BDNF and GAP-43 expression DISCUSSION: These results demonstrate that aripiprazole may promote synaptic plasticity by improving the expression of BDNF and gap-43. In addition, inflammation reduction and CACNA1C expression downregulation may be some of mechanisms by which aripiprazole alleviates chronic stress-induced hippocampal cell death and play its pivotal antidepressant role.
Collapse
Affiliation(s)
- Somayeh Dashti
- Department of Physiology, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Arezo Nahavandi
- Department of Physiology, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran; Neuroscience Research Center, Iran University of Medical Science, Tehran, Iran.
| |
Collapse
|
15
|
Xu H, Ding Y, Qi X, Zhang ZJ, Su J. Ameliorated Neurogenesis Deficits in Dentate Gyrus May Underly the Pronounced Antidepressant Effect of TREK-1 Potassium Channel Blockade in Rats with Depressive-like Behavior. ACS Chem Neurosci 2022; 13:3068-3077. [PMID: 36269040 DOI: 10.1021/acschemneuro.2c00428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Depression is considered to be the most common mental disorder and is probed by several studies that chronic mild stress contributes to depression, and fortunately, most antidepressants ameliorate depressive-like behavior accompanied with reversed hippocampal neurogenesis defects. In our present study, we confirmed that different antidepressants repaired the stress-induced neuronal and behavioral deficits by modulating adult hippocampal neurogenesis. Antidepressant treatment restored the adult hippocampal neurodegeneration, which was impaired by chronic unpredicted mild stress displaying decreased proliferation and neuronal differentiation but increased apoptosis of newly formed neurons in dentate gyrus. Notably, sucrose preference ratio significantly correlated with both neuronal differentiation proportion and newborn apoptosis proportion, suggesting a mechanistic relationship between neurogenesis and behavior. Indeed, the neotype TREK-1 potassium channel blocker expressed an earlier and pronounced antidepressant manifestation compared to the traditional selective serotonin-reuptake inhibitors fluoxetine. We therefore conclude that the administration of TREK-1 potassium channel antagonism can reverse the depressive deficits caused by chronic stress quickly via regulation of adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Hua Xu
- Department of Neurology, Affiliated Jintan Hospital of Jiangsu University, Changzhou Jintan First People's Hospital, Changzhou, Jiangsu 213200, China.,Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Yingpeng Ding
- Department of Cardiology, Affiliated Jintan Hospital of Jiangsu University, Changzhou Jintan First People's Hospital, Changzhou 213200, Jiangsu, China
| | - Xinyang Qi
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Zhi-Jun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.,The Brain Cognition and Brain Disease Institute (BCBDI), CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jianhua Su
- Department of Neurology, Affiliated Jintan Hospital of Jiangsu University, Changzhou Jintan First People's Hospital, Changzhou, Jiangsu 213200, China
| |
Collapse
|
16
|
Lu X, Liu H, Cai Z, Hu Z, Ye M, Gu Y, Wang Y, Wang D, Lu Q, Shen Z, Shen X, Huang C. ERK1/2-dependent BDNF synthesis and signaling is required for the antidepressant effect of microglia stimulation. Brain Behav Immun 2022; 106:147-160. [PMID: 35995236 DOI: 10.1016/j.bbi.2022.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/27/2022] [Accepted: 08/13/2022] [Indexed: 10/31/2022] Open
Abstract
Depressed mice have lower numbers of microglia in the dentate gyrus (DG). Reversal of this decline by a single low dose of lipopolysaccharide (LPS) may have antidepressant effects, but there is little information on the molecular mechanisms underlying this effect. It is known that impairment of brain-derived neurotrophic factor (BDNF) signaling is involved in the development of depression. Here, we used a combination of neutralizing antibodies, mutant mice, and pharmacological approaches to test the role of BDNF-tyrosine kinase receptor B (TrkB) signaling in the DG in the effect of microglial stimulation. Our results suggest that inhibition of BDNF signaling by infusion of an anti-BDNF antibody, the BDNF receptor antagonist K252a, or knock-in of the mutant BDNF Val68Met allele abolished the antidepressant effect of LPS in chronically stressed mice. Increased BDNF synthesis in DG, mediated by extracellular signal-regulated kinase1/2 (ERK1/2) signaling but not protein kinase B (Akt)-mammalian target of rapamycin (mTOR) signaling, was essential for the antidepressant effect of microglial stimulation. These results suggest that increased BDNF synthesis through activation of ERK1/2 caused by a single LPS injection and subsequent TrkB signaling are required for the antidepressant effect of hippocampal microglial stimulation.
Collapse
Affiliation(s)
- Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Huijun Liu
- Department of Pharmacy, Yancheng First Hospital, the Fourth Affiliated Hospital of Nantong University, #66 Renmin South Road, Yancheng 224006, Jiangsu, China
| | - Zixuan Cai
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Zhichao Hu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Minxiu Ye
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Yue Gu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Yue Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Dan Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Qun Lu
- Department of Pharmacy, Nantong Third Hospital Affiliated to Nantong University, #60 Middle Qingnian Road, Nantong 226006, Jiangsu, China
| | - Zhongxia Shen
- Department of Psychosomatic and Psychiatric Diseases, Huzhou Third Municipal Hospital, the Affiliated Hospital of Huzhou University, #2088 Tiaoxi East Road, Huzhou 313000, Zhejiang, China
| | - Xinhua Shen
- Department of Psychosomatic and Psychiatric Diseases, Huzhou Third Municipal Hospital, the Affiliated Hospital of Huzhou University, #2088 Tiaoxi East Road, Huzhou 313000, Zhejiang, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China.
| |
Collapse
|
17
|
Dong X, Huang R. Ferulic acid: An extraordinarily neuroprotective phenolic acid with anti-depressive properties. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154355. [PMID: 35908520 DOI: 10.1016/j.phymed.2022.154355] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Depression, one of the most common mental illnesses and mood disorder syndromes, can seriously harm physical and mental health. As the pathophysiology of depression remains unclear, there is a need to find novel therapeutic agents. Ferulic acid (FA), a phenolic compound found in various Chinese herbal medicines, has anti-inflammatory and free radical scavenging properties as well as a wide range of therapeutic effects against depression. PURPOSE In this review, we appraised preclinical research to fully discuss the anti-depression capacity of FA and discussed FAs' holistic characteristics that can contribute to better management of depression. STUDY DESIGN We reviewed the results of in vitro and in vivo experiments using FA to treat depression and explored the possible antidepressant pharmacological mechanisms of FA for the clinical treatment of depression. METHODS Electronic databases, including PubMed, Google Scholar, and China National Knowledge Infrastructure, were searched from the beginning of the database creation to December 2021. RESULTS Studies on the antidepressant effects of FA show that it may exert such effects through various mechanisms. These include the following: the regulation of monoamine and non-monoamine neurotransmitter levels, inhibition of hypothalamic-pituitary-adrenal axis hyperfunction and neuroinflammation, promotion of hippocampal neurogenesis and upregulation brain-derived neurotrophic factor level, neuroprotection (inhibition of neuroinflammation, oxidative stress, mitochondrial dysfunction, and apoptosis), and downregulation of oxidative stress. CONCLUSION Preclinical studies on the antidepressant effects of FA were reviewed in this study, and research on the antidepressant mechanisms of FA was summarized, confirming that FA can exert antidepressant effects through various pharmacological mechanisms. However, more multicenter clinical case-control studies are needed to confirm the clinical efficacy of FA.
Collapse
Affiliation(s)
- Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning PR China
| | - Rui Huang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning PR China.
| |
Collapse
|
18
|
Antidepressant-Like Effect of Traditional Medicinal Plant Carthamus Tinctorius in Mice Model through Neuro-Behavioral Tests and Transcriptomic Approach. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Major depression disorder (MDD) has become a common life-threatening disorder. Despite the number of studies and the introduced antidepressants, MDD remains a major global health issue. Carthamus tinctorius (safflower) is traditionally used for food and medical purposes. This study investigated the chemical profile and the antidepressant-like effect of the Carthamus tincto-rius hot water extract in male mice and its mechanism using a transcriptomic analysis. The antidepressant effect of hot water extract (50 mg/kg and 150 mg/kg) was investigated in mice versus the untreated group (saline) and positive control group (fluoxetine 10 mg/kg). Hippocampus transcriptome changes were investigated to understand the Carthamus tinctorius mechanism of action. The GC-MS analysis of Carthamus tinctorius showed that hot water extract yielded the highest amount of oleamide as the most active ingredient. Neuro-behavioral tests demonstrated that the safflower treatment significantly reduced immobility time in TST and FST and improved performance in the YMSAT compared to the control group. RNA-seq analysis revealed a significant differential gene expression pattern in several genes such as Ube2j2, Ncor1, Tuba1c, Grik1, Msmo1, and Casp9 related to MDD regulation in 50 mg/kg safflower treatment as compared to untreated and fluoxetine-treated groups. Our findings demonstrated the antidepressant-like effect of safflower hot water extract and its bioactive ingredient oleamide on mice, validated by a significantly shortened immobility time in TST and FST and an increase in the percentage of spontaneous alternation.
Collapse
|
19
|
Skalski M, Mach A, Januszko P, Ryszewska-Pokraśniewicz B, Biernacka A, Nowak G, Pilc A, Poleszak E, Radziwoń-Zaleska M. Pharmaco-Electroencephalography-Based Assessment of Antidepressant Drug Efficacy-The Use of Magnesium Ions in the Treatment of Depression. J Clin Med 2021; 10:3135. [PMID: 34300299 PMCID: PMC8306926 DOI: 10.3390/jcm10143135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 11/17/2022] Open
Abstract
Pharmaco-electroencephalography (pharmaco-EEG) is a technique used to assess the effects of psychotropic medications on the bioelectrical activity of the brain. The purpose of this study was to assess the treatment response with the use of the Hamilton Depression Rating Scale (HDRS) and via EEG. Over an 8-week period, we analyzed electroencephalographic tracings of 91 patients hospitalized for major depression at the Medical University of Warsaw. Thirty-nine of those patients received tricyclic antidepressants (TCAs), 35 received fluoxetine, and 17 received fluoxetine augmented with magnesium (Mg) ions. All patients had their serum drug levels monitored. The highest proportion of patients (88.2%) who showed adequate responses to treatment was observed in the fluoxetine+Mg group, whereas the lowest rates of treatment response were observed in the TCA group (58.3%). This difference was statistically significant (p = 0.029, Phi = 0.30). Our study demonstrated a relationship between achieving remission (HDRS ≤ 6 at week 8 of treatment) and obtaining a positive pharmaco-EEG profile 6 h after administration of the first dose in the group receiving fluoxetine augmented with Mg ions (p = 0.035, Phi = 0.63).
Collapse
Affiliation(s)
- Michał Skalski
- Department of Psychiatry, Medical University of Warsaw, 00-665 Warsaw, Poland; (M.S.); (P.J.); (M.R.-Z.)
| | - Anna Mach
- Department of Psychiatry, Medical University of Warsaw, 00-665 Warsaw, Poland; (M.S.); (P.J.); (M.R.-Z.)
| | - Piotr Januszko
- Department of Psychiatry, Medical University of Warsaw, 00-665 Warsaw, Poland; (M.S.); (P.J.); (M.R.-Z.)
| | | | | | - Gabriel Nowak
- May Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland; (G.N.); (A.P.)
| | - Andrzej Pilc
- May Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland; (G.N.); (A.P.)
| | - Ewa Poleszak
- Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Maria Radziwoń-Zaleska
- Department of Psychiatry, Medical University of Warsaw, 00-665 Warsaw, Poland; (M.S.); (P.J.); (M.R.-Z.)
| |
Collapse
|
20
|
Birmann PT, Casaril AM, Pesarico AP, Caballero PS, Smaniotto TÂ, Rodrigues RR, Moreira ÂN, Conceição FR, Sousa FSS, Collares T, Seixas FK, França RT, Corcini CD, Savegnago L. Komagataella pastoris KM71H modulates neuroimmune and oxidative stress parameters in animal models of depression: A proposal for a new probiotic with antidepressant-like effect. Pharmacol Res 2021; 171:105740. [PMID: 34246781 DOI: 10.1016/j.phrs.2021.105740] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/02/2021] [Accepted: 06/19/2021] [Indexed: 12/20/2022]
Abstract
Many studies have suggested that imbalance of the gut microbial composition leads to an increase in pro-inflammatory cytokines and promotes oxidative stress, and this are directly associated with neuropsychiatric disorders, including major depressive disorder (MDD). Clinical data indicated that the probiotics have positive impacts on the central nervous system and thus may have a key role to treatment of MDD. This study examined the benefits of administration of Komagataella pastoris KM71H (8 log UFC·g-1/animal, intragastric route) in attenuating behavioral, neurochemical, and neuroendocrine changes in animal models of depressive-like behavior induced by repeated restraint stress and lipopolysaccharide (0.83 mg/kg). We demonstrated that pretreatment of mice with this yeast prevented depression-like behavior induced by stress and an inflammatory challenge in mice. We believe that this effect is due to modulation of the permeability of the blood-brain barrier, restoration in the mRNA levels of the Nuclear factor kappa B, Interleukin 1β, Interferon γ, and Indoleamine 2 3-dioxygenase, and prevention of oxidative stress in the prefrontal cortices, hippocampi, and intestine of mice and of the decrease the plasma corticosterone levels. Thus, we conclude that K. pastoris KM71H has properties for a new proposal of probiotic with antidepressant-like effect, arising as a promising therapeutic strategy for MDD.
Collapse
Affiliation(s)
- Paloma T Birmann
- Technologic Development Center, Division of Biotechnology, Neurobiotechnology Research Group, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Angela M Casaril
- Technologic Development Center, Division of Biotechnology, Neurobiotechnology Research Group, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Ana Paula Pesarico
- Technologic Development Center, Division of Biotechnology, Neurobiotechnology Research Group, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Pamela S Caballero
- Technological Development Center, Division of Biotechnology, Applied Immunology Laboratory, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Thiago  Smaniotto
- Technologic Development Center, Division of Biotechnology, Neurobiotechnology Research Group, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Rafael R Rodrigues
- Technological Development Center, Division of Biotechnology, Applied Immunology Laboratory, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Ângela N Moreira
- Technological Development Center, Division of Biotechnology, Applied Immunology Laboratory, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Fabricio R Conceição
- Technological Development Center, Division of Biotechnology, Applied Immunology Laboratory, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Fernanda S S Sousa
- Technological Development Center, Division of Biotechnology, Molecular and Cellular Oncology Research Group and Functional Genomics Laboratory, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Tiago Collares
- Technological Development Center, Division of Biotechnology, Molecular and Cellular Oncology Research Group and Functional Genomics Laboratory, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Fabiana K Seixas
- Technological Development Center, Division of Biotechnology, Molecular and Cellular Oncology Research Group and Functional Genomics Laboratory, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Raqueli T França
- Center for Animal Reproduction, Faculty of Veterinary Medicine, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Carine D Corcini
- Center for Animal Reproduction, Faculty of Veterinary Medicine, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Lucielli Savegnago
- Technologic Development Center, Division of Biotechnology, Neurobiotechnology Research Group, Federal University of Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|